free start pointer
[RRG-proxmark3.git] / armsrc / iso14443a.c
blobe4e745cef86e95226734981fb150f12b6d36e885
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12 #include "iso14443a.h"
14 #include "string.h"
15 #include "proxmark3_arm.h"
16 #include "cmd.h"
17 #include "appmain.h"
18 #include "BigBuf.h"
19 #include "fpgaloader.h"
20 #include "ticks.h"
21 #include "dbprint.h"
22 #include "util.h"
23 #include "util.h"
24 #include "parity.h"
25 #include "mifareutil.h"
26 #include "commonutil.h"
27 #include "crc16.h"
28 #include "protocols.h"
30 #define MAX_ISO14A_TIMEOUT 524288
32 // this timeout is in MS
33 static uint32_t iso14a_timeout;
35 static uint8_t colpos = 0;
37 // the block number for the ISO14443-4 PCB
38 static uint8_t iso14_pcb_blocknum = 0;
41 // ISO14443 timing:
43 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56MHz) cycles
44 #define REQUEST_GUARD_TIME (7000/16 + 1)
45 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
46 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
47 // bool LastCommandWasRequest = false;
50 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
52 // When the PM acts as reader and is receiving tag data, it takes
53 // 3 ticks delay in the AD converter
54 // 16 ticks until the modulation detector completes and sets curbit
55 // 8 ticks until bit_to_arm is assigned from curbit
56 // 8*16 ticks for the transfer from FPGA to ARM
57 // 4*16 ticks until we measure the time
58 // - 8*16 ticks because we measure the time of the previous transfer
59 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
61 // When the PM acts as a reader and is sending, it takes
62 // 4*16 ticks until we can write data to the sending hold register
63 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
64 // 8 ticks until the first transfer starts
65 // 8 ticks later the FPGA samples the data
66 // 1 tick to assign mod_sig_coil
67 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
69 // The FPGA will report its internal sending delay in
70 static uint16_t FpgaSendQueueDelay;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 + 8 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks later the FPGA samples the first data
79 // + 16 ticks until assigned to mod_sig
80 // + 1 tick to assign mod_sig_coil
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime;
104 static uint32_t LastTimeProxToAirStart;
105 static uint32_t LastProxToAirDuration;
107 // CARD TO READER - manchester
108 // Sequence D: 11110000 modulation with subcarrier during first half
109 // Sequence E: 00001111 modulation with subcarrier during second half
110 // Sequence F: 00000000 no modulation with subcarrier
111 // Sequence COLL: 11111111 load modulation over the full bitlength.
112 // Tricks the reader to think that multiple cards answer.
113 // (at least one card with 1 and at least one card with 0)
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
118 #define SEC_D 0xf0
119 #define SEC_E 0x0f
120 #define SEC_F 0x00
121 #define SEC_COLL 0xff
122 #define SEC_X 0x0c
123 #define SEC_Y 0x00
124 #define SEC_Z 0xc0
127 Default HF 14a config is set to:
128 forceanticol = 0 (auto)
129 forcebcc = 0 (expect valid BCC)
130 forcecl2 = 0 (auto)
131 forcecl3 = 0 (auto)
132 forcerats = 0 (auto)
134 static hf14a_config hf14aconfig = { 0, 0, 0, 0, 0 } ;
136 void printHf14aConfig(void) {
137 DbpString(_CYAN_("HF 14a config"));
138 Dbprintf(" [a] Anticol override.... %s%s%s",
139 (hf14aconfig.forceanticol == 0) ? _GREEN_("std") " ( follow standard )" : "",
140 (hf14aconfig.forceanticol == 1) ? _RED_("force") " ( always do anticol )" : "",
141 (hf14aconfig.forceanticol == 2) ? _RED_("skip") " ( always skip anticol )" : ""
143 Dbprintf(" [b] BCC override........ %s%s%s",
144 (hf14aconfig.forcebcc == 0) ? _GREEN_("std") " ( follow standard )" : "",
145 (hf14aconfig.forcebcc == 1) ? _RED_("fix") " ( fix bad BCC )" : "",
146 (hf14aconfig.forcebcc == 2) ? _RED_("ignore") " ( ignore bad BCC, always use card BCC )" : ""
148 Dbprintf(" [2] CL2 override........ %s%s%s",
149 (hf14aconfig.forcecl2 == 0) ? _GREEN_("std") " ( follow standard )" : "",
150 (hf14aconfig.forcecl2 == 1) ? _RED_("force") " ( always do CL2 )" : "",
151 (hf14aconfig.forcecl2 == 2) ? _RED_("skip") " ( always skip CL2 )" : ""
153 Dbprintf(" [3] CL3 override........ %s%s%s",
154 (hf14aconfig.forcecl3 == 0) ? _GREEN_("std") " ( follow standard )" : "",
155 (hf14aconfig.forcecl3 == 1) ? _RED_("force") " ( always do CL3 )" : "",
156 (hf14aconfig.forcecl3 == 2) ? _RED_("skip") " ( always skip CL3 )" : ""
158 Dbprintf(" [r] RATS override....... %s%s%s",
159 (hf14aconfig.forcerats == 0) ? _GREEN_("std") " ( follow standard )" : "",
160 (hf14aconfig.forcerats == 1) ? _RED_("force") " ( always do RATS )" : "",
161 (hf14aconfig.forcerats == 2) ? _RED_("skip") " () always skip RATS )" : ""
166 * Called from the USB-handler to set the 14a configuration
167 * The 14a config is used for card selection sequence.
169 * Values set to '-1' implies no change
170 * @brief setSamplingConfig
171 * @param sc
173 void setHf14aConfig(hf14a_config *hc) {
175 if ((hc->forceanticol >= 0) && (hc->forceanticol <= 2))
176 hf14aconfig.forceanticol = hc->forceanticol;
177 if ((hc->forcebcc >= 0) && (hc->forcebcc <= 2))
178 hf14aconfig.forcebcc = hc->forcebcc;
179 if ((hc->forcecl2 >= 0) && (hc->forcecl2 <= 2))
180 hf14aconfig.forcecl2 = hc->forcecl2;
181 if ((hc->forcecl3 >= 0) && (hc->forcecl3 <= 2))
182 hf14aconfig.forcecl3 = hc->forcecl3;
183 if ((hc->forcerats >= 0) && (hc->forcerats <= 2))
184 hf14aconfig.forcerats = hc->forcerats;
187 hf14a_config *getHf14aConfig(void) {
188 return &hf14aconfig;
191 void iso14a_set_trigger(bool enable) {
192 g_trigger = enable;
195 void iso14a_set_timeout(uint32_t timeout) {
196 iso14a_timeout = timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER) / 128 + 2;
199 uint32_t iso14a_get_timeout(void) {
200 return iso14a_timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER) / 128 - 2;
203 //-----------------------------------------------------------------------------
204 // Generate the parity value for a byte sequence
205 //-----------------------------------------------------------------------------
206 void GetParity(const uint8_t *pbtCmd, uint16_t len, uint8_t *par) {
207 uint16_t paritybit_cnt = 0;
208 uint16_t paritybyte_cnt = 0;
209 uint8_t parityBits = 0;
211 for (uint16_t i = 0; i < len; i++) {
212 // Generate the parity bits
213 parityBits |= ((oddparity8(pbtCmd[i])) << (7 - paritybit_cnt));
214 if (paritybit_cnt == 7) {
215 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
216 parityBits = 0; // and advance to next Parity Byte
217 paritybyte_cnt++;
218 paritybit_cnt = 0;
219 } else {
220 paritybit_cnt++;
224 // save remaining parity bits
225 par[paritybyte_cnt] = parityBits;
229 //=============================================================================
230 // ISO 14443 Type A - Miller decoder
231 //=============================================================================
232 // Basics:
233 // This decoder is used when the PM3 acts as a tag.
234 // The reader will generate "pauses" by temporarily switching of the field.
235 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
236 // The FPGA does a comparison with a threshold and would deliver e.g.:
237 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
238 // The Miller decoder needs to identify the following sequences:
239 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
240 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
241 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
242 // Note 1: the bitstream may start at any time. We therefore need to sync.
243 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
244 //-----------------------------------------------------------------------------
245 static tUart14a Uart;
247 // Lookup-Table to decide if 4 raw bits are a modulation.
248 // We accept the following:
249 // 0001 - a 3 tick wide pause
250 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
251 // 0111 - a 2 tick wide pause shifted left
252 // 1001 - a 2 tick wide pause shifted right
253 static const bool Mod_Miller_LUT[] = {
254 false, true, false, true, false, false, false, true,
255 false, true, false, false, false, false, false, false
257 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
258 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
260 tUart14a *GetUart14a(void) {
261 return &Uart;
264 void Uart14aReset(void) {
265 Uart.state = STATE_14A_UNSYNCD;
266 Uart.bitCount = 0;
267 Uart.len = 0; // number of decoded data bytes
268 Uart.parityLen = 0; // number of decoded parity bytes
269 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
270 Uart.parityBits = 0; // holds 8 parity bits
271 Uart.startTime = 0;
272 Uart.endTime = 0;
273 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
274 Uart.posCnt = 0;
275 Uart.syncBit = 9999;
278 void Uart14aInit(uint8_t *data, uint8_t *par) {
279 Uart.output = data;
280 Uart.parity = par;
281 Uart14aReset();
284 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
285 RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
286 Uart.fourBits = (Uart.fourBits << 8) | bit;
288 if (Uart.state == STATE_14A_UNSYNCD) { // not yet synced
289 Uart.syncBit = 9999; // not set
291 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
292 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
293 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
295 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
296 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
297 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
298 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
299 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
300 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
301 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
306 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
307 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
308 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
310 if (Uart.syncBit != 9999) { // found a sync bit
311 Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
312 Uart.startTime -= Uart.syncBit;
313 Uart.endTime = Uart.startTime;
314 Uart.state = STATE_14A_START_OF_COMMUNICATION;
316 } else {
318 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
319 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
320 Uart14aReset();
321 } else { // Modulation in first half = Sequence Z = logic "0"
322 if (Uart.state == STATE_14A_MILLER_X) { // error - must not follow after X
323 Uart14aReset();
324 } else {
325 Uart.bitCount++;
326 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
327 Uart.state = STATE_14A_MILLER_Z;
328 Uart.endTime = Uart.startTime + 8 * (9 * Uart.len + Uart.bitCount + 1) - 6;
329 if (Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
330 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
331 Uart.parityBits <<= 1; // make room for the parity bit
332 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
333 Uart.bitCount = 0;
334 Uart.shiftReg = 0;
335 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
336 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
337 Uart.parityBits = 0;
342 } else {
343 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
344 Uart.bitCount++;
345 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
346 Uart.state = STATE_14A_MILLER_X;
347 Uart.endTime = Uart.startTime + 8 * (9 * Uart.len + Uart.bitCount + 1) - 2;
348 if (Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
349 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
350 Uart.parityBits <<= 1; // make room for the new parity bit
351 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
352 Uart.bitCount = 0;
353 Uart.shiftReg = 0;
354 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
355 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
356 Uart.parityBits = 0;
359 } else { // no modulation in both halves - Sequence Y
360 if (Uart.state == STATE_14A_MILLER_Z || Uart.state == STATE_14A_MILLER_Y) { // Y after logic "0" - End of Communication
361 Uart.state = STATE_14A_UNSYNCD;
362 Uart.bitCount--; // last "0" was part of EOC sequence
363 Uart.shiftReg <<= 1; // drop it
364 if (Uart.bitCount > 0) { // if we decoded some bits
365 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
366 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
367 Uart.parityBits <<= 1; // add a (void) parity bit
368 Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align parity bits
369 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
370 return true;
371 } else if (Uart.len & 0x0007) { // there are some parity bits to store
372 Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align remaining parity bits
373 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
375 if (Uart.len) {
376 return true; // we are finished with decoding the raw data sequence
377 } else {
378 Uart14aReset(); // Nothing received - start over
379 return false;
382 if (Uart.state == STATE_14A_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
383 Uart14aReset();
384 } else { // a logic "0"
385 Uart.bitCount++;
386 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
387 Uart.state = STATE_14A_MILLER_Y;
388 if (Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
389 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
390 Uart.parityBits <<= 1; // make room for the parity bit
391 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
392 Uart.bitCount = 0;
393 Uart.shiftReg = 0;
394 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
395 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
396 Uart.parityBits = 0;
403 return false; // not finished yet, need more data
406 //=============================================================================
407 // ISO 14443 Type A - Manchester decoder
408 //=============================================================================
409 // Basics:
410 // This decoder is used when the PM3 acts as a reader.
411 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
412 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
413 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
414 // The Manchester decoder needs to identify the following sequences:
415 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
416 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
417 // 8 ticks unmodulated: Sequence F = end of communication
418 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
419 // Note 1: the bitstream may start at any time. We therefore need to sync.
420 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
421 static tDemod14a Demod;
423 // Lookup-Table to decide if 4 raw bits are a modulation.
424 // We accept three or four "1" in any position
425 static const bool Mod_Manchester_LUT[] = {
426 false, false, false, false, false, false, false, true,
427 false, false, false, true, false, true, true, true
430 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
431 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
433 tDemod14a *GetDemod14a(void) {
434 return &Demod;
436 void Demod14aReset(void) {
437 Demod.state = DEMOD_14A_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
439 Demod.parityLen = 0;
440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xFFFF; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
447 Demod.bitCount = 0;
448 Demod.syncBit = 0xFFFF;
449 Demod.samples = 0;
452 void Demod14aInit(uint8_t *data, uint8_t *par) {
453 Demod.output = data;
454 Demod.parity = par;
455 Demod14aReset();
458 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
459 RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
460 Demod.twoBits = (Demod.twoBits << 8) | bit;
462 if (Demod.state == DEMOD_14A_UNSYNCD) {
464 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
465 if (Demod.twoBits == 0x0000) {
466 Demod.highCnt++;
467 } else {
468 Demod.highCnt = 0;
470 } else {
471 Demod.syncBit = 0xFFFF; // not set
472 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
473 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
474 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
475 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
476 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
477 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
478 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
479 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
480 if (Demod.syncBit != 0xFFFF) {
481 Demod.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
482 Demod.startTime -= Demod.syncBit;
483 Demod.bitCount = offset; // number of decoded data bits
484 Demod.state = DEMOD_14A_MANCHESTER_DATA;
487 } else {
489 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
490 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
491 if (!Demod.collisionPos) {
492 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
494 } // modulation in first half only - Sequence D = 1
495 Demod.bitCount++;
496 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
497 if (Demod.bitCount == 9) { // if we decoded a full byte (including parity)
498 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
499 Demod.parityBits <<= 1; // make room for the parity bit
500 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
501 Demod.bitCount = 0;
502 Demod.shiftReg = 0;
503 if ((Demod.len & 0x0007) == 0) { // every 8 data bytes
504 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
505 Demod.parityBits = 0;
508 Demod.endTime = Demod.startTime + 8 * (9 * Demod.len + Demod.bitCount + 1) - 4;
509 } else { // no modulation in first half
510 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
511 Demod.bitCount++;
512 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
513 if (Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
514 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
515 Demod.parityBits <<= 1; // make room for the new parity bit
516 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
517 Demod.bitCount = 0;
518 Demod.shiftReg = 0;
519 if ((Demod.len & 0x0007) == 0) { // every 8 data bytes
520 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
521 Demod.parityBits = 0;
524 Demod.endTime = Demod.startTime + 8 * (9 * Demod.len + Demod.bitCount + 1);
525 } else { // no modulation in both halves - End of communication
526 if (Demod.bitCount > 0) { // there are some remaining data bits
527 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
528 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
529 Demod.parityBits <<= 1; // add a (void) parity bit
530 Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
531 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
532 return true;
533 } else if (Demod.len & 0x0007) { // there are some parity bits to store
534 Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
535 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
537 if (Demod.len) {
538 return true; // we are finished with decoding the raw data sequence
539 } else { // nothing received. Start over
540 Demod14aReset();
545 return false; // not finished yet, need more data
549 // Thinfilm, Kovio mangels ISO14443A in the way that they don't use start bit nor parity bits.
