some whitespace fix
[PyX.git] / deformer.py
blobad2bcc7c96cf6b4cc98ea33983fb03e23130d327
1 # -*- encoding: utf-8 -*-
4 # Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
5 # Copyright (C) 2003-2005 André Wobst <wobsta@users.sourceforge.net>
7 # This file is part of PyX (http://pyx.sourceforge.net/).
9 # PyX is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 2 of the License, or
12 # (at your option) any later version.
14 # PyX is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with PyX; if not, write to the Free Software
21 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 import functools, logging, math
24 from . import attr, baseclasses, mathutils, path, normpath, unit, color
26 logger = logging.getLogger("pyx")
28 # specific exception for an invalid parameterization point
29 # used in parallel
30 class InvalidParamException(Exception):
32 def __init__(self, param):
33 self.normsubpathitemparam = param
35 # None has a meaning in linesmoothed
36 class _marker: pass
38 def curvescontrols_from_endlines_pt(B, tangent1, tangent2, r1, r2, softness): # <<<
39 # calculates the parameters for two bezier curves connecting two lines (curvature=0)
40 # starting at B - r1*tangent1
41 # ending at B + r2*tangent2
43 # Takes the corner B
44 # and two tangent vectors heading to and from B
45 # and two radii r1 and r2:
46 # All arguments must be in Points
47 # Returns the seven control points of the two bezier curves:
48 # - start d1
49 # - control points g1 and f1
50 # - midpoint e
51 # - control points f2 and g2
52 # - endpoint d2
54 # make direction vectors d1: from B to A
55 # d2: from B to C
56 d1 = -tangent1[0] / math.hypot(*tangent1), -tangent1[1] / math.hypot(*tangent1)
57 d2 = tangent2[0] / math.hypot(*tangent2), tangent2[1] / math.hypot(*tangent2)
59 # 0.3192 has turned out to be the maximum softness available
60 # for straight lines ;-)
61 f = 0.3192 * softness
62 g = (15.0 * f + math.sqrt(-15.0*f*f + 24.0*f))/12.0
64 # make the control points of the two bezier curves
65 f1 = B[0] + f * r1 * d1[0], B[1] + f * r1 * d1[1]
66 f2 = B[0] + f * r2 * d2[0], B[1] + f * r2 * d2[1]
67 g1 = B[0] + g * r1 * d1[0], B[1] + g * r1 * d1[1]
68 g2 = B[0] + g * r2 * d2[0], B[1] + g * r2 * d2[1]
69 d1 = B[0] + r1 * d1[0], B[1] + r1 * d1[1]
70 d2 = B[0] + r2 * d2[0], B[1] + r2 * d2[1]
71 e = 0.5 * (f1[0] + f2[0]), 0.5 * (f1[1] + f2[1])
73 return (d1, g1, f1, e, f2, g2, d2)
74 # >>>
76 def controldists_from_endgeometry_pt(A, B, tangA, tangB, curvA, curvB, allownegative=0): # <<<
78 """For a curve with given tangents and curvatures at the endpoints this gives the distances between the controlpoints
80 This helper routine returns a list of two distances between the endpoints and the
81 corresponding control points of a (cubic) bezier curve that has
82 prescribed tangents tangentA, tangentB and curvatures curvA, curvB at the
83 end points.
85 Note: The returned distances are not always positive.
86 But only positive values are geometrically correct, so please check!
87 The outcome is sorted so that the first entry is expected to be the
88 most reasonable one
89 """
90 debug = 0
92 def test_divisions(T, D, E, AB, curvA, curvB, debug):# <<<
94 def is_zero(x):
95 try:
96 1.0 / x
97 except ZeroDivisionError:
98 return 1
99 return 0
101 T_is_zero = is_zero(T)
102 curvA_is_zero = is_zero(curvA)
103 curvB_is_zero = is_zero(curvB)
105 if T_is_zero:
106 if curvA_is_zero:
107 assert abs(D) < 1.0e-10
108 a = AB / 3.0
109 if curvB_is_zero:
110 assert abs(E) < 1.0e-10
111 b = AB / 3.0
112 else:
113 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
114 else:
115 a = math.sqrt(abs(D / (1.5 * curvA))) * mathutils.sign(D*curvA)
116 if curvB_is_zero:
117 assert abs(E) < 1.0e-10
118 b = AB / 3.0
119 else:
120 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
121 else:
122 if curvA_is_zero:
123 b = D / T
124 a = (E - 1.5*curvB*b*abs(b)) / T
125 elif curvB_is_zero:
126 a = E / T
127 b = (D - 1.5*curvA*a*abs(a)) / T
128 else:
129 return []
131 if debug:
132 print("fallback with exact zero value")
133 return [(a, b)]
134 # >>>
135 def fallback_smallT(T, D, E, AB, curvA, curvB, threshold, debug):# <<<
136 a = math.sqrt(abs(D / (1.5 * curvA))) * mathutils.sign(D*curvA)
137 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
138 q1 = min(abs(1.5*a*a*curvA), abs(D))
139 q2 = min(abs(1.5*b*b*curvB), abs(E))
140 if (a >= 0 and b >= 0 and
141 abs(b*T) < threshold * q1 and abs(1.5*a*abs(a)*curvA - D) < threshold * q1 and
142 abs(a*T) < threshold * q2 and abs(1.5*b*abs(b)*curvB - E) < threshold * q2):
143 if debug:
144 print("fallback with T approx 0")
145 return [(a, b)]
146 return []
147 # >>>
148 def fallback_smallcurv(T, D, E, AB, curvA, curvB, threshold, debug):# <<<
149 result = []
151 # is curvB approx zero?
152 a = E / T
153 b = (D - 1.5*curvA*a*abs(a)) / T
154 if (a >= 0 and b >= 0 and
155 abs(1.5*b*b*curvB) < threshold * min(abs(a*T), abs(E)) and
156 abs(a*T - E) < threshold * min(abs(a*T), abs(E))):
157 if debug:
158 print("fallback with curvB approx 0")
159 result.append((a, b))
161 # is curvA approx zero?
162 b = D / T
163 a = (E - 1.5*curvB*b*abs(b)) / T
164 if (a >= 0 and b >= 0 and
165 abs(1.5*a*a*curvA) < threshold * min(abs(b*T), abs(D)) and
166 abs(b*T - D) < threshold * min(abs(b*T), abs(D))):
167 if debug:
168 print("fallback with curvA approx 0")
169 result.append((a, b))
171 return result
172 # >>>
173 def findnearest(x, ys): # <<<
174 I = 0
175 Y = ys[I]
176 mindist = abs(x - Y)
178 # find the value in ys which is nearest to x
179 for i, y in enumerate(ys[1:]):
180 dist = abs(x - y)
181 if dist < mindist:
182 I, Y, mindist = i, y, dist
184 return I, Y
185 # >>>
187 # some shortcuts
188 T = tangA[0] * tangB[1] - tangA[1] * tangB[0]
189 D = tangA[0] * (B[1]-A[1]) - tangA[1] * (B[0]-A[0])
190 E = tangB[0] * (A[1]-B[1]) - tangB[1] * (A[0]-B[0])
191 AB = math.hypot(A[0] - B[0], A[1] - B[1])
193 # try if one of the prefactors is exactly zero
194 testsols = test_divisions(T, D, E, AB, curvA, curvB, debug)
195 if testsols:
196 return testsols
198 # The general case:
199 # we try to find all the zeros of the decoupled 4th order problem
200 # for the combined problem:
201 # The control points of a cubic Bezier curve are given by a, b:
202 # A, A + a*tangA, B - b*tangB, B
203 # for the derivation see /design/beziers.tex
204 # 0 = 1.5 a |a| curvA + b * T - D
205 # 0 = 1.5 b |b| curvB + a * T - E
206 # because of the absolute values we get several possibilities for the signs
207 # in the equation. We test all signs, also the invalid ones!
