text
[RRG-proxmark3.git] / common / generator.c
blob5918ce7c82201984b766ad9f4618d2f02160acfb
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2019 iceman <iceman at iuse.se>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Generator commands
9 //-----------------------------------------------------------------------------
10 #include "generator.h"
12 #include <stdio.h>
13 #include <unistd.h>
14 #include <stdlib.h>
15 #include <sys/types.h>
16 #include <inttypes.h>
17 #include <string.h>
18 #include "commonutil.h" //BSWAP_16
19 #include "common.h" //BSWAP_32/64
20 #include "util.h"
21 #include "pm3_cmd.h"
22 #include "ui.h"
23 #include "mbedtls/sha1.h"
24 #include "crc16.h" // crc16 ccitt
26 // Implemetation tips:
27 // For each implementation of the algos, I recommend adding a self test for easy "simple unit" tests when Travic CI / Appveyour runs.
28 // See special note for MFC based algos.
30 //------------------------------------
31 // MFU/NTAG PWD/PACK generation stuff
32 // Italian transport system
33 // Amiibo
34 // Lego Dimension
35 // XYZ 3D printing
36 // Vinglock
37 //------------------------------------
38 static void transform_D(uint8_t *ru) {
40 const uint32_t c_D[] = {
41 0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8,
42 0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9,
43 0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79,
44 0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20,
45 0x5728B869, 0x30726D5A
48 //Transform
49 uint8_t i;
50 uint8_t p = 0;
51 uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++];
52 uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++];
53 for (i = 0; i < 12; i += 2) {
54 uint32_t tempA = v1 ^ v2;
55 uint32_t t1 = PM3_ROTL(tempA, v2 & 0x1F) + c_D[p++];
56 uint32_t tempB = v2 ^ t1;
57 uint32_t t2 = PM3_ROTL(tempB, t1 & 0x1F) + c_D[p++];
58 tempA = t1 ^ t2;
59 v1 = PM3_ROTL(tempA, t2 & 0x1F) + c_D[p++];
60 tempB = t2 ^ v1;
61 v2 = PM3_ROTL(tempB, v1 & 0x1F) + c_D[p++];
64 //Re-use ru
65 ru[0] = v1 & 0xFF;
66 ru[1] = (v1 >> 8) & 0xFF;
67 ru[2] = (v1 >> 16) & 0xFF;
68 ru[3] = (v1 >> 24) & 0xFF;
69 ru[4] = v2 & 0xFF;
70 ru[5] = (v2 >> 8) & 0xFF;
71 ru[6] = (v2 >> 16) & 0xFF;
72 ru[7] = (v2 >> 24) & 0xFF;
75 // Transport system (IT) pwd generation algo nickname A.
76 uint32_t ul_ev1_pwdgenA(uint8_t *uid) {
78 uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32;
80 uint32_t xortable[] = {
81 0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3,
82 0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7,
83 0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC,
84 0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0
87 uint8_t entry[] = {0x00, 0x00, 0x00, 0x00};
88 uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
90 num_to_bytes(xortable[pos], 4, entry);
92 pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3];
93 pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4];
94 pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5];
95 pwd[3] = entry[3] ^ uid[6];
97 return (uint32_t)bytes_to_num(pwd, 4);
100 // Amiibo pwd generation algo nickname B. (very simple)
101 uint32_t ul_ev1_pwdgenB(uint8_t *uid) {
103 uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
105 pwd[0] = uid[1] ^ uid[3] ^ 0xAA;
106 pwd[1] = uid[2] ^ uid[4] ^ 0x55;
107 pwd[2] = uid[3] ^ uid[5] ^ 0xAA;
108 pwd[3] = uid[4] ^ uid[6] ^ 0x55;
109 return (uint32_t)bytes_to_num(pwd, 4);
112 // Lego Dimension pwd generation algo nickname C.
113 uint32_t ul_ev1_pwdgenC(uint8_t *uid) {
114 uint32_t pwd = 0;
115 uint32_t base[] = {
116 0xffffffff, 0x28ffffff,
117 0x43202963, 0x7279706f,
118 0x74686769, 0x47454c20,
119 0x3032204f, 0xaaaa3431
122 memcpy(base, uid, 7);
124 for (int i = 0; i < 8; i++) {
125 pwd = base[i] + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd;
127 return BSWAP_32(pwd);
130 // XYZ 3d printing pwd generation algo nickname D.
