1 /*****************************************************************************
4 * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
6 * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
7 * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
8 * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
10 * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
12 *****************************************************************************
14 * This file is part of loclass. It is a reconstructon of the cipher engine
15 * used in iClass, and RFID techology.
17 * The implementation is based on the work performed by
18 * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
19 * Milosch Meriac in the paper "Dismantling IClass".
21 * Copyright (C) 2014 Martin Holst Swende
23 * This is free software: you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License version 2 as published
25 * by the Free Software Foundation, or, at your option, any later version.
27 * This file is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
32 * You should have received a copy of the GNU General Public License
33 * along with loclass. If not, see <http://www.gnu.org/licenses/>.
36 ****************************************************************************/
39 From "Dismantling iclass":
40 This section describes in detail the built-in key diversification algorithm of iClass.
41 Besides the obvious purpose of deriving a card key from a master key, this
42 algorithm intends to circumvent weaknesses in the cipher by preventing the
43 usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
44 reader first encrypts the card identity id with the master key K, using single
45 DES. The resulting ciphertext is then input to a function called hash0 which
46 outputs the diversified key k.
48 k = hash0(DES enc (id, K))
50 Here the DES encryption of id with master key K outputs a cryptogram c
51 of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
52 which is used as input to the hash0 function. This function introduces some
53 obfuscation by performing a number of permutations, complement and modulo
54 operations, see Figure 2.5. Besides that, it checks for and removes patterns like
55 similar key bytes, which could produce a strong bias in the cipher. Finally, the
56 output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
59 #include "optimized_ikeys.h"
64 #include "mbedtls/des.h"
65 #include "optimized_cipherutils.h"
68 0x0F, 0x17, 0x1B, 0x1D, 0x1E, 0x27, 0x2B, 0x2D,
69 0x2E, 0x33, 0x35, 0x39, 0x36, 0x3A, 0x3C, 0x47,
70 0x4B, 0x4D, 0x4E, 0x53, 0x55, 0x56, 0x59, 0x5A,
71 0x5C, 0x63, 0x65, 0x66, 0x69, 0x6A, 0x6C, 0x71,
75 static mbedtls_des_context ctx_enc
;
78 * @brief The key diversification algorithm uses 6-bit bytes.
79 * This implementation uses 64 bit uint to pack seven of them into one
80 * variable. When they are there, they are placed as follows:
81 * XXXX XXXX N0 .... N7, occupying the last 48 bits.
83 * This function picks out one from such a collection
88 static uint8_t getSixBitByte(uint64_t c
, int n
) {
89 return (c
>> (42 - 6 * n
)) & 0x3F;
93 * @brief Puts back a six-bit 'byte' into a uint64_t.
95 * @param z the value to place there
98 static void pushbackSixBitByte(uint64_t *c
, uint8_t z
, int n
) {
99 //0x XXXX YYYY ZZZZ ZZZZ ZZZZ
101 //z0: 1111 1100 0000 0000
103 uint64_t masked
= z
& 0x3F;
104 uint64_t eraser
= 0x3F;
105 masked
<<= 42 - 6 * n
;
106 eraser
<<= 42 - 6 * n
;
117 * @brief Swaps the z-values.
118 * If the input value has format XYZ0Z1...Z7, the output will have the format
119 * XYZ7Z6...Z0 instead
123 static uint64_t swapZvalues(uint64_t c
) {
125 pushbackSixBitByte(&newz
, getSixBitByte(c
, 0), 7);
126 pushbackSixBitByte(&newz
, getSixBitByte(c
, 1), 6);
127 pushbackSixBitByte(&newz
, getSixBitByte(c
, 2), 5);
128 pushbackSixBitByte(&newz
, getSixBitByte(c
, 3), 4);
129 pushbackSixBitByte(&newz
, getSixBitByte(c
, 4), 3);
130 pushbackSixBitByte(&newz
, getSixBitByte(c
, 5), 2);
131 pushbackSixBitByte(&newz
, getSixBitByte(c
, 6), 1);
132 pushbackSixBitByte(&newz
, getSixBitByte(c
, 7), 0);
133 newz
|= (c
& 0xFFFF000000000000);
138 * @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
140 static uint64_t ck(int i
, int j
, uint64_t z
) {
141 if (i
== 1 && j
== -1) {
142 // ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
144 } else if (j
== -1) {
145 // ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
146 return ck(i
- 1, i
- 2, z
);
149 if (getSixBitByte(z
, i
) == getSixBitByte(z
, j
)) {
150 //ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
153 for (c
= 0; c
< 4; c
++) {
154 uint8_t val
= getSixBitByte(z
, c
);
156 pushbackSixBitByte(&newz
, j
, c
);
158 pushbackSixBitByte(&newz
, val
, c
);
160 return ck(i
, j
- 1, newz
);
162 return ck(i
, j
- 1, z
);
168 Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
169 check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
171 where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
173 ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
174 ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
175 ck(i, j, z [0] . . . z [3] ) =
176 ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
177 ck(i, j − 1, z [0] . . . z [3] ), otherwise
182 static uint64_t check(uint64_t z
) {
183 //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
185 // ck(3, 2, z [0] . . . z [3] )
186 uint64_t ck1
= ck(3, 2, z
);
188 // ck(3, 2, z [4] . . . z [7] )
189 uint64_t ck2
= ck(3, 2, z
<< 24);
191 //The ck function will place the values
192 // in the middle of z.