208 if allownegative:
209 signs = [(+1, +1), (-1, +1), (+1, -1), (-1, -1)]
210 else:
211 signs = [(+1, +1)]
213 candidates_a = []
214 candidates_b = []
215 for sign_a, sign_b in signs:
216 coeffs_a = (sign_b*3.375*curvA*curvA*curvB, 0.0, -sign_b*sign_a*4.5*curvA*curvB*D, T**3, sign_b*1.5*curvB*D*D - T*T*E)
217 coeffs_b = (sign_a*3.375*curvA*curvB*curvB, 0.0, -sign_a*sign_b*4.5*curvA*curvB*E, T**3, sign_a*1.5*curvA*E*E - T*T*D)
218 candidates_a += [root for root in mathutils.realpolyroots(*coeffs_a) if sign_a*root >= 0]
219 candidates_b += [root for root in mathutils.realpolyroots(*coeffs_b) if sign_b*root >= 0]
220 solutions = []
221 if candidates_a and candidates_b:
222 for a in candidates_a:
223 i, b = findnearest((D - 1.5*curvA*a*abs(a))/T, candidates_b)
224 solutions.append((a, b))
226 # try if there is an approximate solution
227 for thr in [1.0e-2, 1.0e-1]:
228 if not solutions:
229 solutions = fallback_smallT(T, D, E, AB, curvA, curvB, thr, debug)
230 if not solutions:
231 solutions = fallback_smallcurv(T, D, E, AB, curvA, curvB, thr, debug)
233 # sort the solutions: the more reasonable values at the beginning
234 def mycmp(x,y): # <<<
235 # first the pairs that are purely positive, then all the pairs with some negative signs
236 # inside the two sets: sort by magnitude
237 sx = (x[0] > 0 and x[1] > 0)
238 sy = (y[0] > 0 and y[1] > 0)
240 # experimental stuff:
241 # what criterion should be used for sorting ?
243 #errx = abs(1.5*curvA*x[0]*abs(x[0]) + x[1]*T - D) + abs(1.5*curvB*x[1]*abs(x[1]) + x[0]*T - E)
244 #erry = abs(1.5*curvA*y[0]*abs(y[0]) + y[1]*T - D) + abs(1.5*curvB*y[1]*abs(y[1]) + y[0]*T - E)
245 # # For each equation, a value like
246 # # abs(1.5*curvA*y[0]*abs(y[0]) + y[1]*T - D) / abs(curvA*(D - y[1]*T))
247 # # indicates how good the solution is. In order to avoid the division,
248 # # we here multiply with all four denominators:
249 # errx = max(abs( (1.5*curvA*y[0]*abs(y[0]) + y[1]*T - D) * (curvB*(E - y[0]*T))*(curvA*(D - x[1]*T))*(curvB*(E - x[0]*T)) ),
250 # abs( (1.5*curvB*y[1]*abs(y[1]) + y[0]*T - E) * (curvA*(D - y[1]*T))*(curvA*(D - x[1]*T))*(curvB*(E - x[0]*T)) ))
251 # errx = max(abs( (1.5*curvA*x[0]*abs(x[0]) + x[1]*T - D) * (curvA*(D - y[1]*T))*(curvB*(E - y[0]*T))*(curvB*(E - x[0]*T)) ),
252 # abs( (1.5*curvB*x[1]*abs(x[1]) + x[0]*T - E) * (curvA*(D - y[1]*T))*(curvB*(E - y[0]*T))*(curvA*(D - x[1]*T)) ))
253 #errx = (abs(curvA*x[0]) - 1.0)**2 + (abs(curvB*x[1]) - 1.0)**2
254 #erry = (abs(curvA*y[0]) - 1.0)**2 + (abs(curvB*y[1]) - 1.0)**2
256 errx = x[0]**2 + x[1]**2
257 erry = y[0]**2 + y[1]**2
259 if sx == 1 and sy == 1:
260 # try to use longer solutions if there are any crossings in the control-arms
261 # the following combination yielded fewest sorting errors in test_bezier.py
262 t, s = intersection(A, B, tangA, tangB)
263 t, s = abs(t), abs(s)
264 if (t > 0 and t < x[0] and s > 0 and s < x[1]):
265 if (t > 0 and t < y[0] and s > 0 and s < y[1]):
266 # use the shorter one
267 return (errx > erry) - (errx < erry)
268 else:
269 # use the longer one
270 return -1
271 else:
272 if (t > 0 and t < y[0] and s > 0 and s < y[1]):
273 # use the longer one
274 return 1
275 else:
276 # use the shorter one
277 return (errx > erry) - (errx < erry)
278 #return cmp(x[0]**2 + x[1]**2, y[0]**2 + y[1]**2)
279 else:
280 return (sy > sx) - (sy < sx)
281 # >>>
282 solutions.sort(key=functools.cmp_to_key(mycmp))
284 return solutions
285 # >>>
287 def normcurve_from_endgeometry_pt(A, B, tangA, tangB, curvA, curvB): # <<<
288 a, b = controldists_from_endgeometry_pt(A, B, tangA, tangB, curvA, curvB)[0]
289 return normpath.normcurve_pt(A[0], A[1],
290 A[0] + a * tangA[0], A[1] + a * tangA[1],
291 B[0] - b * tangB[0], B[1] - b * tangB[1], B[0], B[1])
292 # >>>
294 def intersection(A, D, tangA, tangD): # <<<
296 """returns the intersection parameters of two evens
298 they are defined by:
299 x(t) = A + t * tangA
300 x(s) = D + s * tangD
302 det = -tangA[0] * tangD[1] + tangA[1] * tangD[0]
303 try:
304 1.0 / det
305 except ArithmeticError:
306 return None, None
308 DA = D[0] - A[0], D[1] - A[1]
310 t = (-tangD[1]*DA[0] + tangD[0]*DA[1]) / det
311 s = (-tangA[1]*DA[0] + tangA[0]*DA[1]) / det
313 return t, s
314 # >>>
316 class cycloid(baseclasses.deformer): # <<<
317 """Wraps a cycloid around a path.
319 The outcome looks like a spring with the originalpath as the axis.
320 radius: radius of the cycloid
321 halfloops: number of halfloops
322 skipfirst/skiplast: undeformed end lines of the original path
323 curvesperhloop:
324 sign: start left (1) or right (-1) with the first halfloop
325 turnangle: angle of perspective on a (3D) spring
326 turnangle=0 will produce a sinus-like cycloid,
327 turnangle=90 will procude a row of connected circles
331 def __init__(self, radius=0.5*unit.t_cm, halfloops=10,
332 skipfirst=1*unit.t_cm, skiplast=1*unit.t_cm, curvesperhloop=3, sign=1, turnangle=45):
333 self.skipfirst = skipfirst
334 self.skiplast = skiplast
335 self.radius = radius
336 self.halfloops = halfloops
337 self.curvesperhloop = curvesperhloop
338 self.sign = sign
339 self.turnangle = turnangle
341 def __call__(self, radius=None, halfloops=None,
342 skipfirst=None, skiplast=None, curvesperhloop=None, sign=None, turnangle=None):
343 if radius is None:
344 radius = self.radius
345 if halfloops is None:
346 halfloops = self.halfloops
347 if skipfirst is None:
348 skipfirst = self.skipfirst
349 if skiplast is None:
350 skiplast = self.skiplast
351 if curvesperhloop is None:
352 curvesperhloop = self.curvesperhloop
353 if sign is None:
354 sign = self.sign
355 if turnangle is None:
356 turnangle = self.turnangle
358 return cycloid(radius=radius, halfloops=halfloops, skipfirst=skipfirst, skiplast=skiplast,
359 curvesperhloop=curvesperhloop, sign=sign, turnangle=turnangle)
361 def deform(self, basepath):
362 resultnormsubpaths = [self.deformsubpath(nsp) for nsp in basepath.normpath().normsubpaths]
363 return normpath.normpath(resultnormsubpaths)
365 def deformsubpath(self, normsubpath):
367 skipfirst = abs(unit.topt(self.skipfirst))
368 skiplast = abs(unit.topt(self.skiplast))
369 radius = abs(unit.topt(self.radius))
370 turnangle = math.radians(self.turnangle)
371 sign = mathutils.sign(self.sign)
373 cosTurn = math.cos(turnangle)
374 sinTurn = math.sin(turnangle)
376 # make list of the lengths and parameters at points on normsubpath
377 # where we will add cycloid-points
378 totlength = normsubpath.arclen_pt()
379 if totlength <= skipfirst + skiplast + 2*radius*sinTurn:
380 logger.warning("normsubpath is too short for deformation with cycloid -- skipping...")