131 uint32_t ul_ev1_pwdgenD(uint8_t *uid) {
133 uint8_t i;
134 // rotation offset
135 uint8_t r = (uid[1] + uid[3] + uid[5]) & 7;
137 // rotated UID
138 uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
139 for (i = 0; i < 7; i++)
140 ru[(i + r) & 7] = uid[i];
142 transform_D(ru);
144 // offset
145 r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3;
147 // calc key
148 uint32_t pwd = 0;
149 for (i = 0; i < 4; i++)
150 pwd = ru[i + r] + (pwd << 8);
152 return BSWAP_32(pwd);
155 // pack generation for algo 1-3
156 uint16_t ul_ev1_packgenA(uint8_t *uid) {
157 uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8);
158 return pack;
160 uint16_t ul_ev1_packgenB(uint8_t *uid) {
161 return 0x8080;
163 uint16_t ul_ev1_packgenC(uint8_t *uid) {
164 return 0xaa55;
166 uint16_t ul_ev1_packgenD(uint8_t *uid) {
167 uint8_t i;
168 //Rotate
169 uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset
170 uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID
171 for (i = 0; i < 7; i++)
172 ru[(i + r) & 7] = uid[i];
174 transform_D(ru);
176 //Calc pack
177 uint32_t p = 0;
178 for (i = 0; i < 8; i++)
179 p += ru[i] * 13;
181 p ^= 0x5555;
182 return BSWAP_16(p & 0xFFFF);
185 uint32_t ul_ev1_pwdgen_def(uint8_t *uid) {
186 return 0xFFFFFFFF;
188 uint16_t ul_ev1_packgen_def(uint8_t *uid) {
189 return 0x0000;
192 //------------------------------------
193 // MFC key generation stuff
194 // Each algo implementation should offer two key generation functions.
195 // 1. function that returns all keys
196 // 2. function that returns one key, target sector | block
197 //------------------------------------
199 //------------------------------------
200 // MFC keyfile generation stuff
201 //------------------------------------
202 // Vinglock
203 int mfc_algo_ving_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
204 if (sector > 15) return PM3_EINVARG;
205 if (key == NULL) return PM3_EINVARG;
206 *key = 0;
207 return PM3_SUCCESS;
209 int mfc_algo_ving_all(uint8_t *uid, uint8_t *keys) {
210 if (keys == NULL) return PM3_EINVARG;
211 for (int keytype = 0; keytype < 2; keytype++) {
212 for (int sector = 0; sector < 16; sector++) {
213 uint64_t key = 0;
214 mfc_algo_ving_one(uid, sector, keytype, &key);
215 num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
218 return PM3_SUCCESS;
221 // Yale Doorman
222 int mfc_algo_yale_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
223 if (sector > 15) return PM3_EINVARG;
224 if (key == NULL) return PM3_EINVARG;
225 if (keytype > 2) return PM3_EINVARG;
226 *key = 0;
227 return PM3_SUCCESS;
229 int mfc_algo_yale_all(uint8_t *uid, uint8_t *keys) {
230 if (keys == NULL) return PM3_EINVARG;
231 for (int keytype = 0; keytype < 2; keytype++) {
232 for (int sector = 0; sector < 16; sector++) {
233 uint64_t key = 0;
234 mfc_algo_yale_one(uid, sector, keytype, &key);
235 num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
238 return PM3_SUCCESS;
241 // Saflok / Maid UID to key.