550 static RAMFUNC int ManchesterDecoding_Thinfilm(uint8_t bit) {
551 Demod.twoBits = (Demod.twoBits << 8) | bit;
553 if (Demod.state == DEMOD_14A_UNSYNCD) {
555 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
556 if (Demod.twoBits == 0x0000) {
557 Demod.highCnt++;
558 } else {
559 Demod.highCnt = 0;
561 } else {
562 Demod.syncBit = 0xFFFF; // not set
563 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
564 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
565 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
566 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
567 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
568 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
569 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
570 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
571 if (Demod.syncBit != 0xFFFF) {
572 Demod.startTime = (GetCountSspClk() & 0xfffffff8);
573 Demod.startTime -= Demod.syncBit;
574 Demod.bitCount = 1; // number of decoded data bits
575 Demod.shiftReg = 1;
576 Demod.state = DEMOD_14A_MANCHESTER_DATA;
579 } else {
581 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
582 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
583 if (!Demod.collisionPos) {
584 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
586 } // modulation in first half only - Sequence D = 1
587 Demod.bitCount++;
588 Demod.shiftReg = (Demod.shiftReg << 1) | 0x1; // in both cases, add a 1 to the shiftreg
589 if (Demod.bitCount == 8) { // if we decoded a full byte
590 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
591 Demod.bitCount = 0;
592 Demod.shiftReg = 0;
594 Demod.endTime = Demod.startTime + 8 * (8 * Demod.len + Demod.bitCount + 1) - 4;
595 } else { // no modulation in first half
596 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
597 Demod.bitCount++;
598 Demod.shiftReg = (Demod.shiftReg << 1); // add a 0 to the shiftreg
599 if (Demod.bitCount >= 8) { // if we decoded a full byte
600 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
601 Demod.bitCount = 0;
602 Demod.shiftReg = 0;
604 Demod.endTime = Demod.startTime + 8 * (8 * Demod.len + Demod.bitCount + 1);
605 } else { // no modulation in both halves - End of communication
606 if (Demod.bitCount > 0) { // there are some remaining data bits
607 Demod.shiftReg <<= (8 - Demod.bitCount); // left align the decoded bits
608 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
609 return true;
611 if (Demod.len) {
612 return true; // we are finished with decoding the raw data sequence
613 } else { // nothing received. Start over
614 Demod14aReset();
619 return false; // not finished yet, need more data
622 //=============================================================================
623 // Finally, a `sniffer' for ISO 14443 Type A
624 // Both sides of communication!
625 //=============================================================================
627 //-----------------------------------------------------------------------------
628 // Record the sequence of commands sent by the reader to the tag, with
629 // triggering so that we start recording at the point that the tag is moved
630 // near the reader.
631 // "hf 14a sniff"
632 //-----------------------------------------------------------------------------
633 void RAMFUNC SniffIso14443a(uint8_t param) {
634 LEDsoff();
635 // param:
636 // bit 0 - trigger from first card answer
637 // bit 1 - trigger from first reader 7-bit request
638 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
640 // Allocate memory from BigBuf for some buffers
641 // free all previous allocations first
642 BigBuf_free();
643 BigBuf_Clear_ext(false);
644 clear_trace();
645 set_tracing(true);
647 // The command (reader -> tag) that we're receiving.
648 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
649 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
651 // The response (tag -> reader) that we're receiving.
652 uint8_t *receivedResp = BigBuf_malloc(MAX_FRAME_SIZE);
653 uint8_t *receivedRespPar = BigBuf_malloc(MAX_PARITY_SIZE);
655 uint8_t previous_data = 0;
656 int maxDataLen = 0, dataLen;
657 bool TagIsActive = false;
658 bool ReaderIsActive = false;
660 // Set up the demodulator for tag -> reader responses.
661 Demod14aInit(receivedResp, receivedRespPar);
663 // Set up the demodulator for the reader -> tag commands
664 Uart14aInit(receivedCmd, receivedCmdPar);
666 Dbprintf("Starting to sniff. Press PM3 Button to stop.");
668 // The DMA buffer, used to stream samples from the FPGA
669 dmabuf8_t *dma = get_dma8();
670 uint8_t *data = dma->buf;
672 // Setup and start DMA.
673 if (!FpgaSetupSscDma((uint8_t *) dma->buf, DMA_BUFFER_SIZE)) {
674 if (DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
675 return;
678 // We won't start recording the frames that we acquire until we trigger;
679 // a good trigger condition to get started is probably when we see a
680 // response from the tag.
681 // triggered == false -- to wait first for card
682 bool triggered = !(param & 0x03);
684 uint32_t rx_samples = 0;
686 // loop and listen
687 while (BUTTON_PRESS() == false) {
688 WDT_HIT();
689 LED_A_ON();
691 register int readBufDataP = data - dma->buf;
692 register int dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
693 if (readBufDataP <= dmaBufDataP)
694 dataLen = dmaBufDataP - readBufDataP;
695 else
696 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
698 // test for length of buffer
699 if (dataLen > maxDataLen) {
700 maxDataLen = dataLen;
701 if (dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
702 Dbprintf("[!] blew circular buffer! | datalen %u", dataLen);
703 break;
706 if (dataLen < 1) continue;
708 // primary buffer was stopped( <-- we lost data!
709 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
710 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dma->buf;
711 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
712 Dbprintf("[-] RxEmpty ERROR | data length %d", dataLen); // temporary
714 // secondary buffer sets as primary, secondary buffer was stopped
715 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
716 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf;
717 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
720 LED_A_OFF();
722 // Need two samples to feed Miller and Manchester-Decoder
723 if (rx_samples & 0x01) {
725 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
726 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
727 if (MillerDecoding(readerdata, (rx_samples - 1) * 4)) {
728 LED_C_ON();
730 // check - if there is a short 7bit request from reader
731 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
733 if (triggered) {
734 if (!LogTrace(receivedCmd,
735 Uart.len,
736 Uart.startTime * 16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
737 Uart.endTime * 16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
738 Uart.parity,
739 true)) break;
741 /* ready to receive another command. */
742 Uart14aReset();
743 /* reset the demod code, which might have been */
744 /* false-triggered by the commands from the reader. */
745 Demod14aReset();
746 LED_B_OFF();
748 ReaderIsActive = (Uart.state != STATE_14A_UNSYNCD);
751 // no need to try decoding tag data if the reader is sending - and we cannot afford the time
752 if (!ReaderIsActive) {
753 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
754 if (ManchesterDecoding(tagdata, 0, (rx_samples - 1) * 4)) {
755 LED_B_ON();
757 if (!LogTrace(receivedResp,
758 Demod.len,
759 Demod.startTime * 16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
760 Demod.endTime * 16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
761 Demod.parity,
762 false)) break;
764 if ((!triggered) && (param & 0x01)) triggered = true;
766 // ready to receive another response.
767 Demod14aReset();
768 // reset the Miller decoder including its (now outdated) input buffer
769 Uart14aReset();
770 //Uart14aInit(receivedCmd, receivedCmdPar);
771 LED_C_OFF();
773 TagIsActive = (Demod.state != DEMOD_14A_UNSYNCD);
777 previous_data = *data;
778 rx_samples++;
779 data++;
780 if (data == dma->buf + DMA_BUFFER_SIZE) {
781 data = dma->buf;
783 } // end main loop
785 FpgaDisableTracing();
787 if (DBGLEVEL >= DBG_ERROR) {
788 Dbprintf("trace len = " _YELLOW_("%d"), BigBuf_get_traceLen());
790 switch_off();
793 //-----------------------------------------------------------------------------
794 // Prepare tag messages
795 //-----------------------------------------------------------------------------
796 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par, bool collision) {
798 tosend_reset();
800 tosend_t *ts = get_tosend();
802 // Correction bit, might be removed when not needed
803 tosend_stuffbit(0);
804 tosend_stuffbit(0);
805 tosend_stuffbit(0);
806 tosend_stuffbit(0);
807 tosend_stuffbit(1); // <-----
808 tosend_stuffbit(0);
809 tosend_stuffbit(0);
810 tosend_stuffbit(0);
812 // Send startbit
813 ts->buf[++ts->max] = SEC_D;
814 LastProxToAirDuration = 8 * ts->max - 4;
816 for (uint16_t i = 0; i < len; i++) {
817 uint8_t b = cmd[i];
819 // Data bits
820 for (uint16_t j = 0; j < 8; j++) {
821 if (collision) {
822 ts->buf[++ts->max] = SEC_COLL;
823 } else {
824 if (b & 1) {
825 ts->buf[++ts->max] = SEC_D;
826 } else {
827 ts->buf[++ts->max] = SEC_E;
829 b >>= 1;
833 if (collision) {
834 ts->buf[++ts->max] = SEC_COLL;
835 LastProxToAirDuration = 8 * ts->max;
836 } else {
837 // Get the parity bit
838 if (par[i >> 3] & (0x80 >> (i & 0x0007))) {
839 ts->buf[++ts->max] = SEC_D;
840 LastProxToAirDuration = 8 * ts->max - 4;
841 } else {
842 ts->buf[++ts->max] = SEC_E;
843 LastProxToAirDuration = 8 * ts->max;
848 // Send stopbit
849 ts->buf[++ts->max] = SEC_F;
851 // Convert from last byte pos to length
852 ts->max++;
855 static void CodeIso14443aAsTagEx(const uint8_t *cmd, uint16_t len, bool collision) {
856 uint8_t par[MAX_PARITY_SIZE] = {0};
857 GetParity(cmd, len, par);
858 CodeIso14443aAsTagPar(cmd, len, par, collision);
860 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) {
861 CodeIso14443aAsTagEx(cmd, len, false);
864 static void Code4bitAnswerAsTag(uint8_t cmd) {
865 uint8_t b = cmd;
867 tosend_reset();
869 tosend_t *ts = get_tosend();
871 // Correction bit, might be removed when not needed
872 tosend_stuffbit(0);
873 tosend_stuffbit(0);
874 tosend_stuffbit(0);
875 tosend_stuffbit(0);
876 tosend_stuffbit(1); // 1
877 tosend_stuffbit(0);
878 tosend_stuffbit(0);
879 tosend_stuffbit(0);
881 // Send startbit
882 ts->buf[++ts->max] = SEC_D;
884 for (uint8_t i = 0; i < 4; i++) {
885 if (b & 1) {
886 ts->buf[++ts->max] = SEC_D;
887 LastProxToAirDuration = 8 * ts->max - 4;
888 } else {
889 ts->buf[++ts->max] = SEC_E;
890 LastProxToAirDuration = 8 * ts->max;
892 b >>= 1;
895 // Send stopbit
896 ts->buf[++ts->max] = SEC_F;
898 // Convert from last byte pos to length
899 ts->max++;
902 //-----------------------------------------------------------------------------
903 // Wait for commands from reader
904 // stop when button is pressed or client usb connection resets
905 // or return TRUE when command is captured
906 //-----------------------------------------------------------------------------
907 bool GetIso14443aCommandFromReader(uint8_t *received, uint8_t *par, int *len) {
908 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
909 // only, since we are receiving, not transmitting).
910 // Signal field is off with the appropriate LED
911 LED_D_OFF();
912 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
914 // Now run a `software UART` on the stream of incoming samples.
915 Uart14aInit(received, par);
917 // clear RXRDY:
918 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
919 (void)b;
921 uint8_t flip = 0;
922 uint16_t checker = 0;
923 for (;;) {
924 WDT_HIT();
925 if (flip == 3) {
926 if (data_available())
927 return false;
929 flip = 0;
932 if (checker >= 3000) {
933 if (BUTTON_PRESS())
934 return false;
936 flip++;
937 checker = 0;
939 ++checker;
941 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
942 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
943 if (MillerDecoding(b, 0)) {
944 *len = Uart.len;
945 return true;
949 return false;
952 bool prepare_tag_modulation(tag_response_info_t *response_info, size_t max_buffer_size) {
953 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
954 // This will need the following byte array for a modulation sequence
955 // 144 data bits (18 * 8)
956 // 18 parity bits
957 // 2 Start and stop
958 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
959 // 1 just for the case
960 // ----------- +
961 // 166 bytes, since every bit that needs to be send costs us a byte
963 // Prepare the tag modulation bits from the message
964 CodeIso14443aAsTag(response_info->response, response_info->response_n);
966 tosend_t *ts = get_tosend();
968 // Make sure we do not exceed the free buffer space
969 if (ts->max > max_buffer_size) {
970 Dbprintf("ToSend buffer, Out-of-bound, when modulating bits for tag answer:");
971 Dbhexdump(response_info->response_n, response_info->response, false);
972 return false;
975 // Copy the byte array, used for this modulation to the buffer position
976 memcpy(response_info->modulation, ts->buf, ts->max);
978 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
979 response_info->modulation_n = ts->max;
980 response_info->ProxToAirDuration = LastProxToAirDuration;
981 return true;
984 bool prepare_allocated_tag_modulation(tag_response_info_t *response_info, uint8_t **buffer, size_t *max_buffer_size) {
986 tosend_t *ts = get_tosend();
988 // Retrieve and store the current buffer index
989 response_info->modulation = *buffer;
991 // Forward the prepare tag modulation function to the inner function
992 if (prepare_tag_modulation(response_info, *max_buffer_size)) {
993 // Update the free buffer offset and the remaining buffer size
994 *buffer += ts->max;
995 *max_buffer_size -= ts->max;
996 return true;
997 } else {
998 return false;
1002 bool SimulateIso14443aInit(int tagType, int flags, uint8_t *data, tag_response_info_t **responses, uint32_t *cuid, uint32_t counters[3], uint8_t tearings[3], uint8_t *pages) {
1003 uint8_t sak = 0;
1004 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
1005 static uint8_t rATQA[2] = { 0x00 };
1006 // The second response contains the (mandatory) first 24 bits of the UID
1007 static uint8_t rUIDc1[5] = { 0x00 };
1008 // For UID size 7,
1009 static uint8_t rUIDc2[5] = { 0x00 };
1010 // For UID size 10,
1011 static uint8_t rUIDc3[5] = { 0x00 };
1012 // Prepare the mandatory SAK (for 4, 7 and 10 byte UID)
1013 static uint8_t rSAKc1[3] = { 0x00 };
1014 // Prepare the optional second SAK (for 7 and 10 byte UID), drop the cascade bit for 7b
1015 static uint8_t rSAKc2[3] = { 0x00 };
1016 // Prepare the optional third SAK (for 10 byte UID), drop the cascade bit
1017 static uint8_t rSAKc3[3] = { 0x00 };
1018 // dummy ATS (pseudo-ATR), answer to RATS
1019 // static uint8_t rRATS[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 };
1020 static uint8_t rRATS[] = { 0x05, 0x75, 0x80, 0x60, 0x02, 0x00, 0x00 };
1022 // GET_VERSION response for EV1/NTAG
1023 static uint8_t rVERSION[10] = { 0x00 };
1024 // READ_SIG response for EV1/NTAG
1025 static uint8_t rSIGN[34] = { 0x00 };
1026 // PPS response
1027 static uint8_t rPPS[3] = { 0xD0 };
1029 switch (tagType) {
1030 case 1: { // MIFARE Classic 1k
1031 rATQA[0] = 0x04;
1032 sak = 0x08;
1034 break;
1035 case 2: { // MIFARE Ultralight
1036 rATQA[0] = 0x44;
1037 sak = 0x00;
1038 // some first pages of UL/NTAG dump is special data
1039 mfu_dump_t *mfu_header = (mfu_dump_t *) BigBuf_get_EM_addr();
1040 *pages = MAX(mfu_header->pages, 15);
1042 break;
1043 case 3: { // MIFARE DESFire
1044 rATQA[0] = 0x04;
1045 rATQA[1] = 0x03;
1046 sak = 0x20;
1048 break;
1049 case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
1050 rATQA[0] = 0x04;
1051 sak = 0x28;
1053 break;
1054 case 5: { // MIFARE TNP3XXX
1055 rATQA[0] = 0x01;
1056 rATQA[1] = 0x0f;
1057 sak = 0x01;
1059 break;
1060 case 6: { // MIFARE Mini 320b
1061 rATQA[0] = 0x44;
1062 sak = 0x09;
1064 break;
1065 case 7: { // NTAG
1066 rATQA[0] = 0x44;
1067 sak = 0x00;
1068 // some first pages of UL/NTAG dump is special data
1069 mfu_dump_t *mfu_header = (mfu_dump_t *) BigBuf_get_EM_addr();
1070 *pages = MAX(mfu_header->pages, 19);
1072 // counters and tearing flags
1073 // for old dumps with all zero headers, we need to set default values.
