trafo fix for textboxes
[PyX.git] / normpath.py
blobacd05a88c8a1a54b5ed512193f14a3445e096b22
1 # -*- encoding: utf-8 -*-
4 # Copyright (C) 2002-2011 Jörg Lehmann <joergl@users.sourceforge.net>
5 # Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
6 # Copyright (C) 2002-2011 André Wobst <wobsta@users.sourceforge.net>
8 # This file is part of PyX (http://pyx.sourceforge.net/).
10 # PyX is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # PyX is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with PyX; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
24 import math, functools
25 from . import mathutils, trafo, unit
26 from . import bbox as bboxmodule
29 class _marker: pass
31 ################################################################################
33 # specific exception for normpath-related problems
34 class NormpathException(Exception): pass
36 # invalid result marker
37 class _invalid:
39 """invalid result marker class
41 The following norm(sub)path(item) methods:
42 - trafo
43 - rotation
44 - tangent_pt
45 - tangent
46 - curvature_pt
47 - curvradius_pt
48 return list of result values, which might contain the invalid instance
49 defined below to signal points, where the result is undefined due to
50 properties of the norm(sub)path(item). Accessing invalid leads to an
51 NormpathException, but you can test the result values by "is invalid".
52 """
54 def invalid1(self):
55 raise NormpathException("invalid result (the requested value is undefined due to path properties)")
56 __str__ = __repr__ = __neg__ = invalid1
58 def invalid2(self, other):
59 self.invalid1()
60 __cmp__ = __add__ = __iadd__ = __sub__ = __isub__ = __mul__ = __imul__ = __div__ = __truediv__ = __idiv__ = invalid2
62 invalid = _invalid()
64 ################################################################################
66 # global epsilon (default precision of normsubpaths)
67 _epsilon = 1e-5
68 # minimal relative speed (abort condition for tangent information)
69 _minrelspeed = 1e-5
71 def set(epsilon=None, minrelspeed=None):
72 global _epsilon
73 global _minrelspeed
74 if epsilon is not None:
75 _epsilon = epsilon
76 if minrelspeed is not None:
77 _minrelspeed = minrelspeed
80 ################################################################################
81 # normsubpathitems
82 ################################################################################
84 class normsubpathitem:
86 """element of a normalized sub path
88 Various operations on normsubpathitems might be subject of
89 approximitions. Those methods get the finite precision epsilon,
90 which is the accuracy needed expressed as a length in pts.
92 normsubpathitems should never be modified inplace, since references
93 might be shared between several normsubpaths.
94 """
96 def arclen_pt(self, epsilon, upper=False):
97 """return arc length in pts
99 When upper is set, the upper bound is calculated, otherwise the lower
100 bound is returned."""
101 pass
103 def _arclentoparam_pt(self, lengths_pt, epsilon):
104 """return a tuple of params and the total length arc length in pts"""
105 pass
107 def arclentoparam_pt(self, lengths_pt, epsilon):
108 """return a tuple of params"""
109 pass
111 def at_pt(self, params):
112 """return coordinates at params in pts"""
113 pass
115 def atbegin_pt(self):
116 """return coordinates of first point in pts"""
117 pass
119 def atend_pt(self):
120 """return coordinates of last point in pts"""
121 pass
123 def bbox(self):
124 """return bounding box of normsubpathitem"""
125 pass
127 def cbox(self):
128 """return control box of normsubpathitem
130 The control box also fully encloses the normsubpathitem but in the case of a Bezier
131 curve it is not the minimal box doing so. On the other hand, it is much faster
132 to calculate.
134 pass
136 def curvature_pt(self, params):
137 """return the curvature at params in 1/pts
139 The result contains the invalid instance at positions, where the
140 curvature is undefined."""
141 pass
143 def curveradius_pt(self, params):
144 """return the curvature radius at params in pts
146 The curvature radius is the inverse of the curvature. Where the
147 curvature is undefined, the invalid instance is returned. Note that
148 this radius can be negative or positive, depending on the sign of the
149 curvature."""
150 pass
152 def intersect(self, other, epsilon):
153 """intersect self with other normsubpathitem"""
154 pass
156 def modifiedbegin_pt(self, x_pt, y_pt):
157 """return a normsubpathitem with a modified beginning point"""
158 pass
160 def modifiedend_pt(self, x_pt, y_pt):
161 """return a normsubpathitem with a modified end point"""
162 pass
164 def _paramtoarclen_pt(self, param, epsilon):
165 """return a tuple of arc lengths and the total arc length in pts"""
166 pass
168 def pathitem(self):
169 """return pathitem corresponding to normsubpathitem"""
171 def reversed(self):
172 """return reversed normsubpathitem"""
173 pass
175 def rotation(self, params):
176 """return rotation trafos (i.e. trafos without translations) at params"""
177 pass
179 def segments(self, params):
180 """return segments of the normsubpathitem
182 The returned list of normsubpathitems for the segments between
183 the params. params needs to contain at least two values.
185 pass
187 def trafo(self, params):
188 """return transformations at params"""
190 def transformed(self, trafo):
191 """return transformed normsubpathitem according to trafo"""
192 pass
194 def outputPS(self, file, writer):
195 """write PS code corresponding to normsubpathitem to file"""
196 pass
198 def outputPDF(self, file, writer):
199 """write PDF code corresponding to normsubpathitem to file"""
200 pass
203 class normline_pt(normsubpathitem):
205 """Straight line from (x0_pt, y0_pt) to (x1_pt, y1_pt) (coordinates in pts)"""
207 __slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt"
209 def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt):
210 self.x0_pt = x0_pt
211 self.y0_pt = y0_pt
212 self.x1_pt = x1_pt
213 self.y1_pt = y1_pt
215 def __str__(self):
216 return "normline_pt(%g, %g, %g, %g)" % (self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt)
218 def _arclentoparam_pt(self, lengths_pt, epsilon):
219 # do self.arclen_pt inplace for performance reasons
220 l_pt = math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
221 return [length_pt/l_pt for length_pt in lengths_pt], l_pt
223 def arclentoparam_pt(self, lengths_pt, epsilon):
224 """return a tuple of params"""
225 return self._arclentoparam_pt(lengths_pt, epsilon)[0]
227 def arclen_pt(self, epsilon, upper=False):
228 return math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
230 def at_pt(self, params):
231 return [(self.x0_pt+(self.x1_pt-self.x0_pt)*t, self.y0_pt+(self.y1_pt-self.y0_pt)*t)
232 for t in params]
234 def atbegin_pt(self):
235 return self.x0_pt, self.y0_pt
237 def atend_pt(self):
238 return self.x1_pt, self.y1_pt
240 def bbox(self):
241 return bboxmodule.bbox_pt(min(self.x0_pt, self.x1_pt), min(self.y0_pt, self.y1_pt),
242 max(self.x0_pt, self.x1_pt), max(self.y0_pt, self.y1_pt))
244 cbox = bbox
246 def curvature_pt(self, params):
247 return [0] * len(params)
249 def curveradius_pt(self, params):
250 return [invalid] * len(params)
252 def intersect(self, other, epsilon):
253 if isinstance(other, normline_pt):
254 a_deltax_pt = self.x1_pt - self.x0_pt
255 a_deltay_pt = self.y1_pt - self.y0_pt
257 b_deltax_pt = other.x1_pt - other.x0_pt
258 b_deltay_pt = other.y1_pt - other.y0_pt
260 invdet = b_deltax_pt * a_deltay_pt - b_deltay_pt * a_deltax_pt
262 if abs(invdet) < epsilon * epsilon:
263 # As invdet measures the area spanned by the two lines, least
264 # one of the lines is either very short or the lines are almost
265 # parallel. In both cases, a proper colinear check is adequate,
266 # already. Let's first check for short lines.
267 short_self = math.hypot(self.x1_pt - self.x0_pt,
268 self.y1_pt - self.y0_pt) < epsilon
269 short_other = math.hypot(other.x1_pt - other.x0_pt,
270 other.y1_pt - other.y0_pt) < epsilon
272 # For short lines we will only take their middle point into
273 # account.
274 if short_self:
275 sx_pt = 0.5*(self.x0_pt + self.x1_pt)
276 sy_pt = 0.5*(self.y0_pt + self.x1_pt)
277 if short_other:
278 ox_pt = 0.5*(other.x0_pt + other.x1_pt)
279 oy_pt = 0.5*(other.y0_pt + other.y1_pt)
281 def closepoint(x_pt, y_pt,
282 x0_pt, y0_pt, x1_pt, y1_pt):
283 """Returns the line parameter p in range [0, 1] for which
284 the point (x_pt, y_pt) is closest to the line defined by
285 ((x0_pt, y0_pt), (x1_pt, y1_pt)). The distance of (x0_pt,
286 y0_pt) and (x1_pt, y1_pt) must be larger than epsilon. If
287 the point has a greater distance than epsilon, None is
288 returned."""
289 p = (((x0_pt - x_pt)*(x0_pt - x1_pt) +
290 (y0_pt - y_pt)*(y0_pt - y1_pt))/
291 ((x1_pt - x0_pt)**2 + (y1_pt - y0_pt)**2))
292 p = min(1, max(0, p))
293 xs_pt = x0_pt + p*(x1_pt - x0_pt)
294 ys_pt = y0_pt + p*(y1_pt - y0_pt)
295 if math.hypot(xs_pt - x_pt, ys_pt - y_pt) < epsilon:
296 return p
297 return None # just be explicit in returning None here
299 if short_self and short_other:
300 # If both lines are short, we just measure the distance of
301 # the middle points.
302 if math.hypot(ox_pt - sx_pt, oy_pt - sy_pt) < epsilon:
303 return [(0.5, 0.5)]
304 elif short_self:
305 p = closepoint(sx_pt, sy_pt,
306 other.x0_pt, other.y0_pt, other.x1_pt, other.y1_pt)
307 if p is not None:
308 return [(0.5, p)]
309 elif short_other:
310 p = closepoint(ox_pt, oy_pt,
311 self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt)
312 if p is not None:
313 return [(p, 0.5)]
314 else:
315 # For two long colinear lines, we need to test the
316 # beginning and end point of the two lines with respect to
317 # the other line, in all combinations. We return just one
318 # solution even when the lines intersect for a whole range.