381 return normsubpath
383 # parameterization is in rotation-angle around the basepath
384 # differences in length, angle ... between two basepoints
385 # and between basepoints and controlpoints
386 Dphi = math.pi / self.curvesperhloop
387 phis = [i * Dphi for i in range(self.halfloops * self.curvesperhloop + 1)]
388 DzDphi = (totlength - skipfirst - skiplast - 2*radius*sinTurn) * 1.0 / (self.halfloops * math.pi * cosTurn)
389 # Dz = (totlength - skipfirst - skiplast - 2*radius*sinTurn) * 1.0 / (self.halfloops * self.curvesperhloop * cosTurn)
390 # zs = [i * Dz for i in range(self.halfloops * self.curvesperhloop + 1)]
391 # from path._arctobcurve:
392 # optimal relative distance along tangent for second and third control point
393 L = 4 * radius * (1 - math.cos(Dphi/2)) / (3 * math.sin(Dphi/2))
395 # Now the transformation of z into the turned coordinate system
396 Zs = [ skipfirst + radius*sinTurn # here the coordinate z starts
397 - sinTurn*radius*math.cos(phi) + cosTurn*DzDphi*phi # the transformed z-coordinate
398 for phi in phis]
399 params = normsubpath._arclentoparam_pt(Zs)[0]
401 # get the positions of the splitpoints in the cycloid
402 points = []
403 for phi, param in zip(phis, params):
404 # the cycloid is a circle that is stretched along the normsubpath
405 # here are the points of that circle
406 basetrafo = normsubpath.trafo([param])[0]
408 # The point on the cycloid, in the basepath's local coordinate system
409 baseZ, baseY = 0, radius*math.sin(phi)
411 # The tangent there, also in local coords
412 tangentX = -cosTurn*radius*math.sin(phi) + sinTurn*DzDphi
413 tangentY = radius*math.cos(phi)
414 tangentZ = sinTurn*radius*math.sin(phi) + DzDphi*cosTurn
415 norm = math.sqrt(tangentX*tangentX + tangentY*tangentY + tangentZ*tangentZ)
416 tangentY, tangentZ = tangentY/norm, tangentZ/norm
418 # Respect the curvature of the basepath for the cycloid's curvature
419 # XXX this is only a heuristic, not a "true" expression for
420 # the curvature in curved coordinate systems
421 pathradius = normsubpath.curveradius_pt([param])[0]
422 if pathradius is not normpath.invalid:
423 factor = (pathradius - baseY) / pathradius
424 factor = abs(factor)
425 else:
426 factor = 1
427 l = L * factor
429 # The control points prior and after the point on the cycloid
430 preeZ, preeY = baseZ - l * tangentZ, baseY - l * tangentY
431 postZ, postY = baseZ + l * tangentZ, baseY + l * tangentY
433 # Now put everything at the proper place
434 points.append(basetrafo.apply_pt(preeZ, sign * preeY) +
435 basetrafo.apply_pt(baseZ, sign * baseY) +
436 basetrafo.apply_pt(postZ, sign * postY))
438 if len(points) <= 1:
439 logger.warning("normsubpath is too short for deformation with cycloid -- skipping...")
440 return normsubpath
442 # Build the path from the pointlist
443 # containing (control x 2, base x 2, control x 2)
444 if skipfirst > normsubpath.epsilon:
445 normsubpathitems = normsubpath.segments([0, params[0]])[0]
446 normsubpathitems.append(normpath.normcurve_pt(*(points[0][2:6] + points[1][0:4])))
447 else:
448 normsubpathitems = [normpath.normcurve_pt(*(points[0][2:6] + points[1][0:4]))]
449 for i in range(1, len(points)-1):
450 normsubpathitems.append(normpath.normcurve_pt(*(points[i][2:6] + points[i+1][0:4])))
451 if skiplast > normsubpath.epsilon:
452 for nsp in normsubpath.segments([params[-1], len(normsubpath)]):
453 normsubpathitems.extend(nsp.normsubpathitems)
455 # That's it
456 return normpath.normsubpath(normsubpathitems, epsilon=normsubpath.epsilon)
457 # >>>
459 cycloid.clear = attr.clearclass(cycloid)
461 class cornersmoothed(baseclasses.deformer): # <<<
463 """Bends corners in a normpath.
465 This decorator replaces corners in a normpath with bezier curves. There are two cases:
466 - If the corner lies between two lines, _two_ bezier curves will be used
467 that are highly optimized to look good (their curvature is to be zero at the ends
468 and has to have zero derivative in the middle).
469 Additionally, it can controlled by the softness-parameter.
470 - If the corner lies between curves then _one_ bezier is used that is (except in some
471 special cases) uniquely determined by the tangents and curvatures at its end-points.
472 In some cases it is necessary to use only the absolute value of the curvature to avoid a
473 cusp-shaped connection of the new bezier to the old path. In this case the use of
474 "obeycurv=0" allows the sign of the curvature to switch.
475 - The radius argument gives the arclength-distance of the corner to the points where the
476 old path is cut and the beziers are inserted.
477 - Path elements that are too short (shorter than the radius) are skipped
480 def __init__(self, radius, softness=1, obeycurv=0, relskipthres=0.01):
481 self.radius = radius
482 self.softness = softness
483 self.obeycurv = obeycurv
484 self.relskipthres = relskipthres
486 def __call__(self, radius=None, softness=None, obeycurv=None, relskipthres=None):
487 if radius is None:
488 radius = self.radius
489 if softness is None:
490 softness = self.softness
491 if obeycurv is None:
492 obeycurv = self.obeycurv
493 if relskipthres is None:
494 relskipthres = self.relskipthres
495 return cornersmoothed(radius=radius, softness=softness, obeycurv=obeycurv, relskipthres=relskipthres)
497 def deform(self, basepath):
498 return normpath.normpath([self.deformsubpath(normsubpath)
499 for normsubpath in basepath.normpath().normsubpaths])
501 def deformsubpath(self, normsubpath):
502 radius_pt = unit.topt(self.radius)
503 epsilon = normsubpath.epsilon
505 # remove too short normsubpath items (shorter than self.relskipthres*radius_pt or epsilon)
506 pertinentepsilon = max(epsilon, self.relskipthres*radius_pt)
507 pertinentnormsubpath = normpath.normsubpath(normsubpath.normsubpathitems,
508 epsilon=pertinentepsilon)
509 pertinentnormsubpath.flushskippedline()
510 pertinentnormsubpathitems = pertinentnormsubpath.normsubpathitems
512 # calculate the splitting parameters for the pertinentnormsubpathitems
513 arclens_pt = []
514 params = []
515 for pertinentnormsubpathitem in pertinentnormsubpathitems:
516 arclen_pt = pertinentnormsubpathitem.arclen_pt(epsilon)
517 arclens_pt.append(arclen_pt)
518 l1_pt = min(radius_pt, 0.5*arclen_pt)
519 l2_pt = max(0.5*arclen_pt, arclen_pt - radius_pt)
520 params.append(pertinentnormsubpathitem.arclentoparam_pt([l1_pt, l2_pt], epsilon))
522 # handle the first and last pertinentnormsubpathitems for a non-closed normsubpath
523 if not normsubpath.closed:
524 l1_pt = 0
525 l2_pt = max(0, arclens_pt[0] - radius_pt)
526 params[0] = pertinentnormsubpathitems[0].arclentoparam_pt([l1_pt, l2_pt], epsilon)
527 l1_pt = min(radius_pt, arclens_pt[-1])
528 l2_pt = arclens_pt[-1]
529 params[-1] = pertinentnormsubpathitems[-1].arclentoparam_pt([l1_pt, l2_pt], epsilon)
531 newnormsubpath = normpath.normsubpath(epsilon=normsubpath.epsilon)
532 for i in range(len(pertinentnormsubpathitems)):
533 this = i
534 next = (i+1) % len(pertinentnormsubpathitems)
535 thisparams = params[this]
536 nextparams = params[next]
537 thisnormsubpathitem = pertinentnormsubpathitems[this]
538 nextnormsubpathitem = pertinentnormsubpathitems[next]
539 thisarclen_pt = arclens_pt[this]
540 nextarclen_pt = arclens_pt[next]
542 # insert the middle segment
543 newnormsubpath.append(thisnormsubpathitem.segments(thisparams)[0])
545 # insert replacement curves for the corners
546 if next or normsubpath.closed:
548 t1 = thisnormsubpathitem.rotation([thisparams[1]])[0].apply_pt(1, 0)
549 t2 = nextnormsubpathitem.rotation([nextparams[0]])[0].apply_pt(1, 0)
550 # TODO: normpath.invalid
552 if (isinstance(thisnormsubpathitem, normpath.normline_pt) and