1074 for (uint8_t i = 0; i < 3; i++) {
1076 counters[i] = le24toh(mfu_header->counter_tearing[i]);
1078 if (mfu_header->counter_tearing[i][3] != 0x00) {
1079 tearings[i] = mfu_header->counter_tearing[i][3];
1083 // GET_VERSION
1084 if (memcmp(mfu_header->version, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) == 0) {
1085 memcpy(rVERSION, "\x00\x04\x04\x02\x01\x00\x11\x03", 8);
1086 } else {
1087 memcpy(rVERSION, mfu_header->version, 8);
1089 AddCrc14A(rVERSION, sizeof(rVERSION) - 2);
1091 // READ_SIG
1092 memcpy(rSIGN, mfu_header->signature, 32);
1093 AddCrc14A(rSIGN, sizeof(rSIGN) - 2);
1095 break;
1096 case 8: { // MIFARE Classic 4k
1097 rATQA[0] = 0x02;
1098 sak = 0x18;
1100 break;
1101 case 9: { // FM11RF005SH (Shanghai Metro)
1102 rATQA[0] = 0x03;
1103 rATQA[1] = 0x00;
1104 sak = 0x0A;
1106 break;
1107 case 10: { // ST25TA IKEA Rothult
1108 rATQA[0] = 0x42;
1109 rATQA[1] = 0x00;
1110 sak = 0x20;
1112 break;
1114 default: {
1115 if (DBGLEVEL >= DBG_ERROR) Dbprintf("Error: unknown tagtype (%d)", tagType);
1116 return false;
1118 break;
1121 // if uid not supplied then get from emulator memory
1122 if (data[0] == 0 || (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL) {
1123 if (tagType == 2 || tagType == 7) {
1124 uint16_t start = MFU_DUMP_PREFIX_LENGTH;
1125 uint8_t emdata[8];
1126 emlGetMemBt(emdata, start, sizeof(emdata));
1127 memcpy(data, emdata, 3); // uid bytes 0-2
1128 memcpy(data + 3, emdata + 4, 4); // uid bytes 3-7
1129 flags |= FLAG_7B_UID_IN_DATA;
1130 } else {
1131 emlGetMemBt(data, 0, 4);
1132 flags |= FLAG_4B_UID_IN_DATA;
1136 if ((flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
1137 rUIDc1[0] = data[0];
1138 rUIDc1[1] = data[1];
1139 rUIDc1[2] = data[2];
1140 rUIDc1[3] = data[3];
1141 rUIDc1[4] = rUIDc1[0] ^ rUIDc1[1] ^ rUIDc1[2] ^ rUIDc1[3];
1143 // Configure the ATQA and SAK accordingly
1144 rATQA[0] &= 0xBF;
1145 rSAKc1[0] = sak & 0xFB;
1146 AddCrc14A(rSAKc1, sizeof(rSAKc1) - 2);
1148 *cuid = bytes_to_num(data, 4);
1149 } else if ((flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
1150 rUIDc1[0] = 0x88; // Cascade Tag marker
1151 rUIDc1[1] = data[0];
1152 rUIDc1[2] = data[1];
1153 rUIDc1[3] = data[2];
1154 rUIDc1[4] = rUIDc1[0] ^ rUIDc1[1] ^ rUIDc1[2] ^ rUIDc1[3];
1156 rUIDc2[0] = data[3];
1157 rUIDc2[1] = data[4];
1158 rUIDc2[2] = data[5];
1159 rUIDc2[3] = data[6];
1160 rUIDc2[4] = rUIDc2[0] ^ rUIDc2[1] ^ rUIDc2[2] ^ rUIDc2[3];
1162 // Configure the ATQA and SAK accordingly
1163 rATQA[0] &= 0xBF;
1164 rATQA[0] |= 0x40;
1165 rSAKc1[0] = 0x04;
1166 rSAKc2[0] = sak & 0xFB;
1167 AddCrc14A(rSAKc1, sizeof(rSAKc1) - 2);
1168 AddCrc14A(rSAKc2, sizeof(rSAKc2) - 2);
1170 *cuid = bytes_to_num(data + 3, 4);
1171 } else if ((flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
1172 rUIDc1[0] = 0x88; // Cascade Tag marker
1173 rUIDc1[1] = data[0];
1174 rUIDc1[2] = data[1];
1175 rUIDc1[3] = data[2];
1176 rUIDc1[4] = rUIDc1[0] ^ rUIDc1[1] ^ rUIDc1[2] ^ rUIDc1[3];
1178 rUIDc2[0] = 0x88; // Cascade Tag marker
1179 rUIDc2[1] = data[3];
1180 rUIDc2[2] = data[4];
1181 rUIDc2[3] = data[5];
1182 rUIDc2[4] = rUIDc2[0] ^ rUIDc2[1] ^ rUIDc2[2] ^ rUIDc2[3];
1184 rUIDc3[0] = data[6];
1185 rUIDc3[1] = data[7];
1186 rUIDc3[2] = data[8];
1187 rUIDc3[3] = data[9];
1188 rUIDc3[4] = rUIDc3[0] ^ rUIDc3[1] ^ rUIDc3[2] ^ rUIDc3[3];
1190 // Configure the ATQA and SAK accordingly
1191 rATQA[0] &= 0xBF;
1192 rATQA[0] |= 0x80;
1193 rSAKc1[0] = 0x04;
1194 rSAKc2[0] = 0x04;
1195 rSAKc3[0] = sak & 0xFB;
1196 AddCrc14A(rSAKc1, sizeof(rSAKc1) - 2);
1197 AddCrc14A(rSAKc2, sizeof(rSAKc2) - 2);
1198 AddCrc14A(rSAKc3, sizeof(rSAKc3) - 2);
1200 *cuid = bytes_to_num(data + 3 + 3, 4);
1201 } else {
1202 if (DBGLEVEL >= DBG_ERROR) Dbprintf("[-] ERROR: UID size not defined");
1203 return false;
1206 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1207 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1208 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1209 // TC(1) = 0x02: CID supported, NAD not supported
1210 AddCrc14A(rRATS, sizeof(rRATS) - 2);
1212 AddCrc14A(rPPS, sizeof(rPPS) - 2);
1214 static tag_response_info_t responses_init[] = {
1215 { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
1216 { .response = rUIDc1, .response_n = sizeof(rUIDc1) }, // Anticollision cascade1 - respond with uid
1217 { .response = rUIDc2, .response_n = sizeof(rUIDc2) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1218 { .response = rUIDc3, .response_n = sizeof(rUIDc3) }, // Anticollision cascade3 - respond with 3rd half of uid if asked
1219 { .response = rSAKc1, .response_n = sizeof(rSAKc1) }, // Acknowledge select - cascade 1
1220 { .response = rSAKc2, .response_n = sizeof(rSAKc2) }, // Acknowledge select - cascade 2
1221 { .response = rSAKc3, .response_n = sizeof(rSAKc3) }, // Acknowledge select - cascade 3
1222 { .response = rRATS, .response_n = sizeof(rRATS) }, // dummy ATS (pseudo-ATR), answer to RATS
1223 { .response = rVERSION, .response_n = sizeof(rVERSION) }, // EV1/NTAG GET_VERSION response
1224 { .response = rSIGN, .response_n = sizeof(rSIGN) }, // EV1/NTAG READ_SIG response
1225 { .response = rPPS, .response_n = sizeof(rPPS) } // PPS response
1228 // "precompile" responses. There are 11 predefined responses with a total of 80 bytes data to transmit.
1229 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
1230 // 80 * 8 data bits, 80 * 1 parity bits, 11 start bits, 11 stop bits, 11 correction bits
1231 // 80 * 8 + 80 + 11 + 11 + 11 == 753
1232 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 753
1234 uint8_t *free_buffer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1235 // modulation buffer pointer and current buffer free space size
1236 uint8_t *free_buffer_pointer = free_buffer;
1237 size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
1239 // Prepare the responses of the anticollision phase
1240 // there will be not enough time to do this at the moment the reader sends it REQA
1241 for (size_t i = 0; i < ARRAYLEN(responses_init); i++) {
1242 if (prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size) == false) {
1243 BigBuf_free_keep_EM();
1244 if (DBGLEVEL >= DBG_ERROR) Dbprintf("Not enough modulation buffer size, exit after %d elements", i);
1245 return false;
1249 *responses = responses_init;
1251 return true;
1254 //-----------------------------------------------------------------------------
1255 // Main loop of simulated tag: receive commands from reader, decide what
1256 // response to send, and send it.
1257 // 'hf 14a sim'
1258 //-----------------------------------------------------------------------------
1259 void SimulateIso14443aTag(uint8_t tagType, uint8_t flags, uint8_t *data, uint8_t exitAfterNReads) {
1261 #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
1263 tag_response_info_t *responses;
1264 uint32_t cuid = 0;
1265 uint32_t nonce = 0;
1266 uint32_t counters[3] = { 0x00, 0x00, 0x00 };
1267 uint8_t tearings[3] = { 0xbd, 0xbd, 0xbd };
1268 uint8_t pages = 0;
1270 // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
1271 // it should also collect block, keytype.
1272 uint8_t cardAUTHSC = 0;
1273 uint8_t cardAUTHKEY = 0xff; // no authentication
1274 // allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
1276 nonces_t ar_nr_nonces[ATTACK_KEY_COUNT]; // for attack types moebius
1277 memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
1278 uint8_t moebius_count = 0;
1280 // command buffers
1281 uint8_t receivedCmd[MAX_FRAME_SIZE] = { 0x00 };
1282 uint8_t receivedCmdPar[MAX_PARITY_SIZE] = { 0x00 };
1284 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1285 // Such a response is less time critical, so we can prepare them on the fly
1286 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1287 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1288 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE] = {0};
1289 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE] = {0};
1290 tag_response_info_t dynamic_response_info = {
1291 .response = dynamic_response_buffer,
1292 .response_n = 0,
1293 .modulation = dynamic_modulation_buffer,
1294 .modulation_n = 0
1297 // free eventually allocated BigBuf memory but keep Emulator Memory
1298 BigBuf_free_keep_EM();
1300 if (SimulateIso14443aInit(tagType, flags, data, &responses, &cuid, counters, tearings, &pages) == false) {
1301 BigBuf_free_keep_EM();
1302 reply_ng(CMD_HF_MIFARE_SIMULATE, PM3_EINIT, NULL, 0);
1303 return;
1306 // We need to listen to the high-frequency, peak-detected path.
1307 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1309 iso14a_set_timeout(201400); // 106 * 19ms default *100?
1311 int len = 0;
1313 // To control where we are in the protocol
1314 #define ORDER_NONE 0
1315 //#define ORDER_REQA 1
1316 //#define ORDER_SELECT_ALL_CL1 2
1317 //#define ORDER_SELECT_CL1 3
1318 #define ORDER_HALTED 5
1319 #define ORDER_WUPA 6
1320 #define ORDER_AUTH 7
1321 //#define ORDER_SELECT_ALL_CL2 20
1322 //#define ORDER_SELECT_CL2 25
1323 //#define ORDER_SELECT_ALL_CL3 30
1324 //#define ORDER_SELECT_CL3 35
1325 #define ORDER_EV1_COMP_WRITE 40
1326 //#define ORDER_RATS 70
1328 uint8_t order = ORDER_NONE;
1329 int retval = PM3_SUCCESS;
1331 // Just to allow some checks
1332 int happened = 0;
1333 int happened2 = 0;
1334 int cmdsRecvd = 0;
1335 uint32_t numReads = 0; //Counts numer of times reader reads a block
1337 // compatible write block number
1338 uint8_t wrblock = 0;
1340 bool odd_reply = true;
1342 clear_trace();
1343 set_tracing(true);
1344 LED_A_ON();
1346 // main loop
1347 bool finished = false;
1348 bool button_pushed = BUTTON_PRESS();
1349 while (!button_pushed && !finished) {
1350 WDT_HIT();
1352 tag_response_info_t *p_response = NULL;
1354 // Clean receive command buffer
1355 if (GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len) == false) {
1356 Dbprintf("Emulator stopped. Trace length: %d ", BigBuf_get_traceLen());
1357 retval = PM3_EOPABORTED;
1358 break;
1361 // we need to check "ordered" states before, because received data may be same to any command - is wrong!!!