319 p = closepoint(self.x0_pt, self.y0_pt, other.x0_pt, other.y0_pt, other.x1_pt, other.y1_pt)
320 if p is not None:
321 return [(0, p)]
322 p = closepoint(self.x1_pt, self.y1_pt, other.x0_pt, other.y0_pt, other.x1_pt, other.y1_pt)
323 if p is not None:
324 return [(1, p)]
325 p = closepoint(other.x0_pt, other.y0_pt, self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt)
326 if p is not None:
327 return [(p, 0)]
328 p = closepoint(other.x1_pt, other.y1_pt, self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt)
329 if p is not None:
330 return [(p, 1)]
331 return []
333 det = 1.0 / invdet
335 ba_deltax0_pt = other.x0_pt - self.x0_pt
336 ba_deltay0_pt = other.y0_pt - self.y0_pt
338 a_t = (b_deltax_pt * ba_deltay0_pt - b_deltay_pt * ba_deltax0_pt) * det
339 b_t = (a_deltax_pt * ba_deltay0_pt - a_deltay_pt * ba_deltax0_pt) * det
341 # check for intersections out of bound
342 if not (0<=a_t<=1 and 0<=b_t<=1):
343 # correct the parameters, if the deviation is smaller than epsilon
344 a_t = min(1, max(0, a_t))
345 b_t = min(1, max(0, b_t))
346 a_x = self.x0_pt + a_deltax_pt*a_t
347 a_y = self.y0_pt + a_deltay_pt*a_t
348 b_x = other.x0_pt + b_deltax_pt*b_t
349 b_y = other.y0_pt + b_deltay_pt*b_t
350 if math.hypot(a_x - b_x, a_y - b_y) > epsilon:
351 return []
353 # return parameters of intersection
354 return [(a_t, b_t)]
355 else:
356 return [(s_t, o_t) for o_t, s_t in other.intersect(self, epsilon)]
358 def modifiedbegin_pt(self, x_pt, y_pt):
359 return normline_pt(x_pt, y_pt, self.x1_pt, self.y1_pt)
361 def modifiedend_pt(self, x_pt, y_pt):
362 return normline_pt(self.x0_pt, self.y0_pt, x_pt, y_pt)
364 def _paramtoarclen_pt(self, params, epsilon):
365 totalarclen_pt = self.arclen_pt(epsilon)
366 arclens_pt = [totalarclen_pt * param for param in params + [1]]
367 return arclens_pt[:-1], arclens_pt[-1]
369 def pathitem(self):
370 from . import path
371 return path.lineto_pt(self.x1_pt, self.y1_pt)
373 def reversed(self):
374 return normline_pt(self.x1_pt, self.y1_pt, self.x0_pt, self.y0_pt)
376 def rotation(self, params):
377 return [trafo.rotate(math.degrees(math.atan2(self.y1_pt-self.y0_pt, self.x1_pt-self.x0_pt)))]*len(params)
379 def segments(self, params):
380 if len(params) < 2:
381 raise ValueError("at least two parameters needed in segments")
382 result = []
383 xl_pt = yl_pt = None
384 for t in params:
385 xr_pt = self.x0_pt + (self.x1_pt-self.x0_pt)*t
386 yr_pt = self.y0_pt + (self.y1_pt-self.y0_pt)*t
387 if xl_pt is not None:
388 result.append(normline_pt(xl_pt, yl_pt, xr_pt, yr_pt))
389 xl_pt = xr_pt
390 yl_pt = yr_pt
391 return result
393 def trafo(self, params):
394 rotate = trafo.rotate(math.degrees(math.atan2(self.y1_pt-self.y0_pt, self.x1_pt-self.x0_pt)))
395 return [trafo.translate_pt(*at_pt) * rotate
396 for param, at_pt in zip(params, self.at_pt(params))]
398 def transformed(self, trafo):
399 return normline_pt(*(trafo.apply_pt(self.x0_pt, self.y0_pt) + trafo.apply_pt(self.x1_pt, self.y1_pt)))
401 def outputPS(self, file, writer):
402 file.write("%g %g lineto\n" % (self.x1_pt, self.y1_pt))
404 def outputPDF(self, file, writer):
405 file.write("%f %f l\n" % (self.x1_pt, self.y1_pt))
408 class normcurve_pt(normsubpathitem):
410 """Bezier curve with control points x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt (coordinates in pts)"""
412 __slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
414 def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt):
415 self.x0_pt = x0_pt
416 self.y0_pt = y0_pt
417 self.x1_pt = x1_pt
418 self.y1_pt = y1_pt
419 self.x2_pt = x2_pt
420 self.y2_pt = y2_pt
421 self.x3_pt = x3_pt
422 self.y3_pt = y3_pt
424 def __str__(self):
425 return "normcurve_pt(%g, %g, %g, %g, %g, %g, %g, %g)" % (self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt,
426 self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt)
428 def _split(self, t=0.5, epsilon=None, intersect=False):
429 """Split curve into two parts
431 The splitting point is defined by the parameter t (in range 0 to 1).
432 When epsilon is None, the two resulting curves are returned. However,
433 when epsilon is set to a (small) float, the method can be used
434 recursively to reduce the complexity of a problem by turning a
435 normcurve_pt into several normline_pt segments. The method returns
436 normcurve_pt instances only, when they are not yet straight enough to
437 be replaceable by normline_pt instances. The criteria for returning a
438 line instead of a curve depends on the value of the boolean intersect.
439 When not set, the abort cirteria is defined by the error of the arclen
440 of the curve vs. the line not being larger than epsilon. When in
441 intersect mode, all points of the curve must be closer to the line than
442 epsilon.
445 s = 1-t
447 # first, we have to calculate the midpoints between adjacent
448 # control points
449 x01_pt = s*self.x0_pt + t*self.x1_pt
450 y01_pt = s*self.y0_pt + t*self.y1_pt
451 x12_pt = s*self.x1_pt + t*self.x2_pt
452 y12_pt = s*self.y1_pt + t*self.y2_pt
453 x23_pt = s*self.x2_pt + t*self.x3_pt
454 y23_pt = s*self.y2_pt + t*self.y3_pt
456 # In the next iterative step, we need the midpoints between 01 and 12
457 # and between 12 and 23
458 x01_12_pt = s*x01_pt + t*x12_pt
459 y01_12_pt = s*y01_pt + t*y12_pt
460 x12_23_pt = s*x12_pt + t*x23_pt
461 y12_23_pt = s*y12_pt + t*y23_pt
463 # Finally the midpoint is given by
464 xmidpoint_pt = s*x01_12_pt + t*x12_23_pt
465 ymidpoint_pt = s*y01_12_pt + t*y12_23_pt
467 def subcurve(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt, newline, newcurve):
468 if epsilon is None:
469 return normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt)
471 # Before returning the subcurve we check whether we can
472 # replace it by a normline within an error of epsilon pts.
473 l0_pt = math.hypot(x3_pt-x0_pt, y3_pt-y0_pt)
474 l1_pt = math.hypot(x1_pt-x0_pt, y1_pt-y0_pt)
475 l2_pt = math.hypot(x2_pt-x1_pt, y2_pt-y1_pt)
476 l3_pt = math.hypot(x3_pt-x2_pt, y3_pt-y2_pt)
478 # When arclen calculation is performed, the maximal error value is
479 # given by the modulus of the difference between the length of the
480 # control polygon (i.e. |P1-P0|+|P2-P1|+|P3-P2|), which consitutes
481 # an upper bound for the length, and the length of the straight
482 # line between start and end point of the normcurve (i.e. |P3-P1|),
483 # which represents a lower bound.
484 if not intersect and l1_pt+l2_pt+l3_pt-l0_pt < epsilon:
485 # We can ignore the sign of l1_pt, l2_pt and l3_pt, as the sum
486 # of the absolute values is close to l0_pt anyway.
487 return newline(x0_pt, y0_pt, x3_pt, y3_pt, l1_pt, l2_pt, l3_pt)
489 if intersect:
490 # For intersections we calculate the distance of (x1_pt, y1_pt)
491 # and (x2_pt, y2_pt) from the line defined by (x0_pt, y0_pt)
492 # and (x3_pt, y3_pt). We skip the division by l0_pt in the
493 # result and calculate d1_pt*l0_pt and d2_pt*l0_pt instead.
494 d1_pt_times_l0_pt = (x3_pt-x0_pt)*(y0_pt-y1_pt) - (x0_pt-x1_pt)*(y3_pt-y0_pt)
495 d2_pt_times_l0_pt = (x0_pt-x3_pt)*(y3_pt-y2_pt) - (x3_pt-x2_pt)*(y0_pt-y3_pt)
496 if abs(d1_pt_times_l0_pt) < epsilon*l0_pt and abs(d2_pt_times_l0_pt) < epsilon*l0_pt:
497 # We could return the line now, but for this to be correct,
498 # we would need to take into account the signs of l1_pt,
499 # l2_pt, and l3_pt. In addition, this could result in
500 # multiple parameters matching a position on the line.
501 s1 = (x1_pt-x0_pt)*(x3_pt-x0_pt)+(y1_pt-y0_pt)*(y3_pt-y0_pt)
502 s2 = (x2_pt-x1_pt)*(x3_pt-x0_pt)+(y2_pt-y1_pt)*(y3_pt-y0_pt)
503 s3 = (x2_pt-x3_pt)*(x0_pt-x3_pt)+(y2_pt-y3_pt)*(y0_pt-y3_pt)
505 # If the signs are negative (i.e. we have backwards
506 # directed segments in the control polygon), we can still
507 # continue, if the corresponding segment is smaller than
508 # epsilon.
509 if ((s1 > 0 or l1_pt < epsilon) and
510 (s2 > 0 or l2_pt < epsilon) and
511 (s3 > 0 or l3_pt < epsilon)):
512 # As the sign of the segments is either positive or the
513 # segments are short, we can continue with the unsigned
514 # values for the segment lengths, as for the arclen
515 # calculation.
