1 # -*- encoding: utf-8 -*-
4 # Copyright (C) 2002-2004 Jörg Lehmann <joergl@users.sourceforge.net>
5 # Copyright (C) 2003-2004 Michael Schindler <m-schindler@users.sourceforge.net>
6 # Copyright (C) 2002-2012 André Wobst <wobsta@users.sourceforge.net>
8 # This file is part of PyX (http://pyx.sourceforge.net/).
10 # PyX is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # PyX is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with PyX; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
24 import math
, re
, configparser
, struct
30 def splitatvalue(value
, *splitpoints
):
32 while section
< len(splitpoints
) and splitpoints
[section
] < value
:
34 if len(splitpoints
) > 1:
39 return (section
, value
)
42 _mathglobals
= {"neg": lambda x
: -x
,
43 "abs": lambda x
: x
< 0 and -x
or x
,
44 "sgn": lambda x
: x
< 0 and -1 or 1,
54 "sind": lambda x
: math
.sin(math
.pi
/180*x
),
55 "cosd": lambda x
: math
.cos(math
.pi
/180*x
),
56 "tand": lambda x
: math
.tan(math
.pi
/180*x
),
57 "asind": lambda x
: 180/math
.pi
*math
.asin(x
),
58 "acosd": lambda x
: 180/math
.pi
*math
.acos(x
),
59 "atand": lambda x
: 180/math
.pi
*math
.atan(x
),
60 "norm": lambda x
, y
: math
.hypot(x
, y
),
61 "splitatvalue": splitatvalue
,
67 """graph data interface
69 Graph data consists of columns, where each column might be identified by a
70 string or an integer. Each row in the resulting table refers to a data
73 All methods except for the constructor should consider self and its
74 attributes to be readonly, since the data instance might be shared between
75 several graphs simultaneously.
77 The instance variable columns is a dictionary mapping column names to the
78 data of the column (i.e. to a list). Only static columns (known at
79 construction time) are contained in that dictionary. For data with numbered
80 columns the column data is also available via the list columndata.
81 Otherwise the columndata list should be missing and an access to a column
84 The names of all columns (static and dynamic) must be fixed at the constructor
85 and stated in the columnnames dictionary.
87 The instance variable title and defaultstyles contain the data title and
88 the default styles (a list of styles), respectively. If defaultstyles is None,
89 the data cannot be plotted without user provided styles.
92 def dynamiccolumns(self
, graph
, axisnames
):
93 """create and return dynamic columns data
95 Returns dynamic data matching the given axes (the axes range and other
96 data might be used). The return value is a dictionary similar to the
97 columns instance variable. However, the static and dynamic data does
98 not need to be correlated in any way, i.e. the number of data points in
99 self.columns might differ from the number of data points represented by
100 the return value of the dynamiccolumns method.
105 defaultsymbols
= [style
.symbol()]
106 defaultlines
= [style
.line()]
111 defaultstyles
= defaultsymbols
113 def __init__(self
, title
="user provided values", **columns
):
114 for i
, values
in enumerate(list(columns
.values())):
115 if i
and len(values
) != l
:
116 raise ValueError("different number of values")
119 self
.columns
= columns
120 self
.columnnames
= list(columns
.keys())
125 "Graph data from a list of points"
127 defaultstyles
= defaultsymbols
129 def __init__(self
, points
, title
="user provided points", addlinenumbers
=1, **columns
):
132 self
.columndata
= [[x
] for x
in points
[0]]
133 for point
in points
[1:]:
135 raise ValueError("different number of columns per point")
136 for i
, x
in enumerate(point
):
137 self
.columndata
[i
].append(x
)
138 for v
in list(columns
.values()):
139 if abs(v
) > l
or (not addlinenumbers
and abs(v
) == l
):
140 raise ValueError("column number bigger than number of columns")
142 self
.columndata
= [list(range(1, len(points
) + 1))] + self
.columndata
143 self
.columns
= dict([(key
, self
.columndata
[i
]) for key
, i
in list(columns
.items())])
145 self
.columns
= dict([(key
, []) for key
, i
in list(columns
.items())])
146 self
.columnnames
= list(self
.columns
.keys())
153 _columnintref
= re
.compile(r
"\$(-?\d+)", re
.IGNORECASE
)
156 "creates a new data set out of an existing data set"
158 def __init__(self
, data
, title
=_notitle
, context
={}, copy
=1,
159 replacedollar
=1, columncallback
="__column__", **columns
):
161 if title
is _notitle
:
162 items