193 ck1
&= 0x00000000FFFFFF000000;
194 ck2
&= 0x00000000FFFFFF000000;
196 return ck1
| ck2
>> 24;
199 static void permute(BitstreamIn
*p_in
, uint64_t z
, int l
, int r
, BitstreamOut
*out
) {
200 if (bitsLeft(p_in
) == 0)
203 bool pn
= tailBit(p_in
);
205 uint8_t zl
= getSixBitByte(z
, l
);
207 push6bits(out
, zl
+ 1);
208 permute(p_in
, z
, l
+ 1, r
, out
);
209 } else { // otherwise
210 uint8_t zr
= getSixBitByte(z
, r
);
213 permute(p_in
, z
, l
, r
+ 1, out
);
219 *Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
220 * hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
221 * z'[i] = (z[i] mod (63-i)) + i i = 0...3
222 * z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
225 * @param k this is where the diversified key is put (should be 8 bytes)
228 void hash0(uint64_t c
, uint8_t k
[8]) {
231 //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
234 // z0-z7 6 bits each : 48 bits
235 uint8_t x
= (c
& 0xFF00000000000000) >> 56;
236 uint8_t y
= (c
& 0x00FF000000000000) >> 48;
239 for (int n
= 0; n
< 4 ; n
++) {
240 uint8_t zn
= getSixBitByte(c
, n
);
241 uint8_t zn4
= getSixBitByte(c
, n
+ 4);
242 uint8_t _zn
= (zn
% (63 - n
)) + n
;
243 uint8_t _zn4
= (zn4
% (64 - n
)) + n
;
244 pushbackSixBitByte(&zP
, _zn
, n
);
245 pushbackSixBitByte(&zP
, _zn4
, n
+ 4);
248 uint64_t zCaret
= check(zP
);
249 uint8_t p
= pi
[x
% 35];
251 if (x
& 1) //Check if x7 is 1
254 BitstreamIn p_in
= { &p
, 8, 0 };
255 uint8_t outbuffer
[] = {0, 0, 0, 0, 0, 0, 0, 0};
256 BitstreamOut out
= {outbuffer
, 0, 0};
257 permute(&p_in
, zCaret
, 0, 4, &out
); //returns 48 bits? or 6 8-bytes
259 //Out is now a buffer containing six-bit bytes, should be 48 bits
261 //Shift z-values down onto the lower segment
263 uint64_t zTilde
= x_bytes_to_num(outbuffer
, sizeof(outbuffer
));
267 for (int i
= 0; i
< 8; i
++) {
268 // the key on index i is first a bit from y
269 // then six bits from z,
274 // First, place yi leftmost in k
275 //k[i] |= (y << i) & 0x80 ;
277 // First, place y(7-i) leftmost in k
278 k
[i
] |= (y
<< (7 - i
)) & 0x80 ;
280 uint8_t zTilde_i
= getSixBitByte(zTilde
, i
);
281 // zTildeI is now on the form 00XXXXXX
282 // with one leftshift, it'll be
284 // So after leftshift, we can OR it into k
285 // However, when doing complement, we need to
286 // again MASK 0XXXXXX0 (0x7E)
289 //Finally, add bit from p or p-mod
290 //Shift bit i into rightmost location (mask only after complement)
291 uint8_t p_i
= p
>> i
& 0x1;
293 if (k
[i
]) { // yi = 1
294 k
[i
] |= ~zTilde_i
& 0x7E;
298 } else { // otherwise
299 k
[i
] |= zTilde_i
& 0x7E;
305 * @brief Performs Elite-class key diversification
310 void diversifyKey(uint8_t *csn
, uint8_t *key
, uint8_t *div_key
) {
311 // Prepare the DES key
312 mbedtls_des_setkey_enc(&ctx_enc
, key
);
314 uint8_t crypted_csn
[8] = {0};
316 // Calculate DES(CSN, KEY)
317 mbedtls_des_crypt_ecb(&ctx_enc
, csn
, crypted_csn
);
319 //Calculate HASH0(DES))
320 uint64_t c_csn
= x_bytes_to_num(crypted_csn
, sizeof(crypted_csn
));
322 hash0(c_csn
, div_key
);