516 return newline(x0_pt, y0_pt, x3_pt, y3_pt, l1_pt, l2_pt, l3_pt)
518 return newcurve(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt)
520 return (subcurve(self.x0_pt, self.y0_pt,
521 x01_pt, y01_pt,
522 x01_12_pt, y01_12_pt,
523 xmidpoint_pt, ymidpoint_pt,
524 _leftnormline_pt, _leftnormcurve_pt),
525 subcurve(xmidpoint_pt, ymidpoint_pt,
526 x12_23_pt, y12_23_pt,
527 x23_pt, y23_pt,
528 self.x3_pt, self.y3_pt,
529 _rightnormline_pt, _rightnormcurve_pt))
531 def _arclentoparam_pt(self, lengths_pt, epsilon):
532 a, b = self._split(epsilon=epsilon)
533 params_a, arclen_a_pt = a._arclentoparam_pt(lengths_pt, 0.5*epsilon)
534 params_b, arclen_b_pt = b._arclentoparam_pt([length_pt - arclen_a_pt for length_pt in lengths_pt], 0.5*epsilon)
535 params = []
536 for param_a, param_b, length_pt in zip(params_a, params_b, lengths_pt):
537 if length_pt > arclen_a_pt:
538 params.append(b.subparamtoparam(param_b))
539 else:
540 params.append(a.subparamtoparam(param_a))
541 return params, arclen_a_pt + arclen_b_pt
543 def arclentoparam_pt(self, lengths_pt, epsilon):
544 """return a tuple of params"""
545 return self._arclentoparam_pt(lengths_pt, epsilon)[0]
547 def arclen_pt(self, epsilon, upper=False):
548 a, b = self._split(epsilon=epsilon)
549 return a.arclen_pt(0.5*epsilon, upper=upper) + b.arclen_pt(0.5*epsilon, upper=upper)
551 def at_pt(self, params):
552 return [( (-self.x0_pt+3*self.x1_pt-3*self.x2_pt+self.x3_pt)*t*t*t +
553 (3*self.x0_pt-6*self.x1_pt+3*self.x2_pt )*t*t +
554 (-3*self.x0_pt+3*self.x1_pt )*t +
555 self.x0_pt,
556 (-self.y0_pt+3*self.y1_pt-3*self.y2_pt+self.y3_pt)*t*t*t +
557 (3*self.y0_pt-6*self.y1_pt+3*self.y2_pt )*t*t +
558 (-3*self.y0_pt+3*self.y1_pt )*t +
559 self.y0_pt )
560 for t in params]
562 def atbegin_pt(self):
563 return self.x0_pt, self.y0_pt
565 def atend_pt(self):
566 return self.x3_pt, self.y3_pt
568 def bbox(self):
569 from . import path
570 xmin_pt, xmax_pt = path._bezierpolyrange(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt)
571 ymin_pt, ymax_pt = path._bezierpolyrange(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt)
572 return bboxmodule.bbox_pt(xmin_pt, ymin_pt, xmax_pt, ymax_pt)
574 def cbox(self):
575 return bboxmodule.bbox_pt(min(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt),
576 min(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt),
577 max(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt),
578 max(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt))
580 def curvature_pt(self, params):
581 result = []
582 # see notes in rotation
583 approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
584 math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
585 math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
586 for param in params:
587 xdot = ( 3 * (1-param)*(1-param) * (-self.x0_pt + self.x1_pt) +
588 6 * (1-param)*param * (-self.x1_pt + self.x2_pt) +
589 3 * param*param * (-self.x2_pt + self.x3_pt) )
590 ydot = ( 3 * (1-param)*(1-param) * (-self.y0_pt + self.y1_pt) +
591 6 * (1-param)*param * (-self.y1_pt + self.y2_pt) +
592 3 * param*param * (-self.y2_pt + self.y3_pt) )
593 xddot = ( 6 * (1-param) * (self.x0_pt - 2*self.x1_pt + self.x2_pt) +
594 6 * param * (self.x1_pt - 2*self.x2_pt + self.x3_pt) )
595 yddot = ( 6 * (1-param) * (self.y0_pt - 2*self.y1_pt + self.y2_pt) +
596 6 * param * (self.y1_pt - 2*self.y2_pt + self.y3_pt) )
598 hypot = math.hypot(xdot, ydot)
599 if hypot/approxarclen > _minrelspeed:
600 result.append((xdot*yddot - ydot*xddot) / hypot**3)
601 else:
602 result.append(invalid)
603 return result
605 def curveradius_pt(self, params):
606 result = []
607 # see notes in rotation
608 approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
609 math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
610 math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
611 for param in params:
612 xdot = ( 3 * (1-param)*(1-param) * (-self.x0_pt + self.x1_pt) +
613 6 * (1-param)*param * (-self.x1_pt + self.x2_pt) +
614 3 * param*param * (-self.x2_pt + self.x3_pt) )
615 ydot = ( 3 * (1-param)*(1-param) * (-self.y0_pt + self.y1_pt) +
616 6 * (1-param)*param * (-self.y1_pt + self.y2_pt) +
617 3 * param*param * (-self.y2_pt + self.y3_pt) )
618 xddot = ( 6 * (1-param) * (self.x0_pt - 2*self.x1_pt + self.x2_pt) +
619 6 * param * (self.x1_pt - 2*self.x2_pt + self.x3_pt) )
620 yddot = ( 6 * (1-param) * (self.y0_pt - 2*self.y1_pt + self.y2_pt) +
621 6 * param * (self.y1_pt - 2*self.y2_pt + self.y3_pt) )
623 hypot = math.hypot(xdot, ydot)
624 if hypot/approxarclen > _minrelspeed:
625 result.append(hypot**3 / (xdot*yddot - ydot*xddot))
626 else:
627 result.append(invalid)
628 return result
630 def intersect(self, other, epsilon):
631 # There can be no intersection point if the control boxes do not
632 # overlap. Note that we use the control box instead of the bounding
633 # box here, because the former can be calculated more efficiently for
634 # Bezier curves.
635 if not self.cbox().intersects(other.cbox()):
636 return []
637 a, b = self._split(epsilon=epsilon, intersect=True)
638 # To improve the performance in the general case we alternate the
639 # splitting process between the two normsubpathitems
640 return ( [(a.subparamtoparam(a_t), o_t) for o_t, a_t in other.intersect(a, epsilon)] +
641 [(b.subparamtoparam(b_t), o_t) for o_t, b_t in other.intersect(b, epsilon)] )
643 def modifiedbegin_pt(self, x_pt, y_pt):
644 return normcurve_pt(x_pt, y_pt,
645 self.x1_pt, self.y1_pt,
646 self.x2_pt, self.y2_pt,
647 self.x3_pt, self.y3_pt)
649 def modifiedend_pt(self, x_pt, y_pt):
650 return normcurve_pt(self.x0_pt, self.y0_pt,
651 self.x1_pt, self.y1_pt,
652 self.x2_pt, self.y2_pt,
653 x_pt, y_pt)
655 def _paramtoarclen_pt(self, params, epsilon):
656 arclens_pt = [segment.arclen_pt(epsilon) for segment in self.segments([0] + list(params) + [1])]
657 for i in range(1, len(arclens_pt)):
658 arclens_pt[i] += arclens_pt[i-1]
659 return arclens_pt[:-1], arclens_pt[-1]
661 def pathitem(self):
662 from . import path
663 return path.curveto_pt(self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt)
665 def reversed(self):
666 return normcurve_pt(self.x3_pt, self.y3_pt, self.x2_pt, self.y2_pt, self.x1_pt, self.y1_pt, self.x0_pt, self.y0_pt)
668 def rotation(self, params):
669 result = []
670 # We need to take care of the case of tdx_pt and tdy_pt close to zero.
671 # We should not compare those values to epsilon (which is a length) directly.
672 # Furthermore we want this "speed" in general and it's abort condition in
673 # particular to be invariant on the actual size of the normcurve. Hence we
674 # first calculate a crude approximation for the arclen.
675 approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
676 math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
677 math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
678 for param in params:
679 tdx_pt = (3*( -self.x0_pt+3*self.x1_pt-3*self.x2_pt+self.x3_pt)*param*param +
680 2*( 3*self.x0_pt-6*self.x1_pt+3*self.x2_pt )*param +
681 (-3*self.x0_pt+3*self.x1_pt ))
682 tdy_pt = (3*( -self.y0_pt+3*self.y1_pt-3*self.y2_pt+self.y3_pt)*param*param +
683 2*( 3*self.y0_pt-6*self.y1_pt+3*self.y2_pt )*param +
684 (-3*self.y0_pt+3*self.y1_pt ))
685 # We scale the speed such the "relative speed" of a line is 1 independend of
686 # the length of the line. For curves we want this "relative speed" to be higher than
687 # _minrelspeed:
688 if math.hypot(tdx_pt, tdy_pt)/approxarclen > _minrelspeed:
689 result.append(trafo.rotate(math.degrees(math.atan2(tdy_pt, tdx_pt))))
690 else:
691 # Note that we can't use the rule of l'Hopital here, since it would
692 # not provide us with a sign for the tangent. Hence we wouldn't
693 # notice whether the sign changes (which is a typical case at cusps).