= list(columns
.items())
163 items
.sort() # we want sorted items (otherwise they would be unpredictable scrambled)
164 self
.title
= "%s: %s" % (text
.escapestring(data
.title
or "unkown source"),
165 ", ".join(["%s=%s" % (text
.escapestring(key
),
166 text
.escapestring(str(value
)))
167 for key
, value
in items
]))
172 self
.defaultstyles
= self
.orgdata
.defaultstyles
174 # analyse the **columns argument
176 for columnname
, value
in list(columns
.items()):
177 # search in the columns dictionary
179 self
.columns
[columnname
] = self
.orgdata
.columns
[value
]
181 # search in the columndata list
183 self
.columns
[columnname
] = self
.orgdata
.columndata
[value
]
184 except (AttributeError, TypeError):
185 # value was not an valid column identifier
186 # i.e. take it as a mathematical expression
188 m
= _columnintref
.search(value
)
190 value
= "%s%s(%s)%s" % (value
[:m
.start()], columncallback
, m
.groups()[0], value
[m
.end():])
191 m
= _columnintref
.search(value
)
192 value
= value
.replace("$", columncallback
)
193 expression
= compile(value
.strip(), __file__
, "eval")
194 context
= context
.copy()
195 context
[columncallback
] = self
.columncallback
196 if self
.orgdata
.columns
:
197 key
, columndata
= list(self
.orgdata
.columns
.items())[0]
198 count
= len(columndata
)
199 elif self
.orgdata
.columndata
:
200 count
= len(self
.orgdata
.columndata
[0])
204 for i
in range(count
):
205 self
.columncallbackcount
= i
206 for key
, values
in list(self
.orgdata
.columns
.items()):
207 context
[key
] = values
[i
]
209 newdata
.append(eval(expression
, _mathglobals
, context
))
210 except (ArithmeticError, ValueError):
212 self
.columns
[columnname
] = newdata
215 # copy other, non-conflicting column names
216 for columnname
, columndata
in list(self
.orgdata
.columns
.items()):
217 if columnname
not in self
.columns
:
218 self
.columns
[columnname
] = columndata
220 self
.columnnames
= list(self
.columns
.keys())
222 def columncallback(self
, value
):
224 return self
.orgdata
.columndata
[value
][self
.columncallbackcount
]
226 return self
.orgdata
.columns
[value
][self
.columncallbackcount
]
233 defaultcommentpattern
= re
.compile(r
"(#+|!+|%+)\s*")
234 defaultstringpattern
= re
.compile(r
"\"(.*?
)\"(\s
+|$
)")
235 defaultcolumnpattern = re.compile(r"(.*?
)(\s
+|$
)")
237 def splitline(self, line, stringpattern, columnpattern, tofloat=1):
238 """returns a tuple created out of the string line
239 - matches stringpattern and columnpattern, adds the first group of that
240 match to the result and and removes those matches until the line is empty
241 - when stringpattern matched, the result is always kept as a string
242 - when columnpattern matched and tofloat is true, a conversion to a float
243 is tried; when this conversion fails, the string is kept"""
245 # try to gain speed by skip matching regular expressions
246 if line.find('"')!=-1 or \
247 stringpattern is not self.defaultstringpattern or \
248 columnpattern is not self.defaultcolumnpattern:
250 match = stringpattern.match(line)
252 result.append(match.groups()[0])
253 line = line[match.end():]
255 match = columnpattern.match(line)
258 result.append(float(match.groups()[0]))
259 except (TypeError, ValueError):
260 result.append(match.groups()[0])
262 result.append(match.groups()[0])
263 line = line[match.end():]
267 return list(map(float, line.split()))
268 except (TypeError, ValueError):
270 for r in line.split():
272 result.append(float(r))
273 except (TypeError, ValueError):
279 def getcachekey(self, *args):
280 return ":".join([str(x) for x in args])
282 def __init__(self, filename,
283 commentpattern=defaultcommentpattern,
284 stringpattern=defaultstringpattern,
285 columnpattern=defaultcolumnpattern,
286 skiphead=0, skiptail=0, every=1,
289 def readfile(file, title, self=self, commentpattern=commentpattern, stringpattern=stringpattern, columnpattern=columnpattern, skiphead=skiphead, skiptail=skiptail, every=every):
294 for line in file.readlines():
296 match = commentpattern.match(line)
298 if not len(columndata):
299 columns = self.splitline(line[match.end():], stringpattern, columnpattern, tofloat=0)
302 for value in self.splitline(line, stringpattern, columnpattern, tofloat=1):
303 linedata.append(value)
305 if linenumber >= skiphead and not ((linenumber - skiphead) % every):
306 linedata = [linenumber + 1] + linedata