553 isinstance(nextnormsubpathitem, normpath.normline_pt)):
555 # case of two lines -> replace by two curves
556 d1, g1, f1, e, f2, g2, d2 = curvescontrols_from_endlines_pt(
557 thisnormsubpathitem.atend_pt(), t1, t2,
558 thisarclen_pt*(1-thisparams[1]), nextarclen_pt*(nextparams[0]), softness=self.softness)
560 p1 = thisnormsubpathitem.at_pt([thisparams[1]])[0]
561 p2 = nextnormsubpathitem.at_pt([nextparams[0]])[0]
563 newnormsubpath.append(normpath.normcurve_pt(*(d1 + g1 + f1 + e)))
564 newnormsubpath.append(normpath.normcurve_pt(*(e + f2 + g2 + d2)))
566 else:
568 # generic case -> replace by a single curve with prescribed tangents and curvatures
569 p1 = thisnormsubpathitem.at_pt([thisparams[1]])[0]
570 p2 = nextnormsubpathitem.at_pt([nextparams[0]])[0]
571 c1 = thisnormsubpathitem.curvature_pt([thisparams[1]])[0]
572 c2 = nextnormsubpathitem.curvature_pt([nextparams[0]])[0]
573 # TODO: normpath.invalid
575 # TODO: more intelligent fallbacks:
576 # circle -> line
577 # circle -> circle
579 if not self.obeycurv:
580 # do not obey the sign of the curvature but
581 # make the sign such that the curve smoothly passes to the next point
582 # this results in a discontinuous curvature
583 # (but the absolute value is still continuous)
584 s1 = +mathutils.sign(t1[0] * (p2[1]-p1[1]) - t1[1] * (p2[0]-p1[0]))
585 s2 = -mathutils.sign(t2[0] * (p2[1]-p1[1]) - t2[1] * (p2[0]-p1[0]))
586 c1 = s1 * abs(c1)
587 c2 = s2 * abs(c2)
589 # get the length of the control "arms"
590 controldists = controldists_from_endgeometry_pt(p1, p2, t1, t2, c1, c2)
592 if controldists and (controldists[0][0] >= 0 and controldists[0][1] >= 0):
593 # use the first entry in the controldists
594 # this should be the "smallest" pair
595 a, d = controldists[0]
596 # avoid curves with invalid parameterization
597 a = max(a, epsilon)
598 d = max(d, epsilon)
600 # avoid overshooting at the corners:
601 # this changes not only the sign of the curvature
602 # but also the magnitude
603 if not self.obeycurv:
604 t, s = intersection(p1, p2, t1, t2)
605 if (t is not None and s is not None and
606 t > 0 and s < 0):
607 a = min(a, abs(t))
608 d = min(d, abs(s))
610 else:
611 # use a fallback
612 t, s = intersection(p1, p2, t1, t2)
613 if t is not None and s is not None:
614 a = 0.65 * abs(t)
615 d = 0.65 * abs(s)
616 else:
617 # if there is no useful result:
618 # take an arbitrary smoothing curve that does not obey
619 # the curvature constraints
620 dist = math.hypot(p1[0] - p2[0], p1[1] - p2[1])
621 a = dist / (3.0 * math.hypot(*t1))
622 d = dist / (3.0 * math.hypot(*t2))
624 # calculate the two missing control points
625 q1 = p1[0] + a * t1[0], p1[1] + a * t1[1]
626 q2 = p2[0] - d * t2[0], p2[1] - d * t2[1]
628 newnormsubpath.append(normpath.normcurve_pt(*(p1 + q1 + q2 + p2)))
630 if normsubpath.closed:
631 newnormsubpath.close()
632 return newnormsubpath
634 # >>>
636 cornersmoothed.clear = attr.clearclass(cornersmoothed)
637 smoothed = cornersmoothed
638 smoothed.clear = attr.clearclass(smoothed)
640 class parallel(baseclasses.deformer): # <<<
642 """creates a parallel normpath with constant distance to the original normpath
644 A positive 'distance' results in a curve left of the original one -- and a
645 negative 'distance' in a curve at the right. Left/Right are understood in
646 terms of the parameterization of the original curve. For each path element
647 a parallel curve/line is constructed. At corners, either a circular arc is
648 drawn around the corner, or, if possible, the parallel curve is cut in
649 order to also exhibit a corner.
651 distance: the distance of the parallel normpath
652 relerr: distance*relerr is the maximal allowed error in the parallel distance
653 sharpoutercorners: make the outer corners not round but sharp.
654 The inner corners (corners after inflection points) will stay round
655 dointersection: boolean for doing the intersection step (default: 1).
656 Set this value to 0 if you want the whole parallel path
657 checkdistanceparams: a list of parameter values in the interval (0,1) where the
658 parallel distance is checked on each normpathitem
659 lookforcurvatures: number of points per normpathitem where is looked for
660 a critical value of the curvature
663 # TODO:
664 # * do testing for curv=0, T=0, D=0, E=0 cases
665 # * do testing for several random curves
666 # -- does the recursive deformnicecurve converge?
669 def __init__(self, distance, relerr=0.05, sharpoutercorners=0, dointersection=1,
670 checkdistanceparams=[0.5], lookforcurvatures=11, debug=None):
671 self.distance = distance
672 self.relerr = relerr
673 self.sharpoutercorners = sharpoutercorners
674 self.checkdistanceparams = checkdistanceparams
675 self.lookforcurvatures = lookforcurvatures
676 self.dointersection = dointersection
677 self.debug = debug
679 def __call__(self, distance=None, relerr=None, sharpoutercorners=None, dointersection=None,
680 checkdistanceparams=None, lookforcurvatures=None, debug=None):
681 # returns a copy of the deformer with different parameters
682 if distance is None:
683 distance = self.distance
684 if relerr is None:
685 relerr = self.relerr
686 if sharpoutercorners is None:
687 sharpoutercorners = self.sharpoutercorners
688 if dointersection is None:
689 dointersection = self.dointersection
690 if checkdistanceparams is None:
691 checkdistanceparams = self.checkdistanceparams
692 if lookforcurvatures is None:
693 lookforcurvatures = self.lookforcurvatures
694 if debug is None:
695 debug = self.debug
697 return parallel(distance=distance, relerr=relerr,
698 sharpoutercorners=sharpoutercorners,
699 dointersection=dointersection,
700 checkdistanceparams=checkdistanceparams,
701 lookforcurvatures=lookforcurvatures,
702 debug=debug)
704 def deform(self, basepath):
705 self.dist_pt = unit.topt(self.distance)
706 resultnormsubpaths = []
707 for nsp in basepath.normpath().normsubpaths:
708 parallel_normpath = self.deformsubpath(nsp)
709 resultnormsubpaths += parallel_normpath.normsubpaths
710 result = normpath.normpath(resultnormsubpaths)
711 return result
713 def deformsubpath(self, orig_nsp): # <<<
715 """returns a list of normsubpaths building the parallel curve"""
717 dist = self.dist_pt
718 epsilon = orig_nsp.epsilon
720 # avoid too small dists: we would run into instabilities
721 if abs(dist) < abs(epsilon):
722 return normpath.normpath([orig_nsp])
724 result = normpath.normpath()
726 # iterate over the normsubpath in the following manner:
727 # * for each item first append the additional arc / intersect
728 # and then add the next parallel piece
729 # * for the first item only add the parallel piece
730 # (because this is done for next_orig_nspitem, we need to start with next=0)
731 for i in range(len(orig_nsp.normsubpathitems)):
732 prev = i-1
733 next = i
734 prev_orig_nspitem = orig_nsp.normsubpathitems[prev]
735 next_orig_nspitem = orig_nsp.normsubpathitems[next]
737 stepsize = 0.01
738 prev_param, prev_rotation = self.valid_near_rotation(prev_orig_nspitem, 1, 0, stepsize, 0.5*epsilon)
739 next_param, next_rotation = self.valid_near_rotation(next_orig_nspitem, 0, 1, stepsize, 0.5*epsilon)
740 # TODO: eventually shorten next_orig_nspitem
742 prev_tangent = prev_rotation.apply_pt(1, 0)
743 next_tangent = next_rotation.apply_pt(1, 0)
745 # get the next parallel piece for the normpath
746 try:
747 next_parallel_normpath = self.deformsubpathitem(next_orig_nspitem, epsilon)
748 except InvalidParamException as e:
749 invalid_nspitem_param = e.normsubpathitemparam
750 # split the nspitem apart and continue with pieces that do not contain
751 # the invalid point anymore. At the end, simply take one piece, otherwise two.