694 result.append(invalid)
695 return result
697 def segments(self, params):
698 if len(params) < 2:
699 raise ValueError("at least two parameters needed in segments")
701 # first, we calculate the coefficients corresponding to our
702 # original bezier curve. These represent a useful starting
703 # point for the following change of the polynomial parameter
704 a0x_pt = self.x0_pt
705 a0y_pt = self.y0_pt
706 a1x_pt = 3*(-self.x0_pt+self.x1_pt)
707 a1y_pt = 3*(-self.y0_pt+self.y1_pt)
708 a2x_pt = 3*(self.x0_pt-2*self.x1_pt+self.x2_pt)
709 a2y_pt = 3*(self.y0_pt-2*self.y1_pt+self.y2_pt)
710 a3x_pt = -self.x0_pt+3*(self.x1_pt-self.x2_pt)+self.x3_pt
711 a3y_pt = -self.y0_pt+3*(self.y1_pt-self.y2_pt)+self.y3_pt
713 result = []
715 for i in range(len(params)-1):
716 t1 = params[i]
717 dt = params[i+1]-t1
719 # [t1,t2] part
721 # the new coefficients of the [t1,t1+dt] part of the bezier curve
722 # are then given by expanding
723 # a0 + a1*(t1+dt*u) + a2*(t1+dt*u)**2 +
724 # a3*(t1+dt*u)**3 in u, yielding
726 # a0 + a1*t1 + a2*t1**2 + a3*t1**3 +
727 # ( a1 + 2*a2 + 3*a3*t1**2 )*dt * u +
728 # ( a2 + 3*a3*t1 )*dt**2 * u**2 +
729 # a3*dt**3 * u**3
731 # from this values we obtain the new control points by inversion
733 # TODO: we could do this more efficiently by reusing for
734 # (x0_pt, y0_pt) the control point (x3_pt, y3_pt) from the previous
735 # Bezier curve
737 x0_pt = a0x_pt + a1x_pt*t1 + a2x_pt*t1*t1 + a3x_pt*t1*t1*t1
738 y0_pt = a0y_pt + a1y_pt*t1 + a2y_pt*t1*t1 + a3y_pt*t1*t1*t1
739 x1_pt = (a1x_pt+2*a2x_pt*t1+3*a3x_pt*t1*t1)*dt/3.0 + x0_pt
740 y1_pt = (a1y_pt+2*a2y_pt*t1+3*a3y_pt*t1*t1)*dt/3.0 + y0_pt
741 x2_pt = (a2x_pt+3*a3x_pt*t1)*dt*dt/3.0 - x0_pt + 2*x1_pt
742 y2_pt = (a2y_pt+3*a3y_pt*t1)*dt*dt/3.0 - y0_pt + 2*y1_pt
743 x3_pt = a3x_pt*dt*dt*dt + x0_pt - 3*x1_pt + 3*x2_pt
744 y3_pt = a3y_pt*dt*dt*dt + y0_pt - 3*y1_pt + 3*y2_pt
746 result.append(normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt))
748 return result
750 def trafo(self, params):
751 result = []
752 for rotation, at_pt in zip(self.rotation(params), self.at_pt(params)):
753 if rotation is invalid:
754 result.append(rotation)
755 else:
756 result.append(trafo.translate_pt(*at_pt) * rotation)
757 return result
759 def transformed(self, trafo):
760 x0_pt, y0_pt = trafo.apply_pt(self.x0_pt, self.y0_pt)
761 x1_pt, y1_pt = trafo.apply_pt(self.x1_pt, self.y1_pt)
762 x2_pt, y2_pt = trafo.apply_pt(self.x2_pt, self.y2_pt)
763 x3_pt, y3_pt = trafo.apply_pt(self.x3_pt, self.y3_pt)
764 return normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt)
766 def outputPS(self, file, writer):
767 file.write("%g %g %g %g %g %g curveto\n" % (self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt))
769 def outputPDF(self, file, writer):
770 file.write("%f %f %f %f %f %f c\n" % (self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt))
772 def x_pt(self, t):
773 return ((( self.x3_pt-3*self.x2_pt+3*self.x1_pt-self.x0_pt)*t +
774 3*self.x0_pt-6*self.x1_pt+3*self.x2_pt)*t +
775 3*self.x1_pt-3*self.x0_pt)*t + self.x0_pt
777 def xdot_pt(self, t):
778 return ((3*self.x3_pt-9*self.x2_pt+9*self.x1_pt-3*self.x0_pt)*t +
779 6*self.x0_pt-12*self.x1_pt+6*self.x2_pt)*t + 3*self.x1_pt - 3*self.x0_pt
781 def xddot_pt(self, t):
782 return (6*self.x3_pt-18*self.x2_pt+18*self.x1_pt-6*self.x0_pt)*t + 6*self.x0_pt - 12*self.x1_pt + 6*self.x2_pt
784 def xdddot_pt(self, t):
785 return 6*self.x3_pt-18*self.x2_pt+18*self.x1_pt-6*self.x0_pt
787 def y_pt(self, t):
788 return ((( self.y3_pt-3*self.y2_pt+3*self.y1_pt-self.y0_pt)*t +
789 3*self.y0_pt-6*self.y1_pt+3*self.y2_pt)*t +
790 3*self.y1_pt-3*self.y0_pt)*t + self.y0_pt
792 def ydot_pt(self, t):
793 return ((3*self.y3_pt-9*self.y2_pt+9*self.y1_pt-3*self.y0_pt)*t +
794 6*self.y0_pt-12*self.y1_pt+6*self.y2_pt)*t + 3*self.y1_pt - 3*self.y0_pt
796 def yddot_pt(self, t):
797 return (6*self.y3_pt-18*self.y2_pt+18*self.y1_pt-6*self.y0_pt)*t + 6*self.y0_pt - 12*self.y1_pt + 6*self.y2_pt
799 def ydddot_pt(self, t):
800 return 6*self.y3_pt-18*self.y2_pt+18*self.y1_pt-6*self.y0_pt
803 # curve replacements used by midpointsplit:
804 # The replacements are normline_pt and normcurve_pt instances with an
805 # additional subparamtoparam function for proper conversion of the
806 # parametrization. Note that we only one direction (when a parameter
807 # gets calculated), since the other way around direction midpointsplit
808 # is not needed at all
810 class _leftnormline_pt(normline_pt):
812 __slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
814 def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt, l1_pt, l2_pt, l3_pt):
815 normline_pt.__init__(self, x0_pt, y0_pt, x1_pt, y1_pt)
816 self.l1_pt = l1_pt
817 self.l2_pt = l2_pt
818 self.l3_pt = l3_pt
820 def arclen_pt(self, epsilon, upper=False):
821 if upper:
822 return self.l1_pt + self.l2_pt + self.l3_pt
823 else:
824 return math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
826 def subparamtoparam(self, param):
827 if 0 <= param <= 1:
828 params = mathutils.realpolyroots(self.l1_pt-2*self.l2_pt+self.l3_pt,
829 -3*self.l1_pt+3*self.l2_pt,
830 3*self.l1_pt,
831 -param*(self.l1_pt+self.l2_pt+self.l3_pt))
832 # we might get several solutions and choose the one closest to 0.5
833 # (we want the solution to be in the range 0 <= param <= 1; in case
834 # we get several solutions in this range, they all will be close to
835 # each other since l1_pt+l2_pt+l3_pt-l0_pt < epsilon)
836 params.sort(key=lambda t: abs(t-0.5))
837 return 0.5*params[0]
838 else:
839 # when we are outside the proper parameter range, we skip the non-linear
840 # transformation, since it becomes slow and it might even start to be
841 # numerically instable
842 return 0.5*param
845 class _rightnormline_pt(_leftnormline_pt):
847 __slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
849 def subparamtoparam(self, param):
850 return 0.5+_leftnormline_pt.subparamtoparam(self, param)
853 class _leftnormcurve_pt(normcurve_pt):
855 __slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
857 def subparamtoparam(self, param):
858 return 0.5*param
861 class _rightnormcurve_pt(normcurve_pt):
863 __slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
865 def subparamtoparam(self, param):
866 return 0.5+0.5*param
869 ################################################################################
870 # normsubpath
871 ################################################################################
873 class normsubpath:
875 """sub path of a normalized path
877 A subpath consists of a list of normsubpathitems, i.e., normlines_pt and
878 normcurves_pt and can either be closed or not.
880 Some invariants, which have to be obeyed:
881 - All normsubpathitems have to be longer than epsilon pts.
882 - At the end there may be a normline (stored in self.skippedline) whose
883 length is shorter than epsilon -- it has to be taken into account
884 when adding further normsubpathitems
885 - The last point of a normsubpathitem and the first point of the next
886 element have to be equal.
887 - When the path is closed, the last point of last normsubpathitem has
888 to be equal to the first point of the first normsubpathitem.
889 - epsilon might be none, disallowing any numerics, but allowing for
890 arbitrary short paths. This is used in pdf output, where all paths need
891 to be transformed to normpaths.
894 __slots__ = "normsubpathitems", "closed", "epsilon", "skippedline"
896 def __init__(self, normsubpathitems=[], closed=0, epsilon=_marker):
897 """construct a normsubpath"""
898 if epsilon is _marker:
899 epsilon = _epsilon
900 self.epsilon = epsilon
901 # If one or more items appended to the normsubpath have been
902 # skipped (because their total length was shorter than epsilon),
903 # we remember this fact by a line because we have to take it
904 # properly into account when appending further normsubpathitems
905 self.skippedline = None
907 self.normsubpathitems = []
908 self.closed = 0
910 # a test (might be temporary)
911 for anormsubpathitem in normsubpathitems:
912 assert isinstance(anormsubpathitem, normsubpathitem), "only list of normsubpathitem instances allowed"
914 self.extend(normsubpathitems)
916 if closed:
917 self.close()
919 def __getitem__(self, i):
920 """return normsubpathitem i"""
921 return self.normsubpathitems[i]
923 def __len__(self):
924 """return number of normsubpathitems"""
925 return len(self.normsubpathitems)
927 def __str__(self):
928 l = ", ".join(map(str, self.normsubpathitems))
929 if self.closed:
930 return "normsubpath([%s], closed=1)" % l
931 else:
932 return "normsubpath([%s])" % l
934 def _distributeparams(self, params):
935 """return a dictionary mapping normsubpathitemindices to a tuple
936 of a paramindices and normsubpathitemparams.
938 normsubpathitemindex specifies a normsubpathitem containing
939 one or several positions. paramindex specify the index of the
940 param in the original list and normsubpathitemparam is the
941 parameter value in the normsubpathitem.
944 result = {}
945 for i, param in enumerate(params):
946 if param > 0:
947 index = int(param)
948 if index > len(self.normsubpathitems) - 1:
949 index = len(self.normsubpathitems) - 1
950 else:
951 index = 0
952 result.setdefault(index, ([], []))
953 result[index][0].append(i)
954 result[index][1].append(param - index)
955 return result
957 def append(self, anormsubpathitem):
958 """append normsubpathitem
960 Fails on closed normsubpath.
962 if self.epsilon is None:
963 self.normsubpathitems.append(anormsubpathitem)
964 else:
965 # consitency tests (might be temporary)
966 assert isinstance(anormsubpathitem, normsubpathitem), "only normsubpathitem instances allowed"
967 if self.skippedline:
968 assert math.hypot(*[x-y for x, y in zip(self.skippedline.atend_pt(), anormsubpathitem.atbegin_pt())]) < self.epsilon, "normsubpathitems do not match"
969 elif self.normsubpathitems:
970 assert math.hypot(*[x-y for x, y in zip(self.normsubpathitems[-1].atend_pt(), anormsubpathitem.atbegin_pt())]) < self.epsilon, "normsubpathitems do not match"
972 if self.closed:
973 raise NormpathException("Cannot append to closed normsubpath")
975 if self.skippedline:
976 xs_pt, ys_pt = self.skippedline.atbegin_pt()
977 else:
978 xs_pt, ys_pt = anormsubpathitem.atbegin_pt()
979 xe_pt, ye_pt = anormsubpathitem.atend_pt()
981 if (math.hypot(xe_pt-xs_pt, ye_pt-ys_pt) >= self.epsilon or
982 anormsubpathitem.arclen_pt(self.epsilon) >= self.epsilon):
983 if self.skippedline:
984 anormsubpathitem = anormsubpathitem.modifiedbegin_pt(xs_pt, ys_pt)
985 self.normsubpathitems.append(anormsubpathitem)
986 self.skippedline = None
987 else:
988 self.skippedline = normline_pt(xs_pt, ys_pt, xe_pt, ye_pt)
990 def arclen_pt(self, upper=False):
991 """return arc length in pts
993 When upper is set, the upper bound is calculated, otherwise the lower
994 bound is returned."""