307 if len(linedata) > maxcolumns:
308 maxcolumns = len(linedata)
309 columndata.append(linedata)
311 if skiptail >= every:
312 skip, x = divmod(skiptail, every)
313 del columndata[-skip:]
314 for i in range(len(columndata)):
315 if len(columndata[i]) != maxcolumns:
316 columndata[i].extend([None]*(maxcolumns-len(columndata[i])))
317 return points(columndata, title=title, addlinenumbers=0,
318 **dict([(column, i+1) for i, column in enumerate(columns[:maxcolumns-1])]))
323 # not a file-like object -> open it
324 cachekey = self.getcachekey(filename, commentpattern, stringpattern, columnpattern, skiphead, skiptail, every)
325 if cachekey not in filecache:
326 with open(filename) as f:
327 filecache[cachekey] = readfile(f, filename)
328 data.__init__(self, filecache[cachekey], **kwargs)
330 data.__init__(self, readfile(filename, "user provided file-like object"), **kwargs)
335 class conffile(data):
337 def __init__(self, filename, **kwargs):
338 """read data from a config-like file
339 - filename is a string
340 - each row is defined by a section in the config-like file (see
341 config module description)
342 - the columns for each row are defined by lines in the section file;
343 the option entries identify and name the columns
344 - further keyword arguments are passed to the constructor of data,
345 keyword arguments data and titles excluded"""
347 def readfile(file, title):
348 config = configparser.ConfigParser(strict=False)
349 config.optionxform = str
350 config.read_file(file)
351 sections = config.sections()
353 columndata = [None]*len(sections)
356 for i in range(len(sections)):
357 point = [sections[i]] + [None]*(maxcolumns-1)
358 for option in config.options(sections[i]):
359 value = config.get(sections[i], option)
365 index = columns[option]
367 columns[option] = maxcolumns
372 columndata[i] = point
373 # wrap result into a data instance to remove column numbers
374 result = data(points(columndata, addlinenumbers=0, **columns), title=title)
375 # ... but reinsert sections as linenumbers
376 result.columndata = [[x[0] for x in columndata]]
382 # not a file-like object -> open it
383 if filename not in filecache:
384 filecache[filename] = readfile(open(filename), filename)
385 data.__init__(self, filecache[filename], **kwargs)
387 data.__init__(self, readfile(filename, "user provided file-like object"), **kwargs)
394 defaultstyles = defaultlines
396 def getcachekey(self, *args):
397 return ":".join([str(x) for x in args])
399 def __init__(self, filename, minrank=None, maxrank=None, **kwargs):
403 def __init__(self, file):
409 self.fill) = struct.unpack("<5i20s", file.read(40))
410 if self.magic != 0x20770002:
411 raise ValueError("bad magic number")
415 def __init__(self, file, i):
424 self.rank) = struct.unpack("<6i2h", file.read(28))
428 def __init__(self, file, sd):
429 file.seek(sd.absaddr)
434 self.dummy) = struct.unpack("<3i2h", file.read(16))
435 oln, olt = self.orgx, self.orgy
436 self.points = [(olt, oln)]
437 for i in range(self.nstrokes):
438 c1, c2 = struct.unpack("2c", file.read(2))
449 c3, c4, c5, c6, c7, c8 = struct.unpack("6c", file.read(6))
451 c2 = chr(ord(c2) | 0x40)
452 dx, dy = struct.unpack("<2i", c3+c4+c1+c2+c7+c8+c5+c6)
455 self.points.append((olt, oln))
456 sd.nstrokes = self.nstrokes
458 def readfile(file, title):
460 file.seek(h.dictaddr)
461 sds = [segdict(file, i+1) for i in range(h.segcount)]
462 sbs = [segment(file, sd) for sd in sds]
464 # remove jumps at long +/- 180
465 for sd, sb in zip(sds, sbs):
466 if sd.minlong < -150*3600 and sd.maxlong > 150*3600:
467 for i, (lat, int) in enumerate(sb.points):
469 sb.points[i] = lat, int + 360*3600
472 for sd, sb in zip(sds, sbs):
473 if ((minrank is None or sd.rank >= minrank) and
474 (maxrank is None or sd.rank <= maxrank)):
476 columndata.append((None, None))
477 columndata.extend([(int/3600.0, lat/3600.0)
478 for lat, int in sb.points])
480 result = points(columndata, title=title)
481 result.defaultstyles = self.defaultstyles
488 # not a file-like object -> open it
489 cachekey = self.getcachekey(filename, minrank, maxrank)
490 if cachekey not in cbdfilecache:
491 cbdfilecache[cachekey] = readfile(open(filename, "rb"), filename)
492 data.__init__(self, cbdfilecache[cachekey], **kwargs)
494 data.__init__(self, readfile(filename, "user provided file-like object"), **kwargs)
497 class function(_data):