242 int mfc_algo_saflok_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
243 if (sector > 15) return PM3_EINVARG;
244 if (key == NULL) return PM3_EINVARG;
245 if (keytype > 2) return PM3_EINVARG;
246 *key = 0;
247 return PM3_SUCCESS;
249 int mfc_algo_saflok_all(uint8_t *uid, uint8_t *keys) {
250 if (keys == NULL) return PM3_EINVARG;
252 for (int keytype = 0; keytype < 2; keytype++) {
253 for (int sector = 0; sector < 16; sector++) {
254 uint64_t key = 0;
255 mfc_algo_saflok_one(uid, sector, keytype, &key);
256 num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
259 return PM3_SUCCESS;
262 // MIZIP algo
263 int mfc_algo_mizip_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
264 if (sector > 4) return PM3_EINVARG;
265 if (key == NULL) return PM3_EINVARG;
266 if (keytype > 2) return PM3_EINVARG;
268 if (sector == 0) {
269 // A
270 if (keytype == 0)
271 *key = 0xA0A1A2A3A4A5U;
272 else // B
273 *key = 0xB4C132439eef;
275 } else {
277 uint8_t xor[6];
279 if (keytype == 0) {
281 uint64_t xor_tbl_a[] = {
282 0x09125a2589e5,
283 0xAB75C937922F,
284 0xE27241AF2C09,
285 0x317AB72F4490,
288 num_to_bytes(xor_tbl_a[sector - 1], 6, xor);
290 *key =
291 (uint64_t)(uid[0] ^ xor[0]) << 40 |
292 (uint64_t)(uid[1] ^ xor[1]) << 32 |
293 (uint64_t)(uid[2] ^ xor[2]) << 24 |
294 (uint64_t)(uid[3] ^ xor[3]) << 16 |
295 (uint64_t)(uid[0] ^ xor[4]) << 8 |
296 (uint64_t)(uid[1] ^ xor[5])
299 } else {
300 uint64_t xor_tbl_b[] = {
301 0xF12C8453D821,
302 0x73E799FE3241,
303 0xAA4D137656AE,
304 0xB01327272DFD
307 // B
308 num_to_bytes(xor_tbl_b[sector - 1], 6, xor);
310 *key =
311 (uint64_t)(uid[2] ^ xor[0]) << 40 |
312 (uint64_t)(uid[3] ^ xor[1]) << 32 |
313 (uint64_t)(uid[0] ^ xor[2]) << 24 |
314 (uint64_t)(uid[1] ^ xor[3]) << 16 |
315 (uint64_t)(uid[2] ^ xor[4]) << 8 |
316 (uint64_t)(uid[3] ^ xor[5])
321 return PM3_SUCCESS;
323 // returns all Mifare Mini (MFM) 10 keys.
324 // keys must have 5*2*6 = 60bytes space
325 int mfc_algo_mizip_all(uint8_t *uid, uint8_t *keys) {
326 if (keys == NULL) return PM3_EINVARG;
328 for (int keytype = 0; keytype < 2; keytype++) {
329 for (int sector = 0; sector < 5; sector++) {
330 uint64_t key = 0;
331 mfc_algo_mizip_one(uid, sector, keytype, &key);
332 num_to_bytes(key, 6, keys + (keytype * 5 * 6) + (sector * 6));
335 return PM3_SUCCESS;
338 // Disney Infinity algo
339 int mfc_algo_di_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
340 if (sector > 4) return PM3_EINVARG;
341 if (key == NULL) return PM3_EINVARG;
343 uint8_t hash[64];
344 uint8_t input[] = {
345 0x0A, 0x14, 0xFD, 0x05, 0x07, 0xFF, 0x4B, 0xCD,
346 0x02, 0x6B, 0xA8, 0x3F, 0x0A, 0x3B, 0x89, 0xA9,
347 uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6],
348 0x28, 0x63, 0x29, 0x20, 0x44, 0x69, 0x73, 0x6E,
349 0x65, 0x79, 0x20, 0x32, 0x30, 0x31, 0x33
352 mbedtls_sha1(input, sizeof(input), hash);
354 *key = (
355 (uint64_t)hash[3] << 40 |
356 (uint64_t)hash[2] << 32 |
357 (uint64_t)hash[1] << 24 |
358 (uint64_t)hash[0] << 16 |
359 (uint64_t)hash[7] << 8 |
360 hash[6]
363 return PM3_SUCCESS;
365 int mfc_algo_di_all(uint8_t *uid, uint8_t *keys) {
366 if (keys == NULL) return PM3_EINVARG;
367 for (int keytype = 0; keytype < 2; keytype++) {
368 for (int sector = 0; sector < 5; sector++) {
369 uint64_t key = 0;
370 mfc_algo_di_one(uid, sector, keytype, &key);
371 num_to_bytes(key, 6, keys + (keytype * 5 * 