995 return sum([npitem.arclen_pt(self.epsilon, upper=upper) for npitem in self.normsubpathitems])
997 def _arclentoparam_pt(self, lengths_pt):
998 """return a tuple of params and the total length arc length in pts"""
999 # work on a copy which is counted down to negative values
1000 lengths_pt = lengths_pt[:]
1001 results = [None] * len(lengths_pt)
1003 totalarclen = 0
1004 for normsubpathindex, normsubpathitem in enumerate(self.normsubpathitems):
1005 params, arclen = normsubpathitem._arclentoparam_pt(lengths_pt, self.epsilon)
1006 for i in range(len(results)):
1007 if results[i] is None:
1008 lengths_pt[i] -= arclen
1009 if lengths_pt[i] < 0 or normsubpathindex == len(self.normsubpathitems) - 1:
1010 # overwrite the results until the length has become negative
1011 results[i] = normsubpathindex + params[i]
1012 totalarclen += arclen
1014 return results, totalarclen
1016 def arclentoparam_pt(self, lengths_pt):
1017 """return a tuple of params"""
1018 return self._arclentoparam_pt(lengths_pt)[0]
1020 def at_pt(self, params):
1021 """return coordinates at params in pts"""
1022 if not self.normsubpathitems and self.skippedline:
1023 return [self.skippedline.atbegin_pt()]*len(params)
1024 result = [None] * len(params)
1025 for normsubpathitemindex, (indices, params) in list(self._distributeparams(params).items()):
1026 for index, point_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].at_pt(params)):
1027 result[index] = point_pt
1028 return result
1030 def atbegin_pt(self):
1031 """return coordinates of first point in pts"""
1032 if not self.normsubpathitems and self.skippedline:
1033 return self.skippedline.atbegin_pt()
1034 return self.normsubpathitems[0].atbegin_pt()
1036 def atend_pt(self):
1037 """return coordinates of last point in pts"""
1038 if self.skippedline:
1039 return self.skippedline.atend_pt()
1040 return self.normsubpathitems[-1].atend_pt()
1042 def bbox(self):
1043 """return bounding box of normsubpath"""
1044 if self.normsubpathitems:
1045 abbox = self.normsubpathitems[0].bbox()
1046 for anormpathitem in self.normsubpathitems[1:]:
1047 abbox += anormpathitem.bbox()
1048 return abbox
1049 else:
1050 return bboxmodule.empty()
1052 def close(self):
1053 """close subnormpath
1055 Fails on closed normsubpath.
1057 if self.closed:
1058 raise NormpathException("Cannot close already closed normsubpath")
1059 if not self.normsubpathitems:
1060 if self.skippedline is None:
1061 raise NormpathException("Cannot close empty normsubpath")
1062 else:
1063 raise NormpathException("Normsubpath too short, cannot be closed")
1065 xs_pt, ys_pt = self.normsubpathitems[-1].atend_pt()
1066 xe_pt, ye_pt = self.normsubpathitems[0].atbegin_pt()
1067 self.append(normline_pt(xs_pt, ys_pt, xe_pt, ye_pt))
1068 self.flushskippedline()
1069 self.closed = 1
1071 def copy(self):
1072 """return copy of normsubpath"""
1073 # Since normsubpathitems are never modified inplace, we just
1074 # need to copy the normsubpathitems list. We do not pass the
1075 # normsubpathitems to the constructor to not repeat the checks
1076 # for minimal length of each normsubpathitem.
1077 result = normsubpath(epsilon=self.epsilon)
1078 result.normsubpathitems = self.normsubpathitems[:]
1079 result.closed = self.closed
1081 # We can share the reference to skippedline, since it is a
1082 # normsubpathitem as well and thus not modified in place either.
1083 result.skippedline = self.skippedline
1085 return result
1087 def curvature_pt(self, params):
1088 """return the curvature at params in 1/pts
1090 The result contain the invalid instance at positions, where the
1091 curvature is undefined."""
1092 result = [None] * len(params)
1093 for normsubpathitemindex, (indices, params) in list(self._distributeparams(params).items()):
1094 for index, curvature_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].curvature_pt(params)):
1095 result[index] = curvature_pt
1096 return result
1098 def curveradius_pt(self, params):
1099 """return the curvature radius at params in pts
1101 The curvature radius is the inverse of the curvature. When the
1102 curvature is 0, the invalid instance is returned. Note that this radius can be negative
1103 or positive, depending on the sign of the curvature."""
1104 result = [None] * len(params)
1105 for normsubpathitemindex, (indices, params) in list(self._distributeparams(params).items()):
1106 for index, radius_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].curveradius_pt(params)):
1107 result[index] = radius_pt
1108 return result
1110 def extend(self, normsubpathitems):
1111 """extend path by normsubpathitems
1113 Fails on closed normsubpath.
1115 for normsubpathitem in normsubpathitems:
1116 self.append(normsubpathitem)
1118 def flushskippedline(self):
1119 """flush the skippedline, i.e. apply it to the normsubpath
1121 remove the skippedline by modifying the end point of the existing normsubpath
1123 while self.skippedline:
1124 try:
1125 lastnormsubpathitem = self.normsubpathitems.pop()
1126 except IndexError:
1127 raise ValueError("normsubpath too short to flush the skippedline")
1128 lastnormsubpathitem = lastnormsubpathitem.modifiedend_pt(*self.skippedline.atend_pt())
1129 self.skippedline = None
1130 self.append(lastnormsubpathitem)
1132 def intersect(self, other):
1133 """intersect self with other normsubpath
1135 Returns a tuple of lists consisting of the parameter values
1136 of the intersection points of the corresponding normsubpath.
1138 intersections_a = []
1139 intersections_b = []
1140 epsilon = min(self.epsilon, other.epsilon)
1141 # Intersect all subpaths of self with the subpaths of other, possibly including
1142 # one intersection point several times
1143 for t_a, pitem_a in enumerate(self.normsubpathitems):
1144 for t_b, pitem_b in enumerate(other.normsubpathitems):
1145 for intersection_a, intersection_b in pitem_a.intersect(pitem_b, epsilon):
1146 intersections_a.append(intersection_a + t_a)
1147 intersections_b.append(intersection_b + t_b)
1149 # although intersectipns_a are sorted for the different normsubpathitems,
1150 # within a normsubpathitem, the ordering has to be ensured separately:
1151 intersections = list(zip(intersections_a, intersections_b))
1152 intersections.sort()
1153 intersections_a = [a for a, b in intersections]
1154 intersections_b = [b for a, b in intersections]
1156 # for symmetry reasons we enumerate intersections_a as well, although
1157 # they are already sorted (note we do not need to sort intersections_a)
1158 intersections_a = list(zip(intersections_a, list(range(len(intersections_a)))))
1159 intersections_b = list(zip(intersections_b, list(range(len(intersections_b)))))
1160 intersections_b.sort()
1162 # now we search for intersections points which are closer together than epsilon
1163 # This task is handled by the following function
1164 def closepoints(normsubpath, intersections):
1165 split = normsubpath.segments([0] + [intersection for intersection, index in intersections] + [len(normsubpath)])
1166 result = []
1167 if normsubpath.closed:
1168 # note that the number of segments of a closed path is off by one
1169 # compared to an open path
1170 i = 0
1171 while i < len(split):
1172 splitnormsubpath = split[i]
1173 j = i
1174 while not splitnormsubpath.normsubpathitems: # i.e. while "is short"
1175 ip1, ip2 = intersections[i-1][1], intersections[j][1]
1176 if ip1<ip2:
1177 result.append((ip1, ip2))
1178 else:
1179 result.append((ip2, ip1))
1180 j += 1
1181 if j == len(split):
1182 j = 0
1183 if j < len(split):
1184 splitnormsubpath = splitnormsubpath.joined(split[j])
1185 else:
1186 break
1187 i += 1
1188 else:
1189 i = 1
1190 while i < len(split)-1:
1191 splitnormsubpath = split[i]
1192 j = i
1193 while not splitnormsubpath.normsubpathitems: # i.e. while "is short"
1194 ip1, ip2 = intersections[i-1][1], intersections[j][1]
1195 if ip1<ip2:
1196 result.append((ip1, ip2))
1197 else:
1198 result.append((ip2, ip1))
1199 j += 1
1200 if j < len(split)-1:
1201 splitnormsubpath = splitnormsubpath.joined(split[j])
1202 else:
1203 break
1204 i += 1
1205 return result
1207 closepoints_a = closepoints(self, intersections_a)
1208 closepoints_b = closepoints(other, intersections_b)
1210 # map intersection point to lowest point which is equivalent to the
1211 # point
1212 equivalentpoints = list(range(len(intersections_a)))
1214 for closepoint_a in closepoints_a:
1215 for closepoint_b in closepoints_b:
1216 if closepoint_a == closepoint_b:
1217 for i in range(closepoint_a[1], len(equivalentpoints)):
1218 if equivalentpoints[i] == closepoint_a[1]:
1219 equivalentpoints[i] = closepoint_a[0]
1221 # determine the remaining intersection points
1222 intersectionpoints = {}
1223 for point in equivalentpoints:
1224 intersectionpoints[point] = 1
1226 # build result
1227 result = []
1228 intersectionpointskeys = list(intersectionpoints.keys())
1229 intersectionpointskeys.sort()
1230 for point in intersectionpointskeys:
1231 for intersection_a, index_a in intersections_a:
1232 if index_a == point:
1233 result_a = intersection_a
1234 for intersection_b, index_b in intersections_b:
1235 if index_b == point:
1236 result_b = intersection_b
1237 result.append((result_a, result_b))
1238 # note that the result is sorted in a, since we sorted
1239 # intersections_a in the very beginning
1241 return [x for x, y in result], [y for x, y in result]
1243 def join(self, other):