752 stepsize = 0.01
753 if self.length_pt(next_orig_nspitem, invalid_nspitem_param, 0) > epsilon:
754 if self.length_pt(next_orig_nspitem, invalid_nspitem_param, 1) > epsilon:
755 p1, foo = self.valid_near_rotation(next_orig_nspitem, invalid_nspitem_param, 0, stepsize, 0.5*epsilon)
756 p2, foo = self.valid_near_rotation(next_orig_nspitem, invalid_nspitem_param, 1, stepsize, 0.5*epsilon)
757 segments = next_orig_nspitem.segments([0, p1, p2, 1])
758 segments = segments[0], segments[2].modifiedbegin_pt(*(segments[0].atend_pt()))
759 else:
760 p1, foo = self.valid_near_rotation(next_orig_nspitem, invalid_nspitem_param, 0, stepsize, 0.5*epsilon)
761 segments = next_orig_nspitem.segments([0, p1])
762 else:
763 p2, foo = self.valid_near_rotation(next_orig_nspitem, invalid_nspitem_param, 1, stepsize, 0.5*epsilon)
764 segments = next_orig_nspitem.segments([p2, 1])
766 next_parallel_normpath = self.deformsubpath(normpath.normsubpath(segments, epsilon=epsilon))
768 if not (next_parallel_normpath.normsubpaths and next_parallel_normpath[0].normsubpathitems):
769 continue
771 # this starts the whole normpath
772 if not result.normsubpaths:
773 result = next_parallel_normpath
774 continue
776 # sinus of the angle between the tangents
777 # sinangle > 0 for a left-turning nexttangent
778 # sinangle < 0 for a right-turning nexttangent
779 sinangle = prev_tangent[0]*next_tangent[1] - prev_tangent[1]*next_tangent[0]
780 cosangle = prev_tangent[0]*next_tangent[0] + prev_tangent[1]*next_tangent[1]
781 if cosangle < 0 or abs(dist*math.asin(sinangle)) >= epsilon:
782 if self.sharpoutercorners and dist*sinangle < 0:
783 A1, A2 = result.atend_pt(), next_parallel_normpath.atbegin_pt()
784 t1, t2 = intersection(A1, A2, prev_tangent, next_tangent)
785 B = A1[0] + t1 * prev_tangent[0], A1[1] + t1 * prev_tangent[1]
786 arc_normpath = normpath.normpath([normpath.normsubpath([
787 normpath.normline_pt(A1[0], A1[1], B[0], B[1]),
788 normpath.normline_pt(B[0], B[1], A2[0], A2[1])
789 ])])
790 else:
791 # We must append an arc around the corner
792 arccenter = next_orig_nspitem.atbegin_pt()
793 arcbeg = result.atend_pt()
794 arcend = next_parallel_normpath.atbegin_pt()
795 angle1 = math.atan2(arcbeg[1] - arccenter[1], arcbeg[0] - arccenter[0])
796 angle2 = math.atan2(arcend[1] - arccenter[1], arcend[0] - arccenter[0])
798 # depending on the direction we have to use arc or arcn
799 if dist > 0:
800 arcclass = path.arcn_pt
801 else:
802 arcclass = path.arc_pt
803 arc_normpath = path.path(arcclass(
804 arccenter[0], arccenter[1], abs(dist),
805 math.degrees(angle1), math.degrees(angle2))).normpath(epsilon=epsilon)
807 # append the arc to the parallel path
808 result.join(arc_normpath)
809 # append the next parallel piece to the path
810 result.join(next_parallel_normpath)
811 else:
812 # The path is quite straight between prev and next item:
813 # normpath.normpath.join adds a straight line if necessary
814 result.join(next_parallel_normpath)
817 # end here if nothing has been found so far
818 if not (result.normsubpaths and result[-1].normsubpathitems):
819 return result
821 # the curve around the closing corner may still be missing
822 if orig_nsp.closed:
823 # TODO: normpath.invalid
824 stepsize = 0.01
825 prev_param, prev_rotation = self.valid_near_rotation(result[-1][-1], 1, 0, stepsize, 0.5*epsilon)
826 next_param, next_rotation = self.valid_near_rotation(result[0][0], 0, 1, stepsize, 0.5*epsilon)
827 # TODO: eventually shorten next_orig_nspitem
829 prev_tangent = prev_rotation.apply_pt(1, 0)
830 next_tangent = next_rotation.apply_pt(1, 0)
831 sinangle = prev_tangent[0]*next_tangent[1] - prev_tangent[1]*next_tangent[0]
832 cosangle = prev_tangent[0]*next_tangent[0] + prev_tangent[1]*next_tangent[1]
834 if cosangle < 0 or abs(dist*math.asin(sinangle)) >= epsilon:
835 # We must append an arc around the corner
836 # TODO: avoid the code dublication
837 if self.sharpoutercorners and dist*sinangle < 0:
838 A1, A2 = result.atend_pt(), result.atbegin_pt()
839 t1, t2 = intersection(A1, A2, prev_tangent, next_tangent)
840 B = A1[0] + t1 * prev_tangent[0], A1[1] + t1 * prev_tangent[1]
841 arc_normpath = normpath.normpath([normpath.normsubpath([
842 normpath.normline_pt(A1[0], A1[1], B[0], B[1]),
843 normpath.normline_pt(B[0], B[1], A2[0], A2[1])
844 ])])
845 else:
846 arccenter = orig_nsp.atend_pt()
847 arcbeg = result.atend_pt()
848 arcend = result.atbegin_pt()
849 angle1 = math.atan2(arcbeg[1] - arccenter[1], arcbeg[0] - arccenter[0])
850 angle2 = math.atan2(arcend[1] - arccenter[1], arcend[0] - arccenter[0])
852 # depending on the direction we have to use arc or arcn
853 if dist > 0:
854 arcclass = path.arcn_pt
855 else:
856 arcclass = path.arc_pt
857 arc_normpath = path.path(arcclass(
858 arccenter[0], arccenter[1], abs(dist),
859 math.degrees(angle1), math.degrees(angle2))).normpath(epsilon=epsilon)
861 # append the arc to the parallel path
862 if (result.normsubpaths and result[-1].normsubpathitems and
863 arc_normpath.normsubpaths and arc_normpath[-1].normsubpathitems):
864 result.join(arc_normpath)
866 if len(result) == 1:
867 result[0].close()
868 else:
869 # if the parallel normpath is split into several subpaths anyway,
870 # then use the natural beginning and ending
871 # closing is not possible anymore
872 for nspitem in result[0]:
873 result[-1].append(nspitem)
874 result.normsubpaths = result.normsubpaths[1:]
876 if self.dointersection:
877 result = self.rebuild_intersected_normpath(result, normpath.normpath([orig_nsp]), epsilon)
879 return result
880 # >>>
881 def deformsubpathitem(self, nspitem, epsilon): # <<<
883 """Returns a parallel normpath for a single normsubpathitem
885 Analyzes the curvature of a normsubpathitem and returns a normpath with
886 the appropriate number of normsubpaths. This must be a normpath because
887 a normcurve can be strongly curved, such that the parallel path must
888 contain a hole"""
890 dist = self.dist_pt
892 # for a simple line we return immediately
893 if isinstance(nspitem, normpath.normline_pt):
894 normal = nspitem.rotation([0])[0].apply_pt(0, 1)
895 start = nspitem.atbegin_pt()
896 end = nspitem.atend_pt()
897 return path.line_pt(
898 start[0] + dist * normal[0], start[1] + dist * normal[1],
899 end[0] + dist * normal[0], end[1] + dist * normal[1]).normpath(epsilon=epsilon)
901 # for a curve we have to check if the curvatures
902 # cross the singular value 1/dist
903 crossings = self.distcrossingparameters(nspitem, epsilon)
905 # depending on the number of crossings we must consider
906 # three different cases:
907 if crossings:
908 # The curvature crosses the borderline 1/dist
909 # the parallel curve contains points with infinite curvature!