1362 if (order == ORDER_EV1_COMP_WRITE && len == 18) {
1363 // MIFARE_ULC_COMP_WRITE part 2
1364 // 16 bytes data + 2 bytes crc, only least significant 4 bytes are written
1365 bool isCrcCorrect = CheckCrc14A(receivedCmd, len);
1366 if (isCrcCorrect) {
1367 // first blocks of emu are header
1368 emlSetMem_xt(receivedCmd, wrblock + MFU_DUMP_PREFIX_LENGTH / 4, 1, 4);
1369 // send ACK
1370 EmSend4bit(CARD_ACK);
1371 } else {
1372 // send NACK 0x1 == crc/parity error
1373 EmSend4bit(CARD_NACK_PA);
1375 order = ORDER_NONE; // back to work state
1376 p_response = NULL;
1378 } else if (order == ORDER_AUTH && len == 8) {
1379 // Received {nr] and {ar} (part of authentication)
1380 LogTrace(receivedCmd, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1381 uint32_t nr = bytes_to_num(receivedCmd, 4);
1382 uint32_t ar = bytes_to_num(receivedCmd + 4, 4);
1384 // Collect AR/NR per keytype & sector
1385 if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) {
1387 int8_t index = -1;
1388 int8_t empty = -1;
1389 for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
1390 // find which index to use
1391 if ((cardAUTHSC == ar_nr_nonces[i].sector) && (cardAUTHKEY == ar_nr_nonces[i].keytype))
1392 index = i;
1394 // keep track of empty slots.
1395 if (ar_nr_nonces[i].state == EMPTY)
1396 empty = i;
1398 // if no empty slots. Choose first and overwrite.
1399 if (index == -1) {
1400 if (empty == -1) {
1401 index = 0;
1402 ar_nr_nonces[index].state = EMPTY;
1403 } else {
1404 index = empty;
1408 switch (ar_nr_nonces[index].state) {
1409 case EMPTY: {
1410 // first nonce collect
1411 ar_nr_nonces[index].cuid = cuid;
1412 ar_nr_nonces[index].sector = cardAUTHSC;
1413 ar_nr_nonces[index].keytype = cardAUTHKEY;
1414 ar_nr_nonces[index].nonce = nonce;
1415 ar_nr_nonces[index].nr = nr;
1416 ar_nr_nonces[index].ar = ar;
1417 ar_nr_nonces[index].state = FIRST;
1418 break;
1420 case FIRST : {
1421 // second nonce collect
1422 ar_nr_nonces[index].nonce2 = nonce;
1423 ar_nr_nonces[index].nr2 = nr;
1424 ar_nr_nonces[index].ar2 = ar;
1425 ar_nr_nonces[index].state = SECOND;
1427 // send to client (one struct nonces_t)
1428 reply_ng(CMD_HF_MIFARE_SIMULATE, PM3_SUCCESS, (uint8_t *)&ar_nr_nonces[index], sizeof(nonces_t));
1430 ar_nr_nonces[index].state = EMPTY;
1431 ar_nr_nonces[index].sector = 0;
1432 ar_nr_nonces[index].keytype = 0;
1434 moebius_count++;
1435 break;
1437 default:
1438 break;
1441 order = ORDER_NONE; // back to work state
1442 p_response = NULL;
1444 } else if (receivedCmd[0] == ISO14443A_CMD_REQA && len == 1) { // Received a REQUEST, but in HALTED, skip
1445 odd_reply = !odd_reply;
1446 if (odd_reply)
1447 p_response = &responses[RESP_INDEX_ATQA];
1448 } else if (receivedCmd[0] == ISO14443A_CMD_WUPA && len == 1) { // Received a WAKEUP
1449 p_response = &responses[RESP_INDEX_ATQA];
1450 } else if (receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && len == 2) { // Received request for UID (cascade 1)
1451 p_response = &responses[RESP_INDEX_UIDC1];
1452 } else if (receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && len == 2) { // Received request for UID (cascade 2)
1453 p_response = &responses[RESP_INDEX_UIDC2];
1454 } else if (receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && len == 2) { // Received request for UID (cascade 3)
1455 p_response = &responses[RESP_INDEX_UIDC3];
1456 } else if (receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && len == 9) { // Received a SELECT (cascade 1)
1457 p_response = &responses[RESP_INDEX_SAKC1];
1458 } else if (receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && len == 9) { // Received a SELECT (cascade 2)
1459 p_response = &responses[RESP_INDEX_SAKC2];
1460 } else if (receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && len == 9) { // Received a SELECT (cascade 3)
1461 p_response = &responses[RESP_INDEX_SAKC3];
1462 } else if (receivedCmd[0] == ISO14443A_CMD_PPS) {
1463 p_response = &responses[RESP_INDEX_PPS];
1464 } else if (receivedCmd[0] == ISO14443A_CMD_READBLOCK && len == 4) { // Received a (plain) READ
1465 uint8_t block = receivedCmd[1];
1466 // if Ultralight or NTAG (4 byte blocks)
1467 if (tagType == 7 || tagType == 2) {
1468 if (block > pages) {
1469 // send NACK 0x0 == invalid argument
1470 EmSend4bit(CARD_NACK_IV);
1471 } else {
1472 // first blocks of emu are header
1473 uint16_t start = block * 4 + MFU_DUMP_PREFIX_LENGTH;
1474 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1475 emlGetMemBt(emdata, start, 16);
1476 AddCrc14A(emdata, 16);
1477 EmSendCmd(emdata, sizeof(emdata));
1478 numReads++; // Increment number of times reader requested a block
1480 if (exitAfterNReads > 0 && numReads == exitAfterNReads) {
1481 Dbprintf("[MFUEMUL_WORK] %d reads done, exiting", numReads);
1482 finished = true;
1485 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1486 p_response = NULL;
1487 } else if (tagType == 9 && block == 1) {
1488 // FM11005SH. 16blocks, 4bytes / block.
1489 // block0 = 2byte Customer ID (CID), 2byte Manufacture ID (MID)
1490 // block1 = 4byte UID.
1491 p_response = &responses[RESP_INDEX_UIDC1];
1492 } else { // all other tags (16 byte block tags)
1493 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1494 emlGetMemBt(emdata, block, 16);
1495 AddCrc14A(emdata, 16);
1496 EmSendCmd(emdata, sizeof(emdata));
1497 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1498 p_response = NULL;
1500 } else if (receivedCmd[0] == MIFARE_ULEV1_FASTREAD && len == 5) { // Received a FAST READ (ranged read)
1501 uint8_t block1 = receivedCmd[1];
1502 uint8_t block2 = receivedCmd[2];
1503 if (block1 > pages) {
1504 // send NACK 0x0 == invalid argument
1505 EmSend4bit(CARD_NACK_IV);
1506 } else {
1507 uint8_t emdata[MAX_FRAME_SIZE];
1508 // first blocks of emu are header
1509 int start = block1 * 4 + MFU_DUMP_PREFIX_LENGTH;
1510 len = (block2 - block1 + 1) * 4;
1511 emlGetMemBt(emdata, start, len);
1512 AddCrc14A(emdata, len);
1513 EmSendCmd(emdata, len + 2);
1515 p_response = NULL;
1516 } else if (receivedCmd[0] == MIFARE_ULC_WRITE && len == 8 && (tagType == 2 || tagType == 7)) { // Received a WRITE
1517 // cmd + block + 4 bytes data + 2 bytes crc
1518 if (CheckCrc14A(receivedCmd, len)) {
1519 uint8_t block = receivedCmd[1];
1520 if (block > pages) {
1521 // send NACK 0x0 == invalid argument
1522 EmSend4bit(CARD_NACK_IV);
1523 } else {
1524 // first blocks of emu are header
1525 emlSetMem_xt(&receivedCmd[2], block + MFU_DUMP_PREFIX_LENGTH / 4, 1, 4);
1526 // send ACK
1527 EmSend4bit(CARD_ACK);
1529 } else {
1530 // send NACK 0x1 == crc/parity error
1531 EmSend4bit(CARD_NACK_PA);
1533 p_response = NULL;
1534 } else if (receivedCmd[0] == MIFARE_ULC_COMP_WRITE && len == 4 && (tagType == 2 || tagType == 7)) {
1535 // cmd + block + 2 bytes crc
1536 if (CheckCrc14A(receivedCmd, len)) {
1537 wrblock = receivedCmd[1];
1538 if (wrblock > pages) {
1539 // send NACK 0x0 == invalid argument
1540 EmSend4bit(CARD_NACK_IV);
1541 } else {
1542 // send ACK
1543 EmSend4bit(CARD_ACK);
1544 // go to part 2
1545 order = ORDER_EV1_COMP_WRITE;
1547 } else {
1548 // send NACK 0x1 == crc/parity error
1549 EmSend4bit(CARD_NACK_PA);
1551 p_response = NULL;
1552 } else if (receivedCmd[0] == MIFARE_ULEV1_READSIG && len == 4 && tagType == 7) { // Received a READ SIGNATURE --
1553 p_response = &responses[RESP_INDEX_SIGNATURE];
1554 } else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && len == 4 && tagType == 7) { // Received a READ COUNTER --
1555 uint8_t index = receivedCmd[1];
1556 if (index > 2) {
1557 // send NACK 0x0 == invalid argument
1558 EmSend4bit(CARD_NACK_IV);
1559 } else {
1560 uint8_t cmd[] = {0x00, 0x00, 0x00, 0x14, 0xa5};
1561 htole24(counters[index], cmd);
1562 AddCrc14A(cmd, sizeof(cmd) - 2);
1563 EmSendCmd(cmd, sizeof(cmd));
1565 p_response = NULL;
1566 } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && len == 8 && tagType == 7) { // Received a INC COUNTER --
1567 uint8_t index = receivedCmd[1];
1568 if (index > 2) {
1569 // send NACK 0x0 == invalid argument
1570 EmSend4bit(CARD_NACK_IV);
1571 } else {
1572 uint32_t val = le24toh(receivedCmd + 2) + counters[index];
1573 // if new value + old value is bigger 24bits, fail
1574 if (val > 0xFFFFFF) {
1575 // send NACK 0x4 == counter overflow
1576 EmSend4bit(CARD_NACK_NA);
1577 } else {
1578 counters[index] = val;
1579 // send ACK
1580 EmSend4bit(CARD_ACK);
1583 p_response = NULL;
1584 } else if (receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && len == 4 && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1585 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1586 uint8_t index = receivedCmd[1];
1587 if (index > 2) {
1588 // send NACK 0x0 == invalid argument
1589 EmSend4bit(CARD_NACK_IV);
1590 } else {
1591 uint8_t cmd[3];
1592 cmd[0] = tearings[index];
1593 AddCrc14A(cmd, sizeof(cmd) - 2);
1594 EmSendCmd(cmd, sizeof(cmd));
1596 p_response = NULL;
1597 } else if (receivedCmd[0] == ISO14443A_CMD_HALT && len == 4) { // Received a HALT
1598 LogTrace(receivedCmd, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1599 p_response = NULL;
1600 order = ORDER_HALTED;
1601 } else if (receivedCmd[0] == MIFARE_ULEV1_VERSION && len == 3 && (tagType == 2 || tagType == 7)) {
1602 p_response = &responses[RESP_INDEX_VERSION];
1603 } else if ((receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) && len == 4 && tagType != 2 && tagType != 7) { // Received an authentication request
1604 cardAUTHKEY = receivedCmd[0] - 0x60;
1605 cardAUTHSC = receivedCmd[1] / 4; // received block num
1607 // incease nonce at AUTH requests. this is time consuming.
1608 nonce = prng_successor(GetTickCount(), 32);
1609 num_to_bytes(nonce, 4, dynamic_response_info.response);
1610 dynamic_response_info.response_n = 4;
1612 prepare_tag_modulation(&dynamic_response_info, DYNAMIC_MODULATION_BUFFER_SIZE);
1613 p_response = &dynamic_response_info;
1614 order = ORDER_AUTH;
1615 } else if (receivedCmd[0] == ISO14443A_CMD_RATS && len == 4) { // Received a RATS request
1616 if (tagType == 1 || tagType == 2) { // RATS not supported
1617 EmSend4bit(CARD_NACK_NA);
1618 p_response = NULL;
1619 } else {
1620 p_response = &responses[RESP_INDEX_RATS];
1622 } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1) { // ULC authentication, or Desfire Authentication
1623 LogTrace(receivedCmd, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1624 p_response = NULL;
1625 } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH && len == 7 && tagType == 7) { // NTAG / EV-1 authentication
1626 // PWD stored in dump now
1627 uint8_t pwd[4];
1628 emlGetMemBt(pwd, (pages - 1) * 4 + MFU_DUMP_PREFIX_LENGTH, sizeof(pwd));
1629 if (memcmp(receivedCmd + 1, pwd, 4) == 0) {
1630 uint8_t pack[4];
1631 emlGetMemBt(pack, pages * 4 + MFU_DUMP_PREFIX_LENGTH, 2);
1632 if (memcmp(pack, "\x00\x00\x00\x00", 4) == 0) {
1633 memcpy(pack, "\x80\x80\x00\x00", 4);
1635 AddCrc14A(pack, sizeof(pack) - 2);
1636 EmSendCmd(pack, sizeof(pack));
1637 } else {
1638 EmSend4bit(CARD_NACK_NA);
1639 if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Auth attempt: %08x", bytes_to_num(receivedCmd + 1, 4));
1641 p_response = NULL;
1642 } else if (receivedCmd[0] == MIFARE_ULEV1_VCSL && len == 23 && tagType == 7) {
1643 uint8_t cmd[3];
1644 emlGetMemBt(cmd, (pages - 2) * 4 + 1 + MFU_DUMP_PREFIX_LENGTH, 1);
1645 AddCrc14A(cmd, sizeof(cmd) - 2);
1646 EmSendCmd(cmd, sizeof(cmd));
1647 p_response = NULL;
1649 } else {
1651 // clear old dynamic responses
1652 dynamic_response_info.response_n = 0;
1653 dynamic_response_info.modulation_n = 0;
1655 // ST25TA512B IKEA Rothult
1656 if (tagType == 10) {
1657 // we replay 90 00 for all commands but the read bin and we deny the verify cmd.