1244 """join other normsubpath inplace
1246 Fails on closed normsubpath. Fails to join closed normsubpath.
1248 if other.closed:
1249 raise NormpathException("Cannot join closed normsubpath")
1251 if self.normsubpathitems:
1252 # insert connection line
1253 x0_pt, y0_pt = self.atend_pt()
1254 x1_pt, y1_pt = other.atbegin_pt()
1255 self.append(normline_pt(x0_pt, y0_pt, x1_pt, y1_pt))
1257 # append other normsubpathitems
1258 self.extend(other.normsubpathitems)
1259 if other.skippedline:
1260 self.append(other.skippedline)
1262 def joined(self, other):
1263 """return joined self and other
1265 Fails on closed normsubpath. Fails to join closed normsubpath.
1267 result = self.copy()
1268 result.join(other)
1269 return result
1271 def _paramtoarclen_pt(self, params):
1272 """return a tuple of arc lengths and the total arc length in pts"""
1273 if not self.normsubpathitems:
1274 return [0] * len(params), 0
1275 result = [None] * len(params)
1276 totalarclen_pt = 0
1277 distributeparams = self._distributeparams(params)
1278 for normsubpathitemindex in range(len(self.normsubpathitems)):
1279 if normsubpathitemindex in distributeparams:
1280 indices, params = distributeparams[normsubpathitemindex]
1281 arclens_pt, normsubpathitemarclen_pt = self.normsubpathitems[normsubpathitemindex]._paramtoarclen_pt(params, self.epsilon)
1282 for index, arclen_pt in zip(indices, arclens_pt):
1283 result[index] = totalarclen_pt + arclen_pt
1284 totalarclen_pt += normsubpathitemarclen_pt
1285 else:
1286 totalarclen_pt += self.normsubpathitems[normsubpathitemindex].arclen_pt(self.epsilon)
1287 return result, totalarclen_pt
1289 def pathitems(self):
1290 """return list of pathitems"""
1292 from . import path
1294 if not self.normsubpathitems:
1295 return []
1297 # remove trailing normline_pt of closed subpaths
1298 if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
1299 normsubpathitems = self.normsubpathitems[:-1]
1300 else:
1301 normsubpathitems = self.normsubpathitems
1303 result = [path.moveto_pt(*self.atbegin_pt())]
1304 for normsubpathitem in normsubpathitems:
1305 result.append(normsubpathitem.pathitem())
1306 if self.closed:
1307 result.append(path.closepath())
1308 return result
1310 def reversed(self):
1311 """return reversed normsubpath"""
1312 nnormpathitems = []
1313 for i in range(len(self.normsubpathitems)):
1314 nnormpathitems.append(self.normsubpathitems[-(i+1)].reversed())
1315 return normsubpath(nnormpathitems, self.closed, self.epsilon)
1317 def rotation(self, params):
1318 """return rotations at params"""
1319 result = [None] * len(params)
1320 for normsubpathitemindex, (indices, params) in list(self._distributeparams(params).items()):
1321 for index, rotation in zip(indices, self.normsubpathitems[normsubpathitemindex].rotation(params)):
1322 result[index] = rotation
1323 return result
1325 def segments(self, params):
1326 """return segments of the normsubpath
1328 The returned list of normsubpaths for the segments between
1329 the params. params need to contain at least two values.
1331 For a closed normsubpath the last segment result is joined to
1332 the first one when params starts with 0 and ends with len(self).
1333 or params starts with len(self) and ends with 0. Thus a segments
1334 operation on a closed normsubpath might properly join those the
1335 first and the last part to take into account the closed nature of
1336 the normsubpath. However, for intermediate parameters, closepath
1337 is not taken into account, i.e. when walking backwards you do not
1338 loop over the closepath forwardly. The special values 0 and
1339 len(self) for the first and the last parameter should be given as
1340 integers, i.e. no finite precision is used when checking for
1341 equality."""
1343 if len(params) < 2:
1344 raise ValueError("at least two parameters needed in segments")
1346 result = [normsubpath(epsilon=self.epsilon)]
1348 # instead of distribute the parameters, we need to keep their
1349 # order and collect parameters for the needed segments of
1350 # normsubpathitem with index collectindex
1351 collectparams = []
1352 collectindex = None
1353 for param in params:
1354 # calculate index and parameter for corresponding normsubpathitem
1355 if param > 0:
1356 index = int(param)
1357 if index > len(self.normsubpathitems) - 1:
1358 index = len(self.normsubpathitems) - 1
1359 param -= index
1360 else:
1361 index = 0
1362 if index != collectindex:
1363 if collectindex is not None:
1364 # append end point depening on the forthcoming index
1365 if index > collectindex:
1366 collectparams.append(1)
1367 else:
1368 collectparams.append(0)
1369 # get segments of the normsubpathitem and add them to the result
1370 segments = self.normsubpathitems[collectindex].segments(collectparams)
1371 result[-1].append(segments[0])
1372 result.extend([normsubpath([segment], epsilon=self.epsilon) for segment in segments[1:]])
1373 # add normsubpathitems and first segment parameter to close the
1374 # gap to the forthcoming index
1375 if index > collectindex:
1376 for i in range(collectindex+1, index):
1377 result[-1].append(self.normsubpathitems[i])
1378 collectparams = [0]
1379 else:
1380 for i in range(collectindex-1, index, -1):
1381 result[-1].append(self.normsubpathitems[i].reversed())
1382 collectparams = [1]
1383 collectindex = index
1384 collectparams.append(param)
1385 # add remaining collectparams to the result
1386 segments = self.normsubpathitems[collectindex].segments(collectparams)
1387 result[-1].append(segments[0])
1388 result.extend([normsubpath([segment], epsilon=self.epsilon) for segment in segments[1:]])
1390 if self.closed:
1391 # join last and first segment together if the normsubpath was
1392 # originally closed and first and the last parameters are the
1393 # beginning and end points of the normsubpath
1394 if ( ( params[0] == 0 and params[-1] == len(self.normsubpathitems) ) or
1395 ( params[-1] == 0 and params[0] == len(self.normsubpathitems) ) ):
1396 result[-1].normsubpathitems.extend(result[0].normsubpathitems)
1397 result = result[-1:] + result[1:-1]
1399 return result
1401 def trafo(self, params):
1402 """return transformations at params"""
1403 result = [None] * len(params)
1404 for normsubpathitemindex, (indices, params) in list(self._distributeparams(params).items()):
1405 for index, trafo in zip(indices, self.normsubpathitems[normsubpathitemindex].trafo(params)):
1406 result[index] = trafo
1407 return result
1409 def transformed(self, trafo):
1410 """return transformed path"""
1411 nnormsubpath = normsubpath(epsilon=self.epsilon)
1412 for pitem in self.normsubpathitems:
1413 nnormsubpath.append(pitem.transformed(trafo))
1414 if self.closed:
1415 nnormsubpath.close()
1416 elif self.skippedline is not None:
1417 nnormsubpath.append(self.skippedline.transformed(trafo))
1418 return nnormsubpath
1420 def outputPS(self, file, writer):
1421 # if the normsubpath is closed, we must not output a normline at
1422 # the end
1423 if not self.normsubpathitems:
1424 return
1425 if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
1426 assert len(self.normsubpathitems) > 1, "a closed normsubpath should contain more than a single normline_pt"
1427 normsubpathitems = self.normsubpathitems[:-1]
1428 else:
1429 normsubpathitems = self.normsubpathitems
1430 file.write("%g %g moveto\n" % self.atbegin_pt())
1431 for anormsubpathitem in normsubpathitems:
1432 anormsubpathitem.outputPS(file, writer)
1433 if self.closed:
1434 file.write("closepath\n")
1436 def outputPDF(self, file, writer):
1437 # if the normsubpath is closed, we must not output a normline at
1438 # the end
1439 if not self.normsubpathitems:
1440 return
1441 if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
1442 assert len(self.normsubpathitems) > 1, "a closed normsubpath should contain more than a single normline_pt"
1443 normsubpathitems = self.normsubpathitems[:-1]
1444 else:
1445 normsubpathitems = self.normsubpathitems
1446 file.write("%f %f m\n" % self.atbegin_pt())
1447 for anormsubpathitem in normsubpathitems:
1448 anormsubpathitem.outputPDF(file, writer)
1449 if self.closed:
1450 file.write("h\n")
1453 ################################################################################
1454 # normpath
1455 ################################################################################
1457 @functools.total_ordering
1458 class normpathparam:
1460 """parameter of a certain point along a normpath"""
1462 __slots__ = "normpath", "normsubpathindex", "normsubpathparam"
1464 def __init__(self, normpath, normsubpathindex, normsubpathparam):
1465 self.normpath = normpath
1466 self.normsubpathindex = normsubpathindex
1467 self.normsubpathparam = normsubpathparam
1469 def __str__(self):
1470 return "normpathparam(%s, %s, %s)" % (self.normpath, self.normsubpathindex, self.normsubpathparam)
1472 def __add__(self, other):
1473 if isinstance(other, normpathparam):
1474 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
1475 return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) +
1476 other.normpath.paramtoarclen_pt(other))
1477 else:
1478 return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) + unit.topt(other))
1480 __radd__ = __add__
1482 def __sub__(self, other):
1483 if isinstance(other, normpathparam):
1484 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
1485 return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) -
1486 other.normpath.paramtoarclen_pt(other))
1487 else:
1488 return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) - unit.topt(other))
1490 def __rsub__(self, other):
1491 # other has to be a length in this case
1492 return self.normpath.arclentoparam_pt(-self.normpath.paramtoarclen_pt(self) + unit.topt(other))
1494 def __mul__(self, factor):
1495 return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) * factor)
1497 __rmul__ = __mul__
1499 def __div__(self, divisor):
1500 return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) / divisor)
1502 def __neg__(self):
1503 return self.normpath.arclentoparam_pt(-self.normpath.paramtoarclen_pt(self))
1505 def __eq__(self, other):
1506 if isinstance(other, normpathparam):
1507 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
1508 return (self.normsubpathindex, self.normsubpathparam) == (other.normsubpathindex, other.normsubpathparam)
1509 else:
1510 return self.normpath.paramtoarclen_pt(self) == unit.topt(other)
1512 def __lt__(self, other):
1513 if isinstance(other, normpathparam):
1514 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
1515 return (self.normsubpathindex, self.normsubpathparam) < (other.normsubpathindex, other.normsubpathparam)
1516 else:
1517 return self.normpath.paramtoarclen_pt(self) < unit.topt(other)
1519 def arclen_pt(self):
1520 """return arc length in pts corresponding to the normpathparam """
1521 return self.normpath.paramtoarclen_pt(self)
1523 def arclen(self):
1524 """return arc length corresponding to the normpathparam """
1525 return self.normpath.paramtoarclen(self)
1528 def _valueorlistmethod(method):
1529 """Creates a method which takes a single argument or a list and
1530 returns a single value or a list out of method, which always
1531 works on lists."""