910 result = normpath.normpath()
912 # we need the endpoints of the nspitem
913 if self.length_pt(nspitem, crossings[0], 0) > epsilon:
914 crossings.insert(0, 0)
915 if self.length_pt(nspitem, crossings[-1], 1) > epsilon:
916 crossings.append(1)
918 for i in range(len(crossings) - 1):
919 middleparam = 0.5*(crossings[i] + crossings[i+1])
920 middlecurv = nspitem.curvature_pt([middleparam])[0]
921 if middlecurv is normpath.invalid:
922 raise InvalidParamException(middleparam)
923 # the radius is good if
924 # - middlecurv and dist have opposite signs or
925 # - middlecurv is "smaller" than 1/dist
926 if middlecurv*dist < 0 or abs(dist*middlecurv) < 1:
927 parallel_nsp = self.deformnicecurve(nspitem.segments(crossings[i:i+2])[0], epsilon)
928 # never append empty normsubpaths
929 if parallel_nsp.normsubpathitems:
930 result.append(parallel_nsp)
932 return result
934 else:
935 # the curvature is either bigger or smaller than 1/dist
936 middlecurv = nspitem.curvature_pt([0.5])[0]
937 if dist*middlecurv < 0 or abs(dist*middlecurv) < 1:
938 # The curve is everywhere less curved than 1/dist
939 # We can proceed finding the parallel curve for the whole piece
940 parallel_nsp = self.deformnicecurve(nspitem, epsilon)
941 # never append empty normsubpaths
942 if parallel_nsp.normsubpathitems:
943 return normpath.normpath([parallel_nsp])
944 else:
945 return normpath.normpath()
946 else:
947 # the curve is everywhere stronger curved than 1/dist
948 # There is nothing to be returned.
949 return normpath.normpath()
951 # >>>
952 def deformnicecurve(self, normcurve, epsilon, startparam=0.0, endparam=1.0): # <<<
954 """Returns a parallel normsubpath for the normcurve.
956 This routine assumes that the normcurve is everywhere
957 'less' curved than 1/dist and contains no point with an
958 invalid parameterization
960 dist = self.dist_pt
961 T_threshold = 1.0e-5
963 # normalized tangent directions
964 tangA, tangD = normcurve.rotation([startparam, endparam])
965 # if we find an unexpected normpath.invalid we have to
966 # parallelise this normcurve on the level of split normsubpaths
967 if tangA is normpath.invalid:
968 raise InvalidParamException(startparam)
969 if tangD is normpath.invalid:
970 raise InvalidParamException(endparam)
971 tangA = tangA.apply_pt(1, 0)
972 tangD = tangD.apply_pt(1, 0)
974 # the new starting points
975 orig_A, orig_D = normcurve.at_pt([startparam, endparam])
976 A = orig_A[0] - dist * tangA[1], orig_A[1] + dist * tangA[0]
977 D = orig_D[0] - dist * tangD[1], orig_D[1] + dist * tangD[0]
979 # we need to end this _before_ we will run into epsilon-problems
980 # when creating curves we do not want to calculate the length of
981 # or even split it for recursive calls
982 if (math.hypot(A[0] - D[0], A[1] - D[1]) < epsilon and
983 math.hypot(tangA[0] - tangD[0], tangA[1] - tangD[1]) < T_threshold):
984 return normpath.normsubpath([normpath.normline_pt(A[0], A[1], D[0], D[1])])
986 result = normpath.normsubpath(epsilon=epsilon)
987 # is there enough space on the normals before they intersect?
988 a, d = intersection(orig_A, orig_D, (-tangA[1], tangA[0]), (-tangD[1], tangD[0]))
989 # a,d are the lengths to the intersection points:
990 # for a (and equally for b) we can proceed in one of the following cases:
991 # a is None (means parallel normals)
992 # a and dist have opposite signs (and the same for b)
993 # a has the same sign but is bigger
994 if ( (a is None or a*dist < 0 or abs(a) > abs(dist) + epsilon) or
995 (d is None or d*dist < 0 or abs(d) > abs(dist) + epsilon) ):
996 # the original path is long enough to draw a parallel piece
997 # this is the generic case. Get the parallel curves
998 orig_curvA, orig_curvD = normcurve.curvature_pt([startparam, endparam])
999 # normpath.invalid may not appear here because we have asked
1000 # for this already at the tangents
1001 assert orig_curvA is not normpath.invalid
1002 assert orig_curvD is not normpath.invalid
1003 curvA = orig_curvA / (1.0 - dist*orig_curvA)
1004 curvD = orig_curvD / (1.0 - dist*orig_curvD)
1006 # first try to approximate the normcurve with a single item
1007 controldistpairs = controldists_from_endgeometry_pt(A, D, tangA, tangD, curvA, curvD)
1009 if controldistpairs:
1010 # TODO: is it good enough to get the first entry here?
1011 # from testing: this fails if there are loops in the original curve
1012 a, d = controldistpairs[0]
1013 if a >= 0 and d >= 0:
1014 if a < epsilon and d < epsilon:
1015 result = normpath.normsubpath([normpath.normline_pt(A[0], A[1], D[0], D[1])], epsilon=epsilon)
1016 else:
1017 # we avoid curves with invalid parameterization
1018 a = max(a, epsilon)
1019 d = max(d, epsilon)
1020 result = normpath.normsubpath([normpath.normcurve_pt(
1021 A[0], A[1],
1022 A[0] + a * tangA[0], A[1] + a * tangA[1],
1023 D[0] - d * tangD[0], D[1] - d * tangD[1],
1024 D[0], D[1])], epsilon=epsilon)
1026 # then try with two items, recursive call
1027 if ((not result.normsubpathitems) or
1028 (self.checkdistanceparams and result.normsubpathitems
1029 and not self.distchecked(normcurve, result, epsilon, startparam, endparam))):
1030 # TODO: does this ever converge?
1031 # TODO: what if this hits epsilon?