1659 if (memcmp("\x02\xa2\xb0\x00\x00\x1d\x51\x69", receivedCmd, 8) == 0) {
1660 dynamic_response_info.response[0] = receivedCmd[0];
1661 memcpy(dynamic_response_info.response + 1, "\x00\x1b\xd1\x01\x17\x54\x02\x7a\x68\xa2\x34\xcb\xd0\xe2\x03\xc7\x3e\x62\x0b\xe8\xc6\x3c\x85\x2c\xc5\x31\x31\x31\x32\x90\x00", 31);
1662 dynamic_response_info.response_n = 32;
1663 } else if (memcmp("\x02\x00\x20\x00\x01\x00\x6e\xa9", receivedCmd, 8) == 0) {
1664 dynamic_response_info.response[0] = receivedCmd[0];
1665 dynamic_response_info.response[1] = 0x63;
1666 dynamic_response_info.response[2] = 0x00;
1667 dynamic_response_info.response_n = 3;
1668 } else if (memcmp("\x03\x00\x20\x00\x01\x10", receivedCmd, 6) == 0) {
1669 Dbprintf("Reader sent password: ");
1670 Dbhexdump(16, receivedCmd + 6, 0);
1671 dynamic_response_info.response[0] = receivedCmd[0];
1672 dynamic_response_info.response[1] = 0x90;
1673 dynamic_response_info.response[2] = 0x00;
1674 dynamic_response_info.response_n = 3;
1675 } else {
1676 dynamic_response_info.response[0] = receivedCmd[0];
1677 dynamic_response_info.response[1] = 0x90;
1678 dynamic_response_info.response[2] = 0x00;
1679 dynamic_response_info.response_n = 3;
1681 } else {
1683 // Check for ISO 14443A-4 compliant commands, look at left nibble
1684 switch (receivedCmd[0]) {
1685 case 0x02:
1686 case 0x03: { // IBlock (command no CID)
1687 dynamic_response_info.response[0] = receivedCmd[0];
1688 dynamic_response_info.response[1] = 0x90;
1689 dynamic_response_info.response[2] = 0x00;
1690 dynamic_response_info.response_n = 3;
1692 break;
1693 case 0x0B:
1694 case 0x0A: { // IBlock (command CID)
1695 dynamic_response_info.response[0] = receivedCmd[0];
1696 dynamic_response_info.response[1] = 0x00;
1697 dynamic_response_info.response[2] = 0x90;
1698 dynamic_response_info.response[3] = 0x00;
1699 dynamic_response_info.response_n = 4;
1701 break;
1703 case 0x1A:
1704 case 0x1B: { // Chaining command
1705 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1706 dynamic_response_info.response_n = 2;
1708 break;
1710 case 0xAA:
1711 case 0xBB: {
1712 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1713 dynamic_response_info.response_n = 2;
1715 break;
1717 case 0xBA: { // ping / pong
1718 dynamic_response_info.response[0] = 0xAB;
1719 dynamic_response_info.response[1] = 0x00;
1720 dynamic_response_info.response_n = 2;
1722 break;
1724 case 0xCA:
1725 case 0xC2: { // Readers sends deselect command
1726 dynamic_response_info.response[0] = 0xCA;
1727 dynamic_response_info.response[1] = 0x00;
1728 dynamic_response_info.response_n = 2;
1730 break;
1732 default: {
1733 // Never seen this command before
1734 LogTrace(receivedCmd, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1735 if (DBGLEVEL >= DBG_DEBUG) {
1736 Dbprintf("Received unknown command (len=%d):", len);
1737 Dbhexdump(len, receivedCmd, false);
1739 // Do not respond
1740 dynamic_response_info.response_n = 0;
1741 order = ORDER_NONE; // back to work state
1743 break;
1747 if (dynamic_response_info.response_n > 0) {
1749 // Copy the CID from the reader query
1750 if (tagType != 10)
1751 dynamic_response_info.response[1] = receivedCmd[1];
1753 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1754 AddCrc14A(dynamic_response_info.response, dynamic_response_info.response_n);
1755 dynamic_response_info.response_n += 2;
1757 if (prepare_tag_modulation(&dynamic_response_info, DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1758 if (DBGLEVEL >= DBG_DEBUG) DbpString("Error preparing tag response");
1759 LogTrace(receivedCmd, Uart.len, Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
1760 break;
1762 p_response = &dynamic_response_info;
1766 // Count number of wakeups received after a halt
1767 // if (order == ORDER_WUPA && lastorder == ORDER_HALTED) { happened++; }
1769 // Count number of other messages after a halt
1770 // if (order != ORDER_WUPA && lastorder == ORDER_HALTED) { happened2++; }
1772 cmdsRecvd++;
1774 // Send response
1775 EmSendPrecompiledCmd(p_response);
1778 switch_off();
1780 set_tracing(false);
1781 BigBuf_free_keep_EM();
1783 if (DBGLEVEL >= DBG_EXTENDED) {
1784 Dbprintf("-[ Wake ups after halt [%d]", happened);
1785 Dbprintf("-[ Messages after halt [%d]", happened2);
1786 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1787 Dbprintf("-[ Num of moebius tries [%d]", moebius_count);
1790 reply_ng(CMD_HF_MIFARE_SIMULATE, retval, NULL, 0);
1793 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1794 // of bits specified in the delay parameter.
1795 static void PrepareDelayedTransfer(uint16_t delay) {
1796 delay &= 0x07;
1797 if (!delay) return;
1799 uint8_t bitmask = 0;
1800 uint8_t bits_shifted = 0;
1802 for (uint16_t i = 0; i < delay; i++)
1803 bitmask |= (0x01 << i);
1805 tosend_t *ts = get_tosend();
1807 ts->buf[ts->max++] = 0x00;
1809 for (uint16_t i = 0; i < ts->max; i++) {
1810 uint8_t bits_to_shift = ts->buf[i] & bitmask;
1811 ts->buf[i] = ts->buf[i] >> delay;
1812 ts->buf[i] = ts->buf[i] | (bits_shifted << (8 - delay));
1813 bits_shifted = bits_to_shift;
1818 //-------------------------------------------------------------------------------------
1819 // Transmit the command (to the tag) that was placed in ToSend[].
1820 // Parameter timing:
1821 // if NULL: transfer at next possible time, taking into account
1822 // request guard time and frame delay time
1823 // if == 0: transfer immediately and return time of transfer
1824 // if != 0: delay transfer until time specified
1825 //-------------------------------------------------------------------------------------
1826 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
1828 if (g_hf_field_active == false) {
1829 Dbprintf("Warning: HF field is off, ignoring TransmitFor14443a command");
1830 return;
1832 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1834 if (timing) {
1835 if (*timing == 0) // Measure time
1836 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1837 else
1838 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1840 if (DBGLEVEL >= DBG_EXTENDED && GetCountSspClk() >= (*timing & 0xfffffff8))
1841 Dbprintf("TransmitFor14443a: Missed timing");
1842 while (GetCountSspClk() < (*timing & 0xfffffff8)) {}; // Delay transfer (multiple of 8 MF clock ticks)
1843 LastTimeProxToAirStart = *timing;
1844 } else {
1846 uint32_t ThisTransferTime = 0;
1847 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1849 while (GetCountSspClk() < ThisTransferTime) {};
1851 LastTimeProxToAirStart = ThisTransferTime;
1854 uint16_t c = 0;
1855 while (c < len) {
1856 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1857 AT91C_BASE_SSC->SSC_THR = cmd[c];
1858 c++;
1862 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1865 //-----------------------------------------------------------------------------
1866 // Prepare reader command (in bits, support short frames) to send to FPGA
1867 //-----------------------------------------------------------------------------
1868 static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *par) {
1869 int last = 0;
1871 tosend_reset();
1872 tosend_t *ts = get_tosend();
1874 // Start of Communication (Seq. Z)
1875 ts->buf[++ts->max] = SEC_Z;
1876 LastProxToAirDuration = 8 * (ts->max + 1) - 6;
1878 size_t bytecount = nbytes(bits);
1879 // Generate send structure for the data bits
1880 for (int i = 0; i < bytecount; i++) {
1881 // Get the current byte to send
1882 uint8_t b = cmd[i];
1883 size_t bitsleft = MIN((bits - (i * 8)), 8);
1884 int j;
1885 for (j = 0; j < bitsleft; j++) {
1886 if (b & 1) {
1887 // Sequence X
1888 ts->buf[++ts->max] = SEC_X;
1889 LastProxToAirDuration = 8 * (ts->max + 1) - 2;
1890 last = 1;
1891 } else {
1892 if (last == 0) {
1893 // Sequence Z
1894 ts->buf[++ts->max] = SEC_Z;
1895 LastProxToAirDuration = 8 * (ts->max + 1) - 6;
1896 } else {
1897 // Sequence Y
1898 ts->buf[++ts->max] = SEC_Y;
1899 last = 0;
1902 b >>= 1;
1905 // Only transmit parity bit if we transmitted a complete byte
1906 if (j == 8 && par != NULL) {
1907 // Get the parity bit
1908 if (par[i >> 3] & (0x80 >> (i & 0x0007))) {
1909 // Sequence X
1910 ts->buf[++ts->max] = SEC_X;
1911 LastProxToAirDuration = 8 * (ts->max + 1) - 2;
1912 last = 1;
1913 } else {
1914 if (last == 0) {
1915 // Sequence Z
1916 ts->buf[++ts->max] = SEC_Z;
1917 LastProxToAirDuration = 8 * (ts->max + 1) - 6;
1918 } else {
1919 // Sequence Y
1920 ts->buf[++ts->max] = SEC_Y;
1921 last = 0;
1927 // End of Communication: Logic 0 followed by Sequence Y
1928 if (last == 0) {
1929 // Sequence Z
1930 ts->buf[++ts->max] = SEC_Z;
1931 LastProxToAirDuration = 8 * (ts->max + 1) - 6;
1932 } else {
1933 // Sequence Y
1934 ts->buf[++ts->max] = SEC_Y;
1936 ts->buf[++ts->max] = SEC_Y;
1938 // Convert to length of command:
1939 ts->max++;
1942 //-----------------------------------------------------------------------------
1943 // Prepare reader command to send to FPGA
1944 //-----------------------------------------------------------------------------
1946 static void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *par) {
1947 CodeIso14443aBitsAsReaderPar(cmd, len * 8, par);
1950 //-----------------------------------------------------------------------------
1951 // Wait for commands from reader
1952 // Stop when button is pressed (return 1) or field was gone (return 2)
1953 // Or return 0 when command is captured
1954 //-----------------------------------------------------------------------------
1955 int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *par) {
1956 *len = 0;
1958 uint32_t timer = 0;
1959 int analogCnt = 0;
1960 int analogAVG = 0;
1962 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1963 // only, since we are receiving, not transmitting).
1964 // Signal field is off with the appropriate LED
1965 LED_D_OFF();
1966 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1968 // Set ADC to read field strength
1969 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1970 AT91C_BASE_ADC->ADC_MR =
1971 ADC_MODE_PRESCALE(63) |
1972 ADC_MODE_STARTUP_TIME(1) |
1973 ADC_MODE_SAMPLE_HOLD_TIME(15);
1975 #if defined RDV4
1976 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_RDV40);
1977 #else
1978 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1979 #endif
1981 // start ADC
1982 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1984 // Now run a 'software UART' on the stream of incoming samples.
1985 Uart14aInit(received, par);
1987 // Clear RXRDY:
1988 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1989 (void)b;
1991 uint16_t check = 0;
1993 for (;;) {
1994 WDT_HIT();
1996 if (check == 1000) {
1997 if (BUTTON_PRESS() || data_available()) {
1998 Dbprintf("----------- " _GREEN_("BREAKING") " ----------");
1999 return 1;
2001 check = 0;
2003 ++check;
2005 // test if the field exists
2006 #if defined RDV4
2007 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_RDV40)) {
2009 analogCnt++;
2011 analogAVG += (AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_RDV40] & 0x3FF);
2013 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
2015 if (analogCnt >= 32) {
2017 if ((MAX_ADC_HF_VOLTAGE_RDV40 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
2019 if (timer == 0) {
2020 timer = GetTickCount();
2021 } else {
2022 // 50ms no field --> card to idle state
2023 if (GetTickCountDelta(timer) > 50) {
2024 return 2;
2027 } else {
2028 timer = 0;
2030 analogCnt = 0;
2031 analogAVG = 0;
2034 #else
2035 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
2037 analogCnt++;
2039 analogAVG += (AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF] & 0x3FF);
2041 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
2043 if (analogCnt >= 32) {
2045 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
2047 if (timer == 0) {
2048 timer = GetTickCount();
2049 } else {
2050 // 50ms no field --> card to idle state
2051 if (GetTickCountDelta(timer) > 50) {
2052 return 2;
2055 } else {
2056 timer = 0;
2058 analogCnt = 0;
2059 analogAVG = 0;
2062 #endif
2064 // receive and test the miller decoding
2065 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
2066 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2067 if (MillerDecoding(b, 0)) {
2068 *len = Uart.len;
2069 return 0;
2075 int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) {
2076 volatile uint8_t b;
2077 uint16_t i = 0;
2078 uint32_t ThisTransferTime;
2079 bool correction_needed;
2081 // Modulate Manchester
2082 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
2084 // Include correction bit if necessary
2085 if (Uart.bitCount == 7) {
2086 // Short tags (7 bits) don't have parity, determine the correct value from MSB
2087 correction_needed = Uart.output[0] & 0x40;
2088 } else {
2089 // The parity bits are left-aligned
2090 correction_needed = Uart.parity[(Uart.len - 1) / 8] & (0x80 >> ((Uart.len - 1) & 7));
2092 // 1236, so correction bit needed
2093 i = (correction_needed) ? 0 : 1;
2095 // clear receiving shift register and holding register
2096 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
2097 b = AT91C_BASE_SSC->SSC_RHR;
2098 (void) b;
2100 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
2101 for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
2102 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
2103 if (AT91C_BASE_SSC->SSC_RHR) break;
2106 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
2108 // Clear TXRDY:
2109 AT91C_BASE_SSC->SSC_THR = SEC_F;
2111 // send cycle
2112 for (; i < respLen;) {
2113 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
2114 AT91C_BASE_SSC->SSC_THR = resp[i++];
2115 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2119 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
2120 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
2121 for (i = 0; i <= (fpga_queued_bits >> 3) + 1;) {
2122 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
2123 AT91C_BASE_SSC->SSC_THR = SEC_F;
2124 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2125 i++;
2128 LastTimeProxToAirStart = ThisTransferTime + (correction_needed ? 8 : 0);
2129 return 0;
2132 int EmSend4bit(uint8_t resp) {
2133 Code4bitAnswerAsTag(resp);
2134 tosend_t *ts = get_tosend();
2135 int res = EmSendCmd14443aRaw(ts->buf, ts->max);
2136 // do the tracing for the previous reader request and this tag answer:
2137 uint8_t par[1] = {0x00};
2138 GetParity(&resp, 1, par);
2139 EmLogTrace(Uart.output,
2140 Uart.len,
2141 Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG,
2142 Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG,
2143 Uart.parity,
2144 &resp,
2146 LastTimeProxToAirStart * 16 + DELAY_ARM2AIR_AS_TAG,
2147 (LastTimeProxToAirStart + LastProxToAirDuration) * 16 + DELAY_ARM2AIR_AS_TAG,
2148 par);
2149 return res;
2151 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par) {
2152 return EmSendCmdParEx(resp, respLen, par, false);
2154 int EmSendCmdParEx(uint8_t *resp, uint16_t respLen, uint8_t *par, bool collision) {
2155 CodeIso14443aAsTagPar(resp, respLen, par, collision);
2156 tosend_t *ts = get_tosend();
2157 int res = EmSendCmd14443aRaw(ts->buf, ts->max);
2159 // do the tracing for the previous reader request and this tag answer:
2160 EmLogTrace(Uart.output,
2161 Uart.len,
2162 Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG,
2163 Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG,
2164 Uart.parity,
2165 resp,
2166 respLen,
2167 LastTimeProxToAirStart * 16 + DELAY_ARM2AIR_AS_TAG,
2168 (LastTimeProxToAirStart + LastProxToAirDuration) * 16 + DELAY_ARM2AIR_AS_TAG,
2169 par);
2170 return res;
2172 int EmSendCmd(uint8_t *resp, uint16_t respLen) {
2173 return EmSendCmdEx(resp, respLen, false);
2175 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool collision) {
2176 uint8_t par[MAX_PARITY_SIZE] = {0x00};
2177 GetParity(resp, respLen, par);
2178 return EmSendCmdParEx(resp, respLen, par, collision);
2181 int EmSendPrecompiledCmd(tag_response_info_t *p_response) {
2182 if (p_response == NULL) return 0;
2183 int ret = EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n);
2184 // do the tracing for the previous reader request and this tag answer:
2185 uint8_t par[MAX_PARITY_SIZE] = {0x00};
2186 GetParity(p_response->response, p_response->response_n, par);
2188 EmLogTrace(Uart.output,
2189 Uart.len,
2190 Uart.startTime * 16 - DELAY_AIR2ARM_AS_TAG,
2191 Uart.endTime * 16 - DELAY_AIR2ARM_AS_TAG,
2192 Uart.parity,
2193 p_response->response,
2194 p_response->response_n,
2195 LastTimeProxToAirStart * 16 + DELAY_ARM2AIR_AS_TAG,
2196 (LastTimeProxToAirStart + p_response->ProxToAirDuration) * 16 + DELAY_ARM2AIR_AS_TAG,
2197 par);
2198 return ret;
2201 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime,
2202 uint32_t reader_EndTime, uint8_t *reader_Parity, uint8_t *tag_data,
2203 uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) {
2205 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
2206 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
2207 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
2209 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
2210 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
2211 uint16_t exact_fdt = (approx_fdt - 20 + 32) / 64 * 64 + 20;
2212 reader_EndTime = tag_StartTime - exact_fdt;
2213 reader_StartTime = reader_EndTime - reader_modlen;
2215 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, true))
2216 return false;
2217 else
2218 return (!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false));
2222 //-----------------------------------------------------------------------------
2223 // Kovio - Thinfilm barcode. TAG-TALK-FIRST -
2224 // Wait a certain time for tag response
2225 // If a response is captured return TRUE
2226 // If it takes too long return FALSE
2227 //-----------------------------------------------------------------------------
2228 bool GetIso14443aAnswerFromTag_Thinfilm(uint8_t *receivedResponse, uint8_t *received_len) {
2230 if (!g_hf_field_active) {
2231 Dbprintf("Warning: HF field is off, ignoring GetIso14443aAnswerFromTag_Thinfilm command");
2232 return false;
2235 // Set FPGA mode to "reader listen mode", no modulation (listen
2236 // only, since we are receiving, not transmitting).