1533 @functools.wraps(method)
1534 def wrappedmethod(self, valueorlist, *args, **kwargs):
1535 try:
1536 for item in valueorlist:
1537 break
1538 except:
1539 return method(self, [valueorlist], *args, **kwargs)[0]
1540 return method(self, valueorlist, *args, **kwargs)
1541 return wrappedmethod
1544 class normpath:
1546 """normalized path
1548 A normalized path consists of a list of normsubpaths.
1551 def __init__(self, normsubpaths=None):
1552 """construct a normpath from a list of normsubpaths"""
1554 if normsubpaths is None:
1555 self.normsubpaths = [] # make a fresh list
1556 else:
1557 self.normsubpaths = normsubpaths
1558 for subpath in normsubpaths:
1559 assert isinstance(subpath, normsubpath), "only list of normsubpath instances allowed"
1561 def __add__(self, other):
1562 """create new normpath out of self and other"""
1563 result = self.copy()
1564 result += other
1565 return result
1567 def __iadd__(self, other):
1568 """add other inplace"""
1569 for normsubpath in other.normpath().normsubpaths:
1570 self.normsubpaths.append(normsubpath.copy())
1571 return self
1573 def __getitem__(self, i):
1574 """return normsubpath i"""
1575 return self.normsubpaths[i]
1577 def __len__(self):
1578 """return the number of normsubpaths"""
1579 return len(self.normsubpaths)
1581 def __str__(self):
1582 return "normpath([%s])" % ", ".join(map(str, self.normsubpaths))
1584 def _convertparams(self, params, convertmethod):
1585 """return params with all non-normpathparam arguments converted by convertmethod
1587 usecases:
1588 - self._convertparams(params, self.arclentoparam_pt)
1589 - self._convertparams(params, self.arclentoparam)
1592 converttoparams = []
1593 convertparamindices = []
1594 for i, param in enumerate(params):
1595 if not isinstance(param, normpathparam):
1596 converttoparams.append(param)
1597 convertparamindices.append(i)
1598 if converttoparams:
1599 params = params[:]
1600 for i, param in zip(convertparamindices, convertmethod(converttoparams)):
1601 params[i] = param
1602 return params
1604 def _distributeparams(self, params):
1605 """return a dictionary mapping subpathindices to a tuple of a paramindices and subpathparams
1607 subpathindex specifies a subpath containing one or several positions.
1608 paramindex specify the index of the normpathparam in the original list and
1609 subpathparam is the parameter value in the subpath.
1612 result = {}
1613 for i, param in enumerate(params):
1614 assert param.normpath is self, "normpathparam has to belong to this path"
1615 result.setdefault(param.normsubpathindex, ([], []))
1616 result[param.normsubpathindex][0].append(i)
1617 result[param.normsubpathindex][1].append(param.normsubpathparam)
1618 return result
1620 def append(self, item):
1621 """append a normpath by a normsubpath or a pathitem"""
1622 from . import path
1623 if isinstance(item, normsubpath):
1624 # the normsubpaths list can be appended by a normsubpath only
1625 self.normsubpaths.append(item)
1626 elif isinstance(item, path.pathitem):
1627 # ... but we are kind and allow for regular path items as well
1628 # in order to make a normpath to behave more like a regular path
1629 if self.normsubpaths:
1630 context = path.context(*(self.normsubpaths[-1].atend_pt() +
1631 self.normsubpaths[-1].atbegin_pt()))
1632 item.updatenormpath(self, context)
1633 else:
1634 self.normsubpaths = item.createnormpath(self).normsubpaths
1636 def arclen_pt(self, upper=False):
1637 """return arc length in pts
1639 When upper is set, the upper bound is calculated, otherwise the lower
1640 bound is returned."""
1641 return sum([normsubpath.arclen_pt(upper=upper) for normsubpath in self.normsubpaths])
1643 def arclen(self, upper=False):
1644 """return arc length
1646 When upper is set, the upper bound is calculated, otherwise the lower
1647 bound is returned."""
1648 return self.arclen_pt(upper=upper) * unit.t_pt
1650 def _arclentoparam_pt(self, lengths_pt):
1651 """return the params matching the given lengths_pt"""
1652 # work on a copy which is counted down to negative values
1653 lengths_pt = lengths_pt[:]
1654 results = [None] * len(lengths_pt)
1656 for normsubpathindex, normsubpath in enumerate(self.normsubpaths):
1657 params, arclen = normsubpath._arclentoparam_pt(lengths_pt)
1658 done = 1
1659 for i, result in enumerate(results):
1660 if results[i] is None:
1661 lengths_pt[i] -= arclen
1662 if lengths_pt[i] < 0 or normsubpathindex == len(self.normsubpaths) - 1:
1663 # overwrite the results until the length has become negative
1664 results[i] = normpathparam(self, normsubpathindex, params[i])
1665 done = 0
1666 if done:
1667 break
1669 return results
1671 arclentoparam_pt = _valueorlistmethod(_arclentoparam_pt)
1673 @_valueorlistmethod
1674 def arclentoparam(self, lengths):
1675 """return the param(s) matching the given length(s)"""
1676 return self._arclentoparam_pt([unit.topt(l) for l in lengths])
1678 def _at_pt(self, params):
1679 """return coordinates of normpath in pts at params"""
1680 result = [None] * len(params)
1681 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
1682 for index, point_pt in zip(indices, self.normsubpaths[normsubpathindex].at_pt(params)):
1683 result[index] = point_pt
1684 return result
1686 @_valueorlistmethod
1687 def at_pt(self, params):
1688 """return coordinates of normpath in pts at param(s) or lengths in pts"""
1689 return self._at_pt(self._convertparams(params, self.arclentoparam_pt))
1691 @_valueorlistmethod
1692 def at(self, params):
1693 """return coordinates of normpath at param(s) or arc lengths"""
1694 return [(x_pt * unit.t_pt, y_pt * unit.t_pt)
1695 for x_pt, y_pt in self._at_pt(self._convertparams(params, self.arclentoparam))]
1697 def atbegin_pt(self):
1698 """return coordinates of the beginning of first subpath in normpath in pts"""
1699 if self.normsubpaths:
1700 return self.normsubpaths[0].atbegin_pt()
1701 else:
1702 raise NormpathException("cannot return first point of empty path")
1704 def atbegin(self):
1705 """return coordinates of the beginning of first subpath in normpath"""
1706 x, y = self.atbegin_pt()
1707 return x * unit.t_pt, y * unit.t_pt
1709 def atend_pt(self):
1710 """return coordinates of the end of last subpath in normpath in pts"""
1711 if self.normsubpaths:
1712 return self.normsubpaths[-1].atend_pt()
1713 else:
1714 raise NormpathException("cannot return last point of empty path")
1716 def atend(self):
1717 """return coordinates of the end of last subpath in normpath"""
1718 x, y = self.atend_pt()
1719 return x * unit.t_pt, y * unit.t_pt
1721 def bbox(self):
1722 """return bbox of normpath"""
1723 abbox = bboxmodule.empty()
1724 for normsubpath in self.normsubpaths:
1725 abbox += normsubpath.bbox()
1726 return abbox
1728 def begin(self):
1729 """return param corresponding of the beginning of the normpath"""
1730 if self.normsubpaths:
1731 return normpathparam(self, 0, 0)
1732 else:
1733 raise NormpathException("empty path")
1735 def copy(self):
1736 """return copy of normpath"""
1737 result = normpath()
1738 for normsubpath in self.normsubpaths:
1739 result.append(normsubpath.copy())
1740 return result
1742 def _curvature_pt(self, params):
1743 """return the curvature in 1/pts at params
1745 When the curvature is undefined, the invalid instance is returned."""
1747 result = [None] * len(params)
1748 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
1749 for index, curvature_pt in zip(indices, self.normsubpaths[normsubpathindex].curvature_pt(params)):
1750 result[index] = curvature_pt
1751 return result
1753 @_valueorlistmethod
1754 def curvature_pt(self, params):
1755 """return the curvature in 1/pt at params
1757 The curvature radius is the inverse of the curvature. When the
1758 curvature is undefined, the invalid instance is returned. Note that
1759 this radius can be negative or positive, depending on the sign of the
1760 curvature."""
1762 result = [None] * len(params)
1763 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
1764 for index, curv_pt in zip(indices, self.normsubpaths[normsubpathindex].curvature_pt(params)):
1765 result[index] = curv_pt
1766 return result
1768 def _curveradius_pt(self, params):
1769 """return the curvature radius at params in pts
1771 The curvature radius is the inverse of the curvature. When the
1772 curvature is 0, None is returned. Note that this radius can be negative
1773 or positive, depending on the sign of the curvature."""
1775 result = [None] * len(params)
1776 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
1777 for index, radius_pt in zip(indices, self.normsubpaths[normsubpathindex].curveradius_pt(params)):
1778 result[index] = radius_pt
1779 return result
1781 @_valueorlistmethod
1782 def curveradius_pt(self, params):
1783 """return the curvature radius in pts at param(s) or arc length(s) in pts
1785 The curvature radius is the inverse of the curvature. When the
1786 curvature is 0, None is returned. Note that this radius can be negative
1787 or positive, depending on the sign of the curvature."""