1032 firstnsp = self.deformnicecurve(normcurve, epsilon, startparam, 0.5*(startparam+endparam))
1033 secondnsp = self.deformnicecurve(normcurve, epsilon, 0.5*(startparam+endparam), endparam)
1034 if not (firstnsp.normsubpathitems and secondnsp.normsubpathitems):
1035 result = normpath.normsubpath(
1036 [normpath.normline_pt(A[0], A[1], D[0], D[1])], epsilon=epsilon)
1037 else:
1038 # we will get problems if the curves are too short:
1039 result = firstnsp.joined(secondnsp)
1041 return result
1042 # >>>
1044 def distchecked(self, orig_normcurve, parallel_normsubpath, epsilon, tstart, tend): # <<<
1046 """Checks the distances between orig_normcurve and parallel_normsubpath
1048 The checking is done at parameters self.checkdistanceparams of orig_normcurve."""
1050 dist = self.dist_pt
1051 # do not look closer than epsilon:
1052 dist_relerr = mathutils.sign(dist) * max(abs(self.relerr*dist), epsilon)
1054 checkdistanceparams = [tstart + (tend-tstart)*t for t in self.checkdistanceparams]
1056 for param, P, rotation in zip(checkdistanceparams,
1057 orig_normcurve.at_pt(checkdistanceparams),
1058 orig_normcurve.rotation(checkdistanceparams)):
1059 # check if the distance is really the wanted distance
1060 # measure the distance in the "middle" of the original curve
1061 if rotation is normpath.invalid:
1062 raise InvalidParamException(param)
1064 normal = rotation.apply_pt(0, 1)
1066 # create a short cutline for intersection only:
1067 cutline = normpath.normsubpath([normpath.normline_pt (
1068 P[0] + (dist - 2*dist_relerr) * normal[0],
1069 P[1] + (dist - 2*dist_relerr) * normal[1],
1070 P[0] + (dist + 2*dist_relerr) * normal[0],
1071 P[1] + (dist + 2*dist_relerr) * normal[1])], epsilon=epsilon)
1073 cutparams = parallel_normsubpath.intersect(cutline)
1074 distances = [math.hypot(P[0] - cutpoint[0], P[1] - cutpoint[1])
1075 for cutpoint in cutline.at_pt(cutparams[1])]
1077 if (not distances) or (abs(min(distances) - abs(dist)) > abs(dist_relerr)):
1078 return 0
1080 return 1
1081 # >>>
1082 def distcrossingparameters(self, normcurve, epsilon, tstart=0, tend=1): # <<<
1084 """Returns a list of parameters where the curvature is 1/distance"""
1086 dist = self.dist_pt
1088 # we _need_ to do this with the curvature, not with the radius
1089 # because the curvature is continuous at the straight line and the radius is not:
1090 # when passing from one slightly curved curve to the other with opposite curvature sign,
1091 # via the straight line, then the curvature changes its sign at curv=0, while the
1092 # radius changes its sign at +/-infinity
1093 # this causes instabilities for nearly straight curves
1095 # include tstart and tend
1096 params = [tstart + i * (tend - tstart) * 1.0 / (self.lookforcurvatures - 1)
1097 for i in range(self.lookforcurvatures)]
1098 curvs = normcurve.curvature_pt(params)
1100 # break everything at invalid curvatures
1101 for param, curv in zip(params, curvs):
1102 if curv is normpath.invalid:
1103 raise InvalidParamException(param)
1105 parampairs = list(zip(params[:-1], params[1:]))
1106 curvpairs = list(zip(curvs[:-1], curvs[1:]))
1108 crossingparams = []
1109 for parampair, curvpair in zip(parampairs, curvpairs):
1110 begparam, endparam = parampair
1111 begcurv, endcurv = curvpair
1112 if (endcurv*dist - 1)*(begcurv*dist - 1) < 0:
1113 # the curvature crosses the value 1/dist
1114 # get the parmeter value by linear interpolation:
1115 middleparam = (
1116 (begparam * abs(begcurv*dist - 1) + endparam * abs(endcurv*dist - 1)) /
1117 (abs(begcurv*dist - 1) + abs(endcurv*dist - 1)))
1118 middleradius = normcurve.curveradius_pt([middleparam])[0]
1120 if middleradius is normpath.invalid:
1121 raise InvalidParamException(middleparam)
1123 if abs(middleradius - dist) < epsilon:
1124 # get the parmeter value by linear interpolation:
1125 crossingparams.append(middleparam)
1126 else:
1127 # call recursively:
1128 cps = self.distcrossingparameters(normcurve, epsilon, tstart=begparam, tend=endparam)
1129 crossingparams += cps
1131 return crossingparams
1132 # >>>
1133 def valid_near_rotation(self, nspitem, param, otherparam, stepsize, epsilon): # <<<
1134 p = param
1135 rot = nspitem.rotation([p])[0]
1136 # run towards otherparam searching for a valid rotation
1137 while rot is normpath.invalid:
1138 p = (1-stepsize)*p + stepsize*otherparam
1139 rot = nspitem.rotation([p])[0]
1140 # walk back to param until near enough
1141 # but do not go further if an invalid point is hit
1142 end, new = nspitem.at_pt([param, p])
1143 far = math.hypot(end[0]-new[0], end[1]-new[1])
1144 pnew = p
1145 while far > epsilon:
1146 pnew = (1-stepsize)*pnew + stepsize*param
1147 end, new = nspitem.at_pt([param, pnew])
1148 far = math.hypot(end[0]-new[0], end[1]-new[1])
1149 if nspitem.rotation([pnew])[0] is normpath.invalid:
1150 break
1151 else:
1152 p = pnew
1153 return p, nspitem.rotation([p])[0]
1154 # >>>
1155 def length_pt(self, path, param1, param2): # <<<
1156 point1, point2 = path.at_pt([param1, param2])
1157 return math.hypot(point1[0] - point2[0], point1[1] - point2[1])
1158 # >>>
1160 def normpath_selfintersections(self, np, epsilon): # <<<
1162 """return all self-intersection points of normpath np.
1164 This does not include the intersections of a single normcurve with itself,
1165 but all intersections of one normpathitem with a different one in the path"""
1167 n = len(np)
1168 linearparams = []
1169 parampairs = []
1170 paramsriap = {}
1171 for nsp_i in range(n):
1172 for nsp_j in range(nsp_i, n):
1173 for nspitem_i in range(len(np[nsp_i])):
1174 if nsp_j == nsp_i:
1175 nspitem_j_range = list(range(nspitem_i+1, len(np[nsp_j])))
1176 else:
1177 nspitem_j_range = list(range(len(np[nsp_j])))
1178 for nspitem_j in nspitem_j_range:
1179 intsparams = np[nsp_i][nspitem_i].intersect(np[nsp_j][nspitem_j], epsilon)
1180 if intsparams:
1181 for intsparam_i, intsparam_j in intsparams:
1182 if ( (abs(intsparam_i) < epsilon and abs(1-intsparam_j) < epsilon) or
1183 (abs(intsparam_j) < epsilon and abs(1-intsparam_i) < epsilon) ):
1184 continue
1185 npp_i = normpath.normpathparam(np, nsp_i, float(nspitem_i)+intsparam_i)
1186 npp_j = normpath.normpathparam(np, nsp_j, float(nspitem_j)+intsparam_j)
1187 linearparams.append(npp_i)
1188 linearparams.append(npp_j)
1189 paramsriap[id(npp_i)] = len(parampairs)
1190 paramsriap[id(npp_j)] = len(parampairs)
1191 parampairs.append((npp_i, npp_j))
1192 linearparams.sort()
1193 return linearparams, parampairs, paramsriap
1195 # >>>
1196 def can_continue(self, par_np, param1, param2): # <<<
1197 dist = self.dist_pt
1199 rot1, rot2 = par_np.rotation([param1, param2])
1200 if rot1 is normpath.invalid or rot2 is normpath.invalid:
1201 return 0
1202 curv1, curv2 = par_np.curvature_pt([param1, param2])
1203 tang2 = rot2.apply_pt(1, 0)
1204 norm1 = rot1.apply_pt(0, -1)
1205 norm1 = (dist*norm1[0], dist*norm1[1])
1207 # the self-intersection is valid if the tangents
1208 # point into the correct direction or, for parallel tangents,
1209 # if the curvature is such that the on-going path does not
1210 # enter the region defined by dist
1211 mult12 = norm1[0]*tang2[0] + norm1[1]*tang2[1]
1212 eps = 1.0e-6