2237 // Signal field is on with the appropriate LED
2238 LED_D_ON();
2239 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
2241 // Now get the answer from the card
2242 Demod14aInit(receivedResponse, NULL);
2244 // clear RXRDY:
2245 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2246 (void)b;
2248 uint32_t receive_timer = GetTickCount();
2249 for (;;) {
2250 WDT_HIT();
2252 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
2253 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2254 if (ManchesterDecoding_Thinfilm(b)) {
2255 *received_len = Demod.len;
2256 // log
2257 LogTrace(receivedResponse, Demod.len, Demod.startTime * 16 - DELAY_AIR2ARM_AS_READER, Demod.endTime * 16 - DELAY_AIR2ARM_AS_READER, NULL, false);
2258 return true;
2262 if (GetTickCountDelta(receive_timer) > 100)
2263 break;
2265 *received_len = Demod.len;
2266 // log
2267 LogTrace(receivedResponse, Demod.len, Demod.startTime * 16 - DELAY_AIR2ARM_AS_READER, Demod.endTime * 16 - DELAY_AIR2ARM_AS_READER, NULL, false);
2268 return false;
2272 //-----------------------------------------------------------------------------
2273 // Wait a certain time for tag response
2274 // If a response is captured return TRUE
2275 // If it takes too long return FALSE
2276 //-----------------------------------------------------------------------------
2277 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
2278 if (g_hf_field_active == false)
2279 return false;
2281 // Set FPGA mode to "reader listen mode", no modulation (listen
2282 // only, since we are receiving, not transmitting).
2283 // Signal field is on with the appropriate LED
2284 LED_D_ON();
2285 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
2287 // Now get the answer from the card
2288 Demod14aInit(receivedResponse, receivedResponsePar);
2290 // clear RXRDY:
2291 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2292 (void)b;
2294 volatile uint32_t c = 0;
2295 uint32_t timeout = iso14a_get_timeout();
2296 uint32_t receive_timer = GetTickCount();
2297 for (;;) {
2298 WDT_HIT();
2300 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
2301 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2302 if (ManchesterDecoding(b, offset, 0)) {
2303 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER) / 16 + FRAME_DELAY_TIME_PICC_TO_PCD);
2304 return true;
2305 } else if (c++ > timeout && Demod.state == DEMOD_14A_UNSYNCD) {
2306 return false;
2310 // timeout already in ms + 100ms guard time
2311 if (GetTickCountDelta(receive_timer) > timeout + 100)
2312 break;
2314 return false;
2317 void ReaderTransmitBitsPar(uint8_t *frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
2319 CodeIso14443aBitsAsReaderPar(frame, bits, par);
2320 // Send command to tag
2321 tosend_t *ts = get_tosend();
2322 TransmitFor14443a(ts->buf, ts->max, timing);
2323 if (g_trigger) LED_A_ON();
2325 LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart << 4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration) << 4) + DELAY_ARM2AIR_AS_READER, par, true);
2328 void ReaderTransmitPar(uint8_t *frame, uint16_t len, uint8_t *par, uint32_t *timing) {
2329 ReaderTransmitBitsPar(frame, len * 8, par, timing);
2332 static void ReaderTransmitBits(uint8_t *frame, uint16_t len, uint32_t *timing) {
2333 // Generate parity and redirect
2334 uint8_t par[MAX_PARITY_SIZE] = {0x00};
2335 GetParity(frame, len / 8, par);
2336 ReaderTransmitBitsPar(frame, len, par, timing);
2339 void ReaderTransmit(uint8_t *frame, uint16_t len, uint32_t *timing) {
2340 // Generate parity and redirect
2341 uint8_t par[MAX_PARITY_SIZE] = {0x00};
2342 GetParity(frame, len, par);
2343 ReaderTransmitBitsPar(frame, len * 8, par, timing);
2346 static int ReaderReceiveOffset(uint8_t *receivedAnswer, uint16_t offset, uint8_t *par) {
2347 if (!GetIso14443aAnswerFromTag(receivedAnswer, par, offset))
2348 return false;
2349 LogTrace(receivedAnswer, Demod.len, Demod.startTime * 16 - DELAY_AIR2ARM_AS_READER, Demod.endTime * 16 - DELAY_AIR2ARM_AS_READER, par, false);
2350 return Demod.len;
2353 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *par) {
2354 if (!GetIso14443aAnswerFromTag(receivedAnswer, par, 0))
2355 return false;
2356 LogTrace(receivedAnswer, Demod.len, Demod.startTime * 16 - DELAY_AIR2ARM_AS_READER, Demod.endTime * 16 - DELAY_AIR2ARM_AS_READER, par, false);
2357 return Demod.len;
2361 // This function misstreats the ISO 14443a anticollision procedure.
2362 // by fooling the reader there is a collision and forceing the reader to
2363 // increase the uid bytes. The might be an overflow, DoS will occure.
2364 void iso14443a_antifuzz(uint32_t flags) {
2366 // We need to listen to the high-frequency, peak-detected path.
2367 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2369 BigBuf_free_keep_EM();
2370 clear_trace();
2371 set_tracing(true);
2373 int len = 0;
2375 // allocate buffers:
2376 uint8_t *received = BigBuf_malloc(MAX_FRAME_SIZE);
2377 uint8_t *receivedPar = BigBuf_malloc(MAX_PARITY_SIZE);
2378 uint8_t *resp = BigBuf_malloc(20);
2380 memset(received, 0x00, MAX_FRAME_SIZE);
2381 memset(received, 0x00, MAX_PARITY_SIZE);
2382 memset(resp, 0xFF, 20);
2384 LED_A_ON();
2385 for (;;) {
2386 WDT_HIT();
2388 // Clean receive command buffer
2389 if (!GetIso14443aCommandFromReader(received, receivedPar, &len)) {
2390 Dbprintf("Anti-fuzz stopped. Trace length: %d ", BigBuf_get_traceLen());
2391 break;
2393 if (received[0] == ISO14443A_CMD_WUPA || received[0] == ISO14443A_CMD_REQA) {
2394 resp[0] = 0x04;
2395 resp[1] = 0x00;
2397 if ((flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
2398 resp[0] = 0x44;
2401 EmSendCmd(resp, 2);
2402 continue;
2405 // Received request for UID (cascade 1)
2406 //if (received[1] >= 0x20 && received[1] <= 0x57 && received[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) {
2407 if (received[1] >= 0x20 && received[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) {
2408 resp[0] = 0xFF;
2409 resp[1] = 0xFF;
2410 resp[2] = 0xFF;
2411 resp[3] = 0xFF;
2412 resp[4] = resp[0] ^ resp[1] ^ resp[2] ^ resp[3];
2413 colpos = 0;
2415 if ((flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
2416 resp[0] = 0x88;
2417 colpos = 8;
2420 // trigger a faulty/collision response
2421 EmSendCmdEx(resp, 5, true);
2422 if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("ANTICOLL or SELECT %x", received[1]);
2423 LED_D_INV();
2425 continue;
2426 } else if (received[1] == 0x20 && received[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received request for UID (cascade 2)
2427 if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("ANTICOLL or SELECT_2");
2428 } else if (received[1] == 0x70 && received[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received a SELECT (cascade 1)
2429 } else if (received[1] == 0x70 && received[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received a SELECT (cascade 2)
2430 } else {
2431 Dbprintf("unknown command %x", received[0]);
2435 reply_ng(CMD_HF_ISO14443A_ANTIFUZZ, PM3_SUCCESS, NULL, 0);
2436 switch_off();
2437 BigBuf_free_keep_EM();
2440 static void iso14a_set_ATS_times(uint8_t *ats) {
2442 if (ats[0] > 1) { // there is a format byte T0
2443 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
2444 uint8_t tb1;
2445 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
2446 tb1 = ats[3];
2447 } else {
2448 tb1 = ats[2];
2450 uint8_t fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
2451 if (fwi != 15) {
2452 uint32_t fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
2453 iso14a_set_timeout(fwt / (8 * 16));
2455 uint8_t sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
2456 if (sfgi != 0 && sfgi != 15) {
2457 uint32_t sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
2458 NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER) / 16);
2464 static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
2466 #define WUPA_RETRY_TIMEOUT 10 // 10ms
2467 uint8_t wupa[] = { ISO14443A_CMD_WUPA }; // 0x26 - REQA 0x52 - WAKE-UP
2469 uint32_t save_iso14a_timeout = iso14a_get_timeout();
2470 iso14a_set_timeout(1236 / 128 + 1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
2472 uint32_t start_time = GetTickCount();
2473 int len;
2475 // we may need several tries if we did send an unknown command or a wrong authentication before...
2476 do {
2477 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
2478 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
2479 // Receive the ATQA
2480 len = ReaderReceive(resp, resp_par);
2481 } while (len == 0 && GetTickCountDelta(start_time) <= WUPA_RETRY_TIMEOUT);
2483 iso14a_set_timeout(save_iso14a_timeout);
2484 return len;
2487 // performs iso14443a anticollision (optional) and card select procedure
2488 // fills the uid and cuid pointer unless NULL
2489 // fills the card info record unless NULL
2490 // if anticollision is false, then the UID must be provided in uid_ptr[]
2491 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
2492 // requests ATS unless no_rats is true
2493 int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *p_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
2495 uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
2496 uint8_t resp_par[MAX_PARITY_SIZE] = {0};
2498 uint8_t sak; // cascade uid
2499 bool do_cascade = 1;
2500 int cascade_level = 0;
2502 if (p_card) {
2503 p_card->uidlen = 0;
2504 memset(p_card->uid, 0, 10);
2505 p_card->ats_len = 0;
2508 if (!GetATQA(resp, resp_par)) {
2509 return 0;
2512 if (p_card) {
2513 p_card->atqa[0] = resp[0];
2514 p_card->atqa[1] = resp[1];
2517 if (anticollision) {
2518 // clear uid
2519 if (uid_ptr)
2520 memset(uid_ptr, 0, 10);
2523 if (hf14aconfig.forceanticol == 0) {
2524 // check for proprietary anticollision:
2525 if ((resp[0] & 0x1F) == 0) return 3;
2526 } else if (hf14aconfig.forceanticol == 2) {
2527 return 3; // force skipping anticol
2528 } // else force executing
2530 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
2531 // which case we need to make a cascade 2 request and select - this is a long UID
2532 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
2533 for (; do_cascade; cascade_level++) {
2534 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
2535 uint8_t sel_all[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT, 0x20 };
2536 uint8_t sel_uid[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
2537 uint8_t uid_resp[5] = {0}; // UID + original BCC
2538 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
2540 if (anticollision) {
2542 // SELECT_ALL
2543 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
2544 if (!ReaderReceive(resp, resp_par)) {
2545 Dbprintf("Card didn't answer to CL%i select all", cascade_level + 1);
2546 return 0;
2549 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
2550 memset(uid_resp, 0, 5);
2551 uint16_t uid_resp_bits = 0;
2552 uint16_t collision_answer_offset = 0;
2554 // anti-collision-loop:
2555 while (Demod.collisionPos) {
2556 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
2557 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
2558 uint16_t UIDbit = (resp[i / 8] >> (i % 8)) & 0x01;
2559 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
2561 uid_resp[uid_resp_bits / 8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
2562 uid_resp_bits++;
2563 // construct anticollision command:
2564 sel_uid[1] = ((2 + uid_resp_bits / 8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
2565 for (uint16_t i = 0; i <= uid_resp_bits / 8; i++) {
2566 sel_uid[2 + i] = uid_resp[i];
2568 collision_answer_offset = uid_resp_bits % 8;
2569 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
2570 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
2573 // finally, add the last bits and BCC of the UID
2574 for (uint16_t i = collision_answer_offset; i < (Demod.len - 1) * 8; i++, uid_resp_bits++) {
2575 uint16_t UIDbit = (resp[i / 8] >> (i % 8)) & 0x01;
2576 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
2579 } else { // no collision, use the response to SELECT_ALL as current uid
2580 memcpy(uid_resp, resp, 5); // UID + original BCC
2583 } else {
2584 if (cascade_level < num_cascades - 1) {
2585 uid_resp[0] = 0x88;
2586 memcpy(uid_resp + 1, uid_ptr + cascade_level * 3, 3);
2587 } else {
2588 memcpy(uid_resp, uid_ptr + cascade_level * 3, 4);
2591 size_t uid_resp_len = 4;
2593 // calculate crypto UID. Always use last 4 Bytes.
2594 if (cuid_ptr)
2595 *cuid_ptr = bytes_to_num(uid_resp, 4);
2597 // Construct SELECT UID command
2598 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
2600 if (anticollision) {
2601 memcpy(sel_uid + 2, uid_resp, 5); // the UID received during anticollision with original BCC
2602 uint8_t bcc = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate BCC
2603 if (sel_uid[6] != bcc) {
2604 Dbprintf("BCC%d incorrect, got 0x%02x, expected 0x%02x", cascade_level, sel_uid[6], bcc);
2605 if (hf14aconfig.forcebcc == 0) {
2606 Dbprintf("Aborting");
2607 return 0;
2608 } else if (hf14aconfig.forcebcc == 1) {
2609 sel_uid[6] = bcc;
2610 } // else use card BCC
2611 Dbprintf("Using BCC%d=" _YELLOW_("0x%02x") " to perform anticollision", cascade_level, sel_uid[6]);
2613 } else {
2614 memcpy(sel_uid + 2, uid_resp, 4); // the provided UID
2615 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
2618 AddCrc14A(sel_uid, 7); // calculate and add CRC
2619 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
2621 // Receive the SAK
2622 if (!ReaderReceive(resp, resp_par)) {
2623 Dbprintf("Card didn't answer to select");
2624 return 0;
2626 sak = resp[0];
2628 // Test if more parts of the uid are coming
2629 do_cascade = (((sak & 0x04) /* && uid_resp[0] == 0x88 */) > 0);
2630 if (cascade_level == 0) {
2631 if (hf14aconfig.forcecl2 == 2) {
2632 do_cascade = false;
2633 } else if (hf14aconfig.forcecl2 == 1) {
2634 do_cascade = true;
2635 } // else 0==auto
2636 } else if (cascade_level == 1) {
2637 if (hf14aconfig.forcecl3 == 2) {
2638 do_cascade = false;
2639 } else if (hf14aconfig.forcecl3 == 1) {
2640 do_cascade = true;
2641 } // else 0==auto
2643 if (do_cascade) {
2644 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
2645 // http://www.nxp.com/documents/application_note/AN10927.pdf
2646 uid_resp[0] = uid_resp[1];
2647 uid_resp[1] = uid_resp[2];
2648 uid_resp[2] = uid_resp[3];
2649 uid_resp_len = 3;
2652 if (uid_ptr && anticollision)
2653 memcpy(uid_ptr + (cascade_level * 3), uid_resp, uid_resp_len);
2655 if (p_card) {
2656 memcpy(p_card->uid + (cascade_level * 3), uid_resp, uid_resp_len);
2657 p_card->uidlen += uid_resp_len;
2661 if (p_card) {
2662 p_card->sak = sak;
2665 if (hf14aconfig.forcerats == 0) {
2666 // PICC compliant with iso14443a-4 ---> (SAK & 0x20 != 0)
2667 if ((sak & 0x20) == 0) return 2;
2668 } else if (hf14aconfig.forcerats == 2) {
2669 if ((sak & 0x20) != 0) Dbprintf("Skipping RATS according to hf 14a config");
2670 return 2;
2671 } // else force RATS
2673 if ((sak & 0x20) == 0) Dbprintf("Forcing RATS according to hf 14a config");
2675 // RATS, Request for answer to select
2676 if (no_rats == false) {
2677 uint8_t rats[] = { ISO14443A_CMD_RATS, 0x80, 0x00, 0x00 }; // FSD=256, FSDI=8, CID=0
2678 AddCrc14A(rats, 2);
2679 ReaderTransmit(rats, sizeof(rats), NULL);
2680 int len = ReaderReceive(resp, resp_par);
2681 if (len == 0)
2682 return 0;
2684 if (p_card) {
2685 memcpy(p_card->ats, resp, sizeof(p_card->ats));
2686 p_card->ats_len = len;
2689 // reset the PCB block number
2690 iso14_pcb_blocknum = 0;
2692 // set default timeout and delay next transfer based on ATS
2693 iso14a_set_ATS_times(resp);
2695 return 1;
2698 int iso14443a_fast_select_card(uint8_t *uid_ptr, uint8_t num_cascades) {
2699 uint8_t resp[5] = {0}; // theoretically. A usual RATS will be much smaller
2700 uint8_t resp_par[1] = {0};
2701 uint8_t uid_resp[4] = {0};
2703 uint8_t sak = 0x04; // cascade uid
2704 int cascade_level = 0;
2706 if (!GetATQA(resp, resp_par)) {
2707 return 0;
2710 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
2711 // which case we need to make a cascade 2 request and select - this is a long UID
2712 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
2713 for (; sak & 0x04; cascade_level++) {
2714 uint8_t sel_all[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT, 0x20 };
2715 uint8_t sel_uid[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
2716 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
2717 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
2719 if (cascade_level < num_cascades - 1) {
2720 uid_resp[0] = 0x88;
2721 memcpy(uid_resp + 1, uid_ptr + cascade_level * 3, 3);
2722 } else {
2723 memcpy(uid_resp, uid_ptr + cascade_level * 3, 4);
2726 // Construct SELECT UID command
2727 //sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
2728 memcpy(sel_uid + 2, uid_resp, 4); // the UID received during anticollision, or the provided UID
2729 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
2730 AddCrc14A(sel_uid, 7); // calculate and add CRC
2731 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
2733 // Receive the SAK
2734 if (!ReaderReceive(resp, resp_par)) return 0;
2736 sak = resp[0];
2738 // Test if more parts of the uid are coming
2739 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
2740 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
2741 // http://www.nxp.com/documents/application_note/AN10927.pdf
2742 uid_resp[0] = uid_resp[1];
2743 uid_resp[1] = uid_resp[2];
2744 uid_resp[2] = uid_resp[3];
2747 return 1;
2750 void iso14443a_setup(uint8_t fpga_minor_mode) {
2752 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
2753 // Set up the synchronous serial port
2754 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
2755 // connect Demodulated Signal to ADC:
2756 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2758 LED_D_OFF();
2759 // Signal field is on with the appropriate LED
2760 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
2761 LED_D_ON();
2763 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2764 SpinDelay(50);
2766 // Start the timer
2767 StartCountSspClk();
2769 // Prepare the demodulation functions
2770 Demod14aReset();
2771 Uart14aReset();
2772 NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
2773 iso14a_set_timeout(1060); // 106 * 10ms default
2775 g_hf_field_active = true;
2778 /* Peter Fillmore 2015
2779 Added card id field to the function
2780 info from ISO14443A standard
2781 b1 = Block Number
2782 b2 = RFU (always 1)
2783 b3 = depends on block
2784 b4 = Card ID following if set to 1
2785 b5 = depends on block type
2786 b6 = depends on block type
2787 b7,b8 = block type.
2788 Coding of I-BLOCK:
2789 b8 b7 b6 b5 b4 b3 b2 b1
2790 0 0 0 x x x 1 x
2791 b5 = chaining bit
2792 Coding of R-block:
2793 b8 b7 b6 b5 b4 b3 b2 b1
2794 1 0 1 x x 0 1 x
2795 b5 = ACK/NACK
2796 Coding of S-block:
2797 b8 b7 b6 b5 b4 b3 b2 b1
2798 1 1 x x x 0 1 0
2799 b5,b6 = 00 - DESELECT
2800 11 - WTX
2802 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) {
2803 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
2804 uint8_t real_cmd[cmd_len + 4];
2806 if (cmd_len) {
2807 // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
2808 real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
2809 if (send_chaining) {
2810 real_cmd[0] |= 0x10;
2812 // put block number into the PCB
2813 real_cmd[0] |= iso14_pcb_blocknum;
2814 memcpy(real_cmd + 1, cmd, cmd_len);
2815 } else {
2816 // R-block. ACK
2817 real_cmd[0] = 0xA2; // r-block + ACK
2818 real_cmd[0] |= iso14_pcb_blocknum;
2820 AddCrc14A(real_cmd, cmd_len + 1);
2822 ReaderTransmit(real_cmd, cmd_len + 3, NULL);
2824 size_t len = ReaderReceive(data, parity);
2825 uint8_t *data_bytes = (uint8_t *) data;
2827 if (!len) {
2828 return 0; //DATA LINK ERROR
2829 } else {
2830 // S-Block WTX
2831 while (len && ((data_bytes[0] & 0xF2) == 0xF2)) {
2832 uint32_t save_iso14a_timeout = iso14a_get_timeout();
2833 // temporarily increase timeout
2834 iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
2835 // Transmit WTX back
2836 // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
2837 data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
2838 // now need to fix CRC.
2839 AddCrc14A(data_bytes, len - 2);
2840 // transmit S-Block
2841 ReaderTransmit(data_bytes, len, NULL);
2842 // retrieve the result again (with increased timeout)
2843 len = ReaderReceive(data, parity);
2844 data_bytes = data;
2845 // restore timeout
2846 iso14a_set_timeout(save_iso14a_timeout);
2849 // if we received an I- or R(ACK)-Block with a block number equal to the
2850 // current block number, toggle the current block number
2851 if (len >= 3 // PCB+CRC = 3 bytes
2852 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2853 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2854 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) { // equal block numbers
2855 iso14_pcb_blocknum ^= 1;
2858 // if we received I-block with chaining we need to send ACK and receive another block of data
2859 if (res)
2860 *res = data_bytes[0];
2862 // crc check
2863 if (len >= 3 && !CheckCrc14A(data_bytes, len)) {
2864 return -1;
2869 if (len) {
2870 // cut frame byte
2871 len -= 1;
2872 // memmove(data_bytes, data_bytes + 1, len);
2873 for (int i = 0; i < len; i++)
2874 data_bytes[i] = data_bytes[i + 1];
2877 return len;
2880 //-----------------------------------------------------------------------------
2881 // Read an ISO 14443a tag. Send out commands and store answers.
2882 //-----------------------------------------------------------------------------
2883 // arg0 iso_14a flags
2884 // arg1 high :: number of bits, if you want to send 7bits etc
2885 // low :: len of commandbytes
2886 // arg2 timeout
2887 // d.asBytes command bytes to send
2888 void ReaderIso14443a(PacketCommandNG *c) {
2889 iso14a_command_t param = c->oldarg[0];
2890 size_t len = c->oldarg[1] & 0xffff;
2891 size_t lenbits = c->oldarg[1] >> 16;
2892 uint32_t timeout = c->oldarg[2];
2893 uint8_t *cmd = c->data.asBytes;
2894 uint32_t arg0;
2895 uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
2896 uint8_t par[MAX_PARITY_SIZE] = {0x00};
2898 if ((param & ISO14A_CONNECT)) {
2899 iso14_pcb_blocknum = 0;
2900 clear_trace();
2903 set_tracing(true);
2905 if ((param & ISO14A_REQUEST_TRIGGER))
2906 iso14a_set_trigger(true);
2908 if ((param & ISO14A_CONNECT)) {
2909 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2911 // notify client selecting status.
2912 // if failed selecting, turn off antenna and quite.
2913 if (!(param & ISO14A_NO_SELECT)) {
2914 iso14a_card_select_t *card = (iso14a_card_select_t *)buf;
2915 arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS);
2916 FpgaDisableTracing();
2918 reply_mix(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t));
2919 if (arg0 == 0)
2920 goto OUT;
2923 uint32_t save_iso14a_timeout = 0;
2924 if ((param & ISO14A_SET_TIMEOUT)) {
2925 save_iso14a_timeout = iso14a_get_timeout();
2926 iso14a_set_timeout(timeout);
2929 if ((param & ISO14A_APDU)) {
2930 uint8_t res;
2931 arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res);
2932 FpgaDisableTracing();
2934 reply_old(CMD_ACK, arg0, res, 0, buf, sizeof(buf));
2937 if ((param & ISO14A_RAW)) {
2939 if ((param & ISO14A_APPEND_CRC)) {
2940 // Don't append crc on empty bytearray...
2941 if (len > 0) {
2942 if ((param & ISO14A_TOPAZMODE))
2943 AddCrc14B(cmd, len);
2944 else
2945 AddCrc14A(cmd, len);
2947 len += 2;
2948 if (lenbits) lenbits += 16;
2952 if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands)
2953 if ((param & ISO14A_TOPAZMODE)) {
2954 int bits_to_send = lenbits;
2955 uint16_t i = 0;
2956 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2957 bits_to_send -= 7;
2958 while (bits_to_send > 0) {
2959 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2960 bits_to_send -= 8;
2962 } else {
2963 GetParity(cmd, lenbits / 8, par);
2964 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2966 } else { // want to send complete bytes only
2967 if ((param & ISO14A_TOPAZMODE)) {
2968 uint16_t i = 0;
2969 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2970 while (i < len) {
2971 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2973 } else {
2974 ReaderTransmit(cmd, len, NULL); // 8 bits, odd parity
2978 if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
2979 FpgaDisableTracing();
2980 reply_mix(CMD_ACK, 0, 0, 0, NULL, 0);
2981 } else {
2982 arg0 = ReaderReceive(buf, par);
2983 FpgaDisableTracing();
2984 reply_old(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
2988 if ((param & ISO14A_REQUEST_TRIGGER))
2989 iso14a_set_trigger(false);
2991 if ((param & ISO14A_SET_TIMEOUT)) {
2992 iso14a_set_timeout(save_iso14a_timeout);
2995 if ((param & ISO14A_NO_DISCONNECT))
2996 return;
2998 OUT:
2999 hf_field_off();
3000 set_tracing(false);
3003 // Determine the distance between two nonces.
3004 // Assume that the difference is small, but we don't know which is first.
3005 // Therefore try in alternating directions.
3006 static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
3008 if (nt1 == nt2) return 0;
3010 uint32_t nttmp1 = nt1;
3011 uint32_t nttmp2 = nt2;
3013 for (uint16_t i = 1; i < 32768; i++) {
3014 nttmp1 = prng_successor(nttmp1, 1);
3015 if (nttmp1 == nt2) return i;
3017 nttmp2 = prng_successor(nttmp2, 1);
3018 if (nttmp2 == nt1) return -i;
3021 return (-99999); // either nt1 or nt2 are invalid nonces
3025 #define PRNG_SEQUENCE_LENGTH (1 << 16)
3026 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
3027 #define MAX_SYNC_TRIES 32
3029 //-----------------------------------------------------------------------------
3030 // Recover several bits of the cypher stream. This implements (first stages of)
3031 // the algorithm described in "The Dark Side of Security by Obscurity and
3032 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
3033 // (article by Nicolas T. Courtois, 2009)
3034 //-----------------------------------------------------------------------------
3035 void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype) {
3037 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
3039 BigBuf_free();
3040 BigBuf_Clear_ext(false);
3041 clear_trace();
3042 set_tracing(true);
3044 uint8_t mf_auth[] = { keytype, block, 0x00, 0x00 };
3045 uint8_t mf_nr_ar[] = {0, 0, 0, 0, 0, 0, 0, 0};
3046 uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
3047 uint8_t par_list[8] = {0, 0, 0, 0, 0, 0, 0, 0};
3048 uint8_t ks_list[8] = {0, 0, 0, 0, 0, 0, 0, 0};
3049 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
3050 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
3051 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
3052 uint8_t nt_diff = 0;
3054 uint32_t nt = 0, previous_nt = 0, cuid = 0;
3055 uint32_t sync_time = GetCountSspClk() & 0xfffffff8;
3057 int32_t catch_up_cycles = 0;
3058 int32_t last_catch_up = 0;
3059 int32_t isOK = 0;
3061 uint16_t elapsed_prng_sequences = 1;
3062 uint16_t consecutive_resyncs = 0;
3063 uint16_t unexpected_random = 0;
3064 uint16_t sync_tries = 0;
3066 bool have_uid = false;
3067 uint8_t cascade_levels = 0;
3069 // static variables here, is re-used in the next call
3070 static uint32_t nt_attacked = 0;
3071 static int32_t sync_cycles = 0;
3072 static uint8_t par_low = 0;
3073 static uint8_t mf_nr_ar3 = 0;
3075 int return_status = PM3_SUCCESS;
3077 AddCrc14A(mf_auth, 2);
3079 if (first_try) {
3080 sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
3081 nt_attacked = 0;
3082 mf_nr_ar3 = 0;
3083 par_low = 0;
3084 } else {
3085 // we were unsuccessful on a previous call.
3086 // Try another READER nonce (first 3 parity bits remain the same)
3087 mf_nr_ar3++;
3088 mf_nr_ar[3] = mf_nr_ar3;
3089 par[0] = par_low;
3092 LED_C_ON();
3093 uint16_t checkbtn_cnt = 0;
3094 uint16_t i;
3095 for (i = 0; true; ++i) {
3097 bool received_nack = false;
3099 WDT_HIT();
3101 // Test if the action was cancelled
3102 if (checkbtn_cnt == 1000) {
3103 if (BUTTON_PRESS() || data_available()) {
3104 isOK = -1;
3105 return_status = PM3_EOPABORTED;
3106 break;
3108 checkbtn_cnt = 0;
3110 ++checkbtn_cnt;
3112 // this part is from Piwi's faster nonce collecting part in Hardnested.
3113 if (!have_uid) { // need a full select cycle to get the uid first
3114 iso14a_card_select_t card_info;
3115 if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
3116 if (DBGLEVEL >= DBG_INFO) Dbprintf("Mifare: Can't select card (ALL)");
3117 continue;
3119 switch (card_info.uidlen) {
3120 case 4 :
3121 cascade_levels = 1;
3122 break;
3123 case 7 :
3124 cascade_levels = 2;
3125 break;
3126 case 10:
3127 cascade_levels = 3;
3128 break;
3129 default:
3130 break;
3132 have_uid = true;
3133 } else { // no need for anticollision. We can directly select the card
3134 if (!iso14443a_fast_select_card(uid, cascade_levels)) {
3135 if (DBGLEVEL >= DBG_INFO) Dbprintf("Mifare: Can't select card (UID)");
3136 continue;
3140 elapsed_prng_sequences = 1;
3142 // Sending timeslot of ISO14443a frame
3143 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
3144 catch_up_cycles = 0;
3146 #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
3148 // if we missed the sync time already or are about to miss it, advance to the next nonce repeat
3149 while (sync_time < GetCountSspClk() + SYNC_TIME_BUFFER) {
3150 ++elapsed_prng_sequences;
3151 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
3154 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
3155 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
3157 // Receive the (4 Byte) "random" TAG nonce
3158 if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
3159 continue;
3161 previous_nt = nt;
3162 nt = bytes_to_num(receivedAnswer, 4);
3164 // Transmit reader nonce with fake par
3165 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
3167 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
3168 int resp_res = ReaderReceive(receivedAnswer, receivedAnswerPar);
3169 if (resp_res == 1)
3170 received_nack = true;
3171 else if (resp_res == 4) {
3172 // did we get lucky and got our dummykey to be valid?
3173 // however we dont feed key w uid it the prng..
3174 isOK = -6;
3175 break;
3179 // we didn't calibrate our clock yet,
3180 // iceman: has to be calibrated every time.
3181 if (previous_nt && !nt_attacked) {
3183 int nt_distance = dist_nt(previous_nt, nt);
3185 // if no distance between, then we are in sync.
3186 if (nt_distance == 0) {
3187 nt_attacked = nt;
3188 } else {
3189 if (nt_distance == -99999) { // invalid nonce received
3190 unexpected_random++;
3191 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
3192 isOK = -3; // Card has an unpredictable PRNG. Give up
3193 break;
3194 } else {
3195 continue; // continue trying...
3199 if (++sync_tries > MAX_SYNC_TRIES) {
3200 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
3201 break;
3204 sync_cycles = (sync_cycles - nt_distance) / elapsed_prng_sequences;
3206 // no negative sync_cycles
3207 if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH;
3209 // reset sync_cycles
3210 if (sync_cycles > PRNG_SEQUENCE_LENGTH * 2) {
3211 sync_cycles = PRNG_SEQUENCE_LENGTH;
3212 sync_time = GetCountSspClk() & 0xfffffff8;
3215 if (DBGLEVEL >= DBG_EXTENDED)
3216 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
3218 LED_B_OFF();
3219 continue;
3222 LED_B_OFF();
3224 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
3226 catch_up_cycles = -dist_nt(nt_attacked, nt);
3227 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
3228 catch_up_cycles = 0;
3229 continue;
3231 // average?
3232 catch_up_cycles /= elapsed_prng_sequences;
3234 if (catch_up_cycles == last_catch_up) {
3235 consecutive_resyncs++;
3236 } else {
3237 last_catch_up = catch_up_cycles;
3238 consecutive_resyncs = 0;
3241 if (consecutive_resyncs < 3) {
3242 if (DBGLEVEL >= DBG_EXTENDED) {
3243 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
3245 } else {
3246 sync_cycles += catch_up_cycles;
3248 if (DBGLEVEL >= DBG_EXTENDED)
3249 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
3251 last_catch_up = 0;
3252 catch_up_cycles = 0;
3253 consecutive_resyncs = 0;
3255 continue;
3258 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
3259 if (received_nack) {
3260 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
3262 if (nt_diff == 0)
3263 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
3265 par_list[nt_diff] = reflect8(par[0]);
3266 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // xor with NACK value to get keystream
3268 // Test if the information is complete
3269 if (nt_diff == 0x07) {
3270 isOK = 1;
3271 break;
3274 nt_diff = (nt_diff + 1) & 0x07;
3275 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
3276 par[0] = par_low;
3278 } else {
3279 // No NACK.
3280 if (nt_diff == 0 && first_try) {
3281 par[0]++;
3282 if (par[0] == 0) { // tried all 256 possible parities without success. Card doesn't send NACK.
3283 isOK = -2;
3284 break;
3286 } else {
3287 // Why this?
3288 par[0] = ((par[0] & 0x1F) + 1) | par_low;
3292 // reset the resyncs since we got a complete transaction on right time.
3293 consecutive_resyncs = 0;
3294 } // end for loop
3296 mf_nr_ar[3] &= 0x1F;
3298 if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("Number of sent auth requests: %u", i);
3300 FpgaDisableTracing();
3302 struct {
3303 int32_t isOK;
3304 uint8_t cuid[4];
3305 uint8_t nt[4];
3306 uint8_t par_list[8];
3307 uint8_t ks_list[8];
3308 uint8_t nr[4];
3309 uint8_t ar[4];
3310 } PACKED payload;
3312 payload.isOK = isOK;
3313 num_to_bytes(cuid, 4, payload.cuid);
3314 num_to_bytes(nt, 4, payload.nt);
3315 memcpy(payload.par_list, par_list, sizeof(payload.par_list));
3316 memcpy(payload.ks_list, ks_list, sizeof(payload.ks_list));
3317 memcpy(payload.nr, mf_nr_ar, sizeof(payload.nr));
3318 memcpy(payload.ar, mf_nr_ar + 4, sizeof(payload.ar));
3320 reply_ng(CMD_HF_MIFARE_READER, return_status, (uint8_t *)&payload, sizeof(payload));
3322 hf_field_off();
3323 set_tracing(false);
3327 * Mifare Classic NACK-bug detection
3328 * Thanks to @doegox for the feedback and new approaches.
3330 void DetectNACKbug(void) {
3331 uint8_t mf_auth[] = {0x60, 0x00, 0xF5, 0x7B};
3332 uint8_t mf_nr_ar[] = {0, 0, 0, 0, 0, 0, 0, 0};
3333 uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
3334 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
3335 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
3336 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
3338 uint32_t nt = 0, previous_nt = 0, nt_attacked = 0, cuid = 0;
3339 int32_t catch_up_cycles = 0, last_catch_up = 0;
3340 uint8_t cascade_levels = 0, num_nacks = 0, isOK = 0;
3341 uint16_t elapsed_prng_sequences = 1;
3342 uint16_t consecutive_resyncs = 0;
3343 uint16_t unexpected_random = 0;
3344 uint16_t sync_tries = 0;
3345 uint32_t sync_time = 0;
3346 bool have_uid = false;
3348 int32_t status = PM3_SUCCESS;
3350 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
3351 int32_t sync_cycles = PRNG_SEQUENCE_LENGTH;
3353 BigBuf_free();
3354 BigBuf_Clear_ext(false);
3355 clear_trace();
3356 set_tracing(true);
3357 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
3359 sync_time = GetCountSspClk() & 0xfffffff8;
3361 LED_C_ON();
3362 uint16_t checkbtn_cnt = 0;
3364 uint16_t i;
3365 for (i = 1; true; ++i) {
3367 bool received_nack = false;
3369 // Cards always leaks a NACK, no matter the parity
3370 if ((i == 10) && (num_nacks == i - 1)) {
3371 isOK = 2;
3372 break;
3375 WDT_HIT();
3377 // Test if the action was cancelled
3378 if (checkbtn_cnt == 1000) {
3379 if (BUTTON_PRESS() || data_available()) {
3380 status = PM3_EOPABORTED;
3381 break;
3383 checkbtn_cnt = 0;
3385 ++checkbtn_cnt;
3387 // this part is from Piwi's faster nonce collecting part in Hardnested.
3388 if (!have_uid) { // need a full select cycle to get the uid first
3389 iso14a_card_select_t card_info;
3390 if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
3391 if (DBGLEVEL >= DBG_INFO) Dbprintf("Mifare: Can't select card (ALL)");
3392 i = 0;
3393 continue;
3395 switch (card_info.uidlen) {
3396 case 4 :
3397 cascade_levels = 1;
3398 break;
3399 case 7 :
3400 cascade_levels = 2;
3401 break;
3402 case 10:
3403 cascade_levels = 3;
3404 break;
3405 default:
3406 i = 0;
3407 have_uid = false;
3408 continue;
3410 have_uid = true;
3411 } else { // no need for anticollision. We can directly select the card
3412 if (!iso14443a_fast_select_card(uid, cascade_levels)) {
3413 if (DBGLEVEL >= DBG_INFO) Dbprintf("Mifare: Can't select card (UID)");
3414 i = 0;
3415 have_uid = false;
3416 continue;
3420 elapsed_prng_sequences = 1;
3422 // Sending timeslot of ISO14443a frame
3423 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
3424 catch_up_cycles = 0;
3426 // if we missed the sync time already, advance to the next nonce repeat
3427 while (GetCountSspClk() > sync_time) {
3428 ++elapsed_prng_sequences;
3429 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
3432 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
3433 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
3435 // Receive the (4 Byte) "random" TAG nonce
3436 if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
3437 continue;
3439 previous_nt = nt;
3440 nt = bytes_to_num(receivedAnswer, 4);
3442 // Transmit reader nonce with fake par
3443 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
3445 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
3446 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
3447 received_nack = true;
3448 num_nacks++;
3449 // ALWAYS leak Detection. Well, we could be lucky and get a response nack on first try.
3450 if (i == num_nacks) {
3451 continue;
3455 // we didn't calibrate our clock yet,
3456 // iceman: has to be calibrated every time.
3457 if (previous_nt && !nt_attacked) {
3459 int nt_distance = dist_nt(previous_nt, nt);
3461 // if no distance between, then we are in sync.
3462 if (nt_distance == 0) {
3463 nt_attacked = nt;
3464 } else {
3465 if (nt_distance == -99999) { // invalid nonce received
3466 unexpected_random++;
3467 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
3468 // Card has an unpredictable PRNG. Give up
3469 isOK = 98;
3470 break;
3471 } else {
3472 if (sync_cycles <= 0) {
3473 sync_cycles += PRNG_SEQUENCE_LENGTH;
3475 continue;
3479 if (++sync_tries > MAX_SYNC_TRIES) {
3480 isOK = 97; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
3481 break;
3484 sync_cycles = (sync_cycles - nt_distance) / elapsed_prng_sequences;
3486 if (sync_cycles <= 0)
3487 sync_cycles += PRNG_SEQUENCE_LENGTH;
3489 if (sync_cycles > PRNG_SEQUENCE_LENGTH * 2) {
3490 isOK = 96; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
3491 break;
3494 if (DBGLEVEL >= DBG_EXTENDED)
3495 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
3497 continue;
3501 if ((nt != nt_attacked) && nt_attacked) {
3502 // we somehow lost sync. Try to catch up again...
3503 catch_up_cycles = -dist_nt(nt_attacked, nt);
3505 if (catch_up_cycles == 99999) {
3506 // invalid nonce received. Don't resync on that one.
3507 catch_up_cycles = 0;
3508 continue;
3510 // average?
3511 catch_up_cycles /= elapsed_prng_sequences;
3513 if (catch_up_cycles == last_catch_up) {
3514 consecutive_resyncs++;
3515 } else {
3516 last_catch_up = catch_up_cycles;
3517 consecutive_resyncs = 0;
3520 if (consecutive_resyncs < 3) {
3521 if (DBGLEVEL >= DBG_EXTENDED) {
3522 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
3524 } else {
3525 sync_cycles += catch_up_cycles;
3527 if (DBGLEVEL >= DBG_EXTENDED) {
3528 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
3529 Dbprintf("nt [%08x] attacted [%08x]", nt, nt_attacked);
3531 last_catch_up = 0;
3532 catch_up_cycles = 0;
3533 consecutive_resyncs = 0;
3535 continue;
3538 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
3539 if (received_nack)
3540 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
3542 // we are testing all 256 possibilities.
3543 par[0]++;
3545 // tried all 256 possible parities without success.
3546 if (par[0] == 0) {
3547 // did we get one NACK?
3548 if (num_nacks == 1)
3549 isOK = 1;
3550 break;
3553 // reset the resyncs since we got a complete transaction on right time.
3554 consecutive_resyncs = 0;
3555 } // end for loop
3557 // num_nacks = number of nacks recieved. should be only 1. if not its a clone card which always sends NACK (parity == 0) ?
3558 // i = number of authentications sent. Not always 256, since we are trying to sync but close to it.
3559 FpgaDisableTracing();
3561 uint8_t *data = BigBuf_malloc(4);
3562 data[0] = isOK;
3563 data[1] = num_nacks;
3564 num_to_bytes(i, 2, data + 2);
3565 reply_ng(CMD_HF_MIFARE_NACK_DETECT, status, data, 4);
3567 BigBuf_free();
3568 hf_field_off();
3569 set_tracing(false);