1789 return self._curveradius_pt(self._convertparams(params, self.arclentoparam_pt))
1791 @_valueorlistmethod
1792 def curveradius(self, params):
1793 """return the curvature radius at param(s) or arc length(s)
1795 The curvature radius is the inverse of the curvature. When the
1796 curvature is 0, None is returned. Note that this radius can be negative
1797 or positive, depending on the sign of the curvature."""
1799 result = []
1800 for radius_pt in self._curveradius_pt(self._convertparams(params, self.arclentoparam)):
1801 if radius_pt is not invalid:
1802 result.append(radius_pt * unit.t_pt)
1803 else:
1804 result.append(invalid)
1805 return result
1807 def end(self):
1808 """return param corresponding of the end of the path"""
1809 if self.normsubpaths:
1810 return normpathparam(self, len(self)-1, len(self.normsubpaths[-1]))
1811 else:
1812 raise NormpathException("empty path")
1814 def extend(self, normsubpaths):
1815 """extend path by normsubpaths or pathitems"""
1816 for anormsubpath in normsubpaths:
1817 # use append to properly handle regular path items as well as normsubpaths
1818 self.append(anormsubpath)
1820 def intersect(self, other):
1821 """intersect self with other path
1823 Returns a tuple of lists consisting of the parameter values
1824 of the intersection points of the corresponding normpath.
1826 other = other.normpath()
1828 # here we build up the result
1829 intersections = ([], [])
1831 # Intersect all normsubpaths of self with the normsubpaths of
1832 # other.
1833 for ia, normsubpath_a in enumerate(self.normsubpaths):
1834 for ib, normsubpath_b in enumerate(other.normsubpaths):
1835 for intersection in zip(*normsubpath_a.intersect(normsubpath_b)):
1836 intersections[0].append(normpathparam(self, ia, intersection[0]))
1837 intersections[1].append(normpathparam(other, ib, intersection[1]))
1838 return intersections
1840 def join(self, other):
1841 """join other normsubpath inplace
1843 Both normpaths must contain at least one normsubpath.
1844 The last normsubpath of self will be joined to the first
1845 normsubpath of other.
1847 other = other.normpath()
1849 if not self.normsubpaths:
1850 raise NormpathException("cannot join to empty path")
1851 if not other.normsubpaths:
1852 raise NormpathException("cannot join empty path")
1853 self.normsubpaths[-1].join(other.normsubpaths[0])
1854 self.normsubpaths.extend(other.normsubpaths[1:])
1856 def joined(self, other):
1857 """return joined self and other
1859 Both normpaths must contain at least one normsubpath.
1860 The last normsubpath of self will be joined to the first
1861 normsubpath of other.
1863 result = self.copy()
1864 result.join(other.normpath())
1865 return result
1867 # << operator also designates joining
1868 __lshift__ = joined
1870 def normpath(self):
1871 """return a normpath, i.e. self"""
1872 return self
1874 def _paramtoarclen_pt(self, params):
1875 """return arc lengths in pts matching the given params"""
1876 result = [None] * len(params)
1877 totalarclen_pt = 0
1878 distributeparams = self._distributeparams(params)
1879 for normsubpathindex in range(max(distributeparams.keys()) + 1):
1880 if normsubpathindex in distributeparams:
1881 indices, params = distributeparams[normsubpathindex]
1882 arclens_pt, normsubpatharclen_pt = self.normsubpaths[normsubpathindex]._paramtoarclen_pt(params)
1883 for index, arclen_pt in zip(indices, arclens_pt):
1884 result[index] = totalarclen_pt + arclen_pt
1885 totalarclen_pt += normsubpatharclen_pt
1886 else:
1887 totalarclen_pt += self.normsubpaths[normsubpathindex].arclen_pt()
1888 return result
1890 paramtoarclen_pt = _valueorlistmethod(_paramtoarclen_pt)
1892 @_valueorlistmethod
1893 def paramtoarclen(self, params):
1894 """return arc length(s) matching the given param(s)"""
1895 return [arclen_pt * unit.t_pt for arclen_pt in self._paramtoarclen_pt(params)]
1897 def path(self):
1898 """return path corresponding to normpath"""
1899 from . import path
1900 pathitems = []
1901 for normsubpath in self.normsubpaths:
1902 pathitems.extend(normsubpath.pathitems())
1903 return path.path(*pathitems)
1905 def reversed(self):
1906 """return reversed path"""
1907 nnormpath = normpath()
1908 for i in range(len(self.normsubpaths)):
1909 nnormpath.normsubpaths.append(self.normsubpaths[-(i+1)].reversed())
1910 return nnormpath
1912 def _rotation(self, params):
1913 """return rotation at params"""
1914 result = [None] * len(params)
1915 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
1916 for index, rotation in zip(indices, self.normsubpaths[normsubpathindex].rotation(params)):
1917 result[index] = rotation
1918 return result
1920 @_valueorlistmethod
1921 def rotation_pt(self, params):
1922 """return rotation at param(s) or arc length(s) in pts"""
1923 return self._rotation(self._convertparams(params, self.arclentoparam_pt))
1925 @_valueorlistmethod
1926 def rotation(self, params):
1927 """return rotation at param(s) or arc length(s)"""
1928 return self._rotation(self._convertparams(params, self.arclentoparam))
1930 def _split_pt(self, params):
1931 """split path at params and return list of normpaths"""
1932 if not params:
1933 return [self.copy()]
1935 # instead of distributing the parameters, we need to keep their
1936 # order and collect parameters for splitting of normsubpathitem
1937 # with index collectindex
1938 collectindex = None
1939 for param in params:
1940 if param.normsubpathindex != collectindex:
1941 if collectindex is not None:
1942 # append end point depening on the forthcoming index
1943 if param.normsubpathindex > collectindex:
1944 collectparams.append(len(self.normsubpaths[collectindex]))
1945 else:
1946 collectparams.append(0)
1947 # get segments of the normsubpath and add them to the result
1948 segments = self.normsubpaths[collectindex].segments(collectparams)
1949 result[-1].append(segments[0])
1950 result.extend([normpath([segment]) for segment in segments[1:]])
1951 # add normsubpathitems and first segment parameter to close the
1952 # gap to the forthcoming index
1953 if param.normsubpathindex > collectindex:
1954 for i in range(collectindex+1, param.normsubpathindex):
1955 result[-1].append(self.normsubpaths[i])
1956 collectparams = [0]
1957 else:
1958 for i in range(collectindex-1, param.normsubpathindex, -1):
1959 result[-1].append(self.normsubpaths[i].reversed())
1960 collectparams = [len(self.normsubpaths[param.normsubpathindex])]
1961 else:
1962 result = [normpath(self.normsubpaths[:param.normsubpathindex])]
1963 collectparams = [0]
1964 collectindex = param.normsubpathindex
1965 collectparams.append(param.normsubpathparam)
1966 # add remaining collectparams to the result
1967 collectparams.append(len(self.normsubpaths[collectindex]))
1968 segments = self.normsubpaths[collectindex].segments(collectparams)
1969 result[-1].append(segments[0])
1970 result.extend([normpath([segment]) for segment in segments[1:]])
1971 result[-1].extend(self.normsubpaths[collectindex+1:])
1972 return result
1974 def split_pt(self, params):
1975 """split path at param(s) or arc length(s) in pts and return list of normpaths"""
1976 try:
1977 for param in params:
1978 break
1979 except:
1980 params = [params]
1981 return self._split_pt(self._convertparams(params, self.arclentoparam_pt))
1983 def split(self, params):
1984 """split path at param(s) or arc length(s) and return list of normpaths"""
1985 try:
1986 for param in params:
1987 break
1988 except:
1989 params = [params]
1990 return self._split_pt(self._convertparams(params, self.arclentoparam))
1992 def _tangent(self, params, length_pt):
1993 """return tangent vector of path at params
1995 If length_pt in pts is not None, the tangent vector will be scaled to
1996 the desired length.
1998 from . import path
1999 result = [None] * len(params)
2000 tangenttemplate = path.line_pt(0, 0, length_pt, 0).normpath()
2001 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
2002 for index, atrafo in zip(indices, self.normsubpaths[normsubpathindex].trafo(params)):
2003 if atrafo is invalid:
2004 result[index] = invalid
2005 else:
2006 result[index] = tangenttemplate.transformed(atrafo)
2007 return result
2009 @_valueorlistmethod
2010 def tangent_pt(self, params, length_pt):
2011 """return tangent vector of path at param(s) or arc length(s) in pts
2013 If length in pts is not None, the tangent vector will be scaled to
2014 the desired length.
2016 return self._tangent(self._convertparams(params, self.arclentoparam_pt), length_pt)
2018 @_valueorlistmethod
2019 def tangent(self, params, length=1):
2020 """return tangent vector of path at param(s) or arc length(s)
2022 If length is not None, the tangent vector will be scaled to
2023 the desired length.
2025 return self._tangent(self._convertparams(params, self.arclentoparam), unit.topt(length))
2027 def _trafo(self, params):
2028 """return transformation at params"""
2029 result = [None] * len(params)
2030 for normsubpathindex, (indices, params) in list(self._distributeparams(params).items()):
2031 for index, trafo in zip(indices, self.normsubpaths[normsubpathindex].trafo(params)):
2032 result[index] = trafo
2033 return result
2035 @_valueorlistmethod
2036 def trafo_pt(self, params):
2037 """return transformation at param(s) or arc length(s) in pts"""
2038 return self._trafo(self._convertparams(params, self.arclentoparam_pt))
2040 @_valueorlistmethod
2041 def trafo(self, params):
2042 """return transformation at param(s) or arc length(s)"""
2043 return self._trafo(self._convertparams(params, self.arclentoparam))
2045 def transformed(self, trafo):
2046 """return transformed normpath"""
2047 return normpath([normsubpath.transformed(trafo) for normsubpath in self.normsubpaths])
2049 def outputPS(self, file, writer):
2050 for normsubpath in self.normsubpaths:
2051 normsubpath.outputPS(file, writer)
2053 def outputPDF(self, file, writer):
2054 for normsubpath in self.normsubpaths:
2055 normsubpath.outputPDF(file, writer)