499 defaultstyles = defaultlines
501 assignmentpattern = re.compile(r"\s*([a-z_][a-z0-9_]*)\s*\(\s*([a-z_][a-z0-9_]*)\s*\)\s*=", re.IGNORECASE)
503 def __init__(self, expression, title=_notitle, min=None, max=None,
504 points=100, context={}):
506 if title is _notitle:
507 self.title = expression
512 self.numberofpoints = points
513 self.context = context.copy() # be safe on late evaluations
514 m = self.assignmentpattern.match(expression)
516 self.yname, self.xname = m.groups()
517 expression = expression[m.end():]
519 raise ValueError("y(x)=... or similar expected")
520 if self.xname in context:
521 raise ValueError("xname in context")
522 self.expression = compile(expression.strip(), __file__, "eval")
524 self.columnnames = [self.xname, self.yname]
526 def dynamiccolumns(self, graph, axisnames):
527 dynamiccolumns = {self.xname: [], self.yname: []}
529 xaxis = graph.axes[axisnames.get(self.xname, self.xname)]
530 from pyx.graph.axis import logarithmic
531 logaxis = isinstance(xaxis.axis, logarithmic)
532 if self.min is not None:
536 if self.max is not None:
543 for i in range(self.numberofpoints):
544 x = min + (max-min)*i / (self.numberofpoints-1.0)
547 dynamiccolumns[self.xname].append(x)
548 self.context[self.xname] = x
550 y = eval(self.expression, _mathglobals, self.context)
551 except (ArithmeticError, ValueError):
553 dynamiccolumns[self.yname].append(y)
554 return dynamiccolumns
557 class functionxy(function):
559 def __init__(self, f, min=None, max=None, **kwargs):
560 function.__init__(self, "y(x)=f(x)", context={"f": f}, min=min, max=max, **kwargs)
563 class paramfunction(_data):
565 defaultstyles = defaultlines
567 def __init__(self, varname, min, max, expression, title=_notitle, points=100, context={}):
568 if varname in context:
569 raise ValueError("varname in context")
570 if title is _notitle:
571 self.title = expression
574 varlist, expression = expression.split("=")
575 expression = compile(expression.strip(), __file__, "eval")
576 keys = [key.strip() for key in varlist.split(",")]
577 self.columns = dict([(key, []) for key in keys])
578 context = context.copy()
579 for i in range(points):
580 param = min + (max-min)*i / (points-1.0)
581 context[varname] = param
582 values = eval(expression, _mathglobals, context)
583 for key, value in zip(keys, values):
584 self.columns[key].append(value)
585 if len(keys) != len(values):
586 raise ValueError("unpack tuple of wrong size")
587 self.columnnames = list(self.columns.keys())
590 class paramfunctionxy(paramfunction):
592 def __init__(self, f, min, max, **kwargs):
593 paramfunction.__init__(self, "t", min, max, "x, y = f(t)", context={"f": f}, **kwargs)
596 class _nodefaultstyles:
601 "creates a new data set by joining from a list of data, it does however *not* combine points, but fills data with None if necessary"
603 def merge_lists(self, lists):
604 "merges list items w/o duplications, resulting order is arbitraty"
607 result.update(set(l))
608 return builtinlist(result)
610 def merge_dicts(self, dicts):
611 """merge dicts containing lists as values (with equal number of items
612 per list in each dict), missing data is padded by None"""
613 keys = self.merge_lists([list(d.keys()) for d in dicts])
616 if len(list(d.keys())) == len(keys):
617 empties.append(None) # won't be needed later on
619 values
= list(d
.values())
621 empties
.append([None]*len(values
[0]))
623 # has no data at all -> do not add anything
628 for d
, e
in zip(dicts
, empties
):
629 result
[key
].extend(d
.get(key
, e
))
632 def __init__(self
, data
, title
=_notitle
, defaultstyles
=_nodefaultstyles
):
633 """takes a list of data, a title (if it should not be autoconstructed)
634 and a defaultstyles list if there is no common defaultstyles setting
635 for in the provided data"""
638 self
.columnnames
= self
.merge_lists([d
.columnnames
for d
in data
])
639 self
.columns
= self
.merge_dicts([d
.columns
for d
in data
])
640 if title
is _notitle
:
641 self
.title
= " + ".join([d
.title
for d
in data
])
644 if defaultstyles
is _nodefaultstyles
:
645 self
.defaultstyles
= data
[0].defaultstyles
647 if d
.defaultstyles
is not self
.defaultstyles
:
648 self
.defaultstyles
= None
651 self
.defaultstyles
= defaultstyles
653 def dynamiccolumns(self
, graph
, axisnames
):
654 return self
.merge_dicts([d
.dynamiccolumns(graph
, axisnames
) for d
in self
.data
])