1213 if abs(mult12) > eps:
1214 return (mult12 < 0)
1215 else:
1216 # tang1 and tang2 are parallel
1217 if curv2 is normpath.invalid or curv1 is normpath.invalid:
1218 return 0
1219 if dist > 0:
1220 return (curv2 <= curv1)
1221 else:
1222 return (curv2 >= curv1)
1223 # >>>
1224 def rebuild_intersected_normpath(self, par_np, orig_np, epsilon): # <<<
1226 dist = self.dist_pt
1228 # calculate the self-intersections of the par_np
1229 selfintparams, selfintpairs, selfintsriap = self.normpath_selfintersections(par_np, epsilon)
1230 # calculate the intersections of the par_np with the original path
1231 origintparams = par_np.intersect(orig_np)[0]
1233 # visualize the intersection points: # <<<
1234 if self.debug is not None:
1235 for param1, param2 in selfintpairs:
1236 point1, point2 = par_np.at([param1, param2])
1237 self.debug.fill(path.circle(point1[0], point1[1], 0.05), [color.rgb.red])
1238 self.debug.fill(path.circle(point2[0], point2[1], 0.03), [color.rgb.black])
1239 for param in origintparams:
1240 point = par_np.at([param])[0]
1241 self.debug.fill(path.circle(point[0], point[1], 0.05), [color.rgb.green])
1242 # >>>
1244 result = normpath.normpath()
1245 if not selfintparams:
1246 if origintparams:
1247 return result
1248 else:
1249 return par_np
1251 beginparams = []
1252 endparams = []
1253 for i in range(len(par_np)):
1254 beginparams.append(normpath.normpathparam(par_np, i, 0))
1255 endparams.append(normpath.normpathparam(par_np, i, len(par_np[i])))
1257 allparams = selfintparams + origintparams + beginparams + endparams
1258 allparams.sort()
1259 allparamindices = {}
1260 for i, param in enumerate(allparams):
1261 allparamindices[id(param)] = i
1263 done = {}
1264 for param in allparams:
1265 done[id(param)] = 0
1267 def otherparam(p): # <<<
1268 pair = selfintpairs[selfintsriap[id(p)]]
1269 if (p is pair[0]):
1270 return pair[1]
1271 else:
1272 return pair[0]
1273 # >>>
1274 def trial_parampairs(startp): # <<<
1275 tried = {}
1276 for param in allparams:
1277 tried[id(param)] = done[id(param)]
1279 lastp = startp
1280 currentp = allparams[allparamindices[id(startp)] + 1]
1281 result = []
1283 while True:
1284 if currentp is startp:
1285 result.append((lastp, currentp))
1286 return result
1287 if currentp in selfintparams and otherparam(currentp) is startp:
1288 result.append((lastp, currentp))
1289 return result
1290 if currentp in endparams:
1291 result.append((lastp, currentp))
1292 return result
1293 if tried[id(currentp)]:
1294 return []
1295 if currentp in origintparams:
1296 return []
1297 # follow the crossings on valid startpairs until
1298 # the normsubpath is closed or the end is reached
1299 if (currentp in selfintparams and
1300 self.can_continue(par_np, currentp, otherparam(currentp))):
1301 # go to the next pair on the curve, seen from currentpair[1]
1302 result.append((lastp, currentp))
1303 lastp = otherparam(currentp)
1304 tried[id(currentp)] = 1
1305 tried[id(otherparam(currentp))] = 1
1306 currentp = allparams[allparamindices[id(otherparam(currentp))] + 1]
1307 else:
1308 # go to the next pair on the curve, seen from currentpair[0]
1309 tried[id(currentp)] = 1
1310 tried[id(otherparam(currentp))] = 1
1311 currentp = allparams[allparamindices[id(currentp)] + 1]
1312 assert 0
1313 # >>>
1315 # first the paths that start at the beginning of a subnormpath:
1316 for startp in beginparams + selfintparams:
1317 if done[id(startp)]:
1318 continue
1320 parampairs = trial_parampairs(startp)
1321 if not parampairs:
1322 continue
1324 # collect all the pieces between parampairs
1325 add_nsp = normpath.normsubpath(epsilon=epsilon)
1326 for begin, end in parampairs:
1327 # check that trial_parampairs works correctly
1328 assert begin is not end
1329 # we do not cross the border of a normsubpath here
1330 assert begin.normsubpathindex is end.normsubpathindex
1331 for item in par_np[begin.normsubpathindex].segments(
1332 [begin.normsubpathparam, end.normsubpathparam])[0].normsubpathitems:
1333 # TODO: this should be obsolete with an improved intersection algorithm
1334 # guaranteeing epsilon
1335 if add_nsp.normsubpathitems:
1336 item = item.modifiedbegin_pt(*(add_nsp.atend_pt()))
1337 add_nsp.append(item)
1339 if begin in selfintparams:
1340 done[id(begin)] = 1
1341 #done[otherparam(begin)] = 1
1342 if end in selfintparams:
1343 done[id(end)] = 1
1344 #done[otherparam(end)] = 1
1346 # eventually close the path
1347 if add_nsp and (parampairs[0][0] is parampairs[-1][-1] or
1348 (parampairs[0][0] in selfintparams and otherparam(parampairs[0][0]) is parampairs[-1][-1])):
1349 add_nsp.normsubpathitems[-1] = add_nsp.normsubpathitems[-1].modifiedend_pt(*add_nsp.atbegin_pt())
1350 add_nsp.close()
1352 result.extend([add_nsp])
1354 return result
1356 # >>>
1358 # >>>
1360 parallel.clear = attr.clearclass(parallel)
1362 class linesmoothed(baseclasses.deformer): # <<<
1364 def __init__(self, tension=1, atleast=False, lcurl=1, rcurl=1):
1365 """Tension and atleast control the tension of the replacement curves.
1366 l/rcurl control the curlynesses at (possible) endpoints. If a curl is
1367 set to None, the angle is taken from the original path."""
1368 if atleast:
1369 self.tension = -abs(tension)
1370 else:
1371 self.tension = abs(tension)
1372 self.lcurl = lcurl
1373 self.rcurl = rcurl
1375 def __call__(self, tension=_marker, atleast=_marker, lcurl=_marker, rcurl=_marker):
1376 if tension is _marker:
1377 tension = self.tension
1378 if atleast is _marker:
1379 atleast = (self.tension < 0)
1380 if lcurl is _marker:
1381 lcurl = self.lcurl
1382 if rcurl is _marker:
1383 rcurl = self.rcurl
1384 return linesmoothed(tension, atleast, lcurl, rcurl)
1386 def deform(self, basepath):
1387 newnp = normpath.normpath()
1388 for nsp in basepath.normpath().normsubpaths:
1389 newnp += self.deformsubpath(nsp)
1390 return newnp
1392 def deformsubpath(self, nsp):
1393 from .metapost import path as mppath
1394 """Returns a path/normpath from the points in the given normsubpath"""
1395 # TODO: epsilon ?
1396 knots = []
1398 # first point
1399 x_pt, y_pt = nsp.atbegin_pt()
1400 if nsp.closed:
1401 knots.append(mppath.smoothknot_pt(x_pt, y_pt))
1402 elif self.lcurl is None:
1403 rot = nsp.rotation([0])[0]
1404 dx, dy = rot.apply_pt(1, 0)
1405 angle = math.atan2(dy, dx)
1406 knots.append(mppath.beginknot_pt(x_pt, y_pt, angle=angle))
1407 else:
1408 knots.append(mppath.beginknot_pt(x_pt, y_pt, curl=self.lcurl))
1410 # intermediate points:
1411 for npelem in nsp[:-1]:
1412 knots.append(mppath.tensioncurve(self.tension))
1413 knots.append(mppath.smoothknot_pt(*npelem.atend_pt()))
1415 # last point
1416 knots.append(mppath.tensioncurve(self.tension))
1417 x_pt, y_pt = nsp.atend_pt()
1418 if nsp.closed:
1419 pass
1420 elif self.rcurl is None:
1421 rot = nsp.rotation([len(nsp)])[0]
1422 dx, dy = rot.apply_pt(1, 0)
1423 angle = math.atan2(dy, dx)
1424 knots.append(mppath.endknot_pt(x_pt, y_pt, angle=angle))
1425 else:
1426 knots.append(mppath.endknot_pt(x_pt, y_pt, curl=self.rcurl))
1428 return mppath.path(knots)
1429 # >>>
1431 linesmoothed.clear = attr.clearclass(linesmoothed)
1434 # vim:foldmethod=marker:foldmarker=<<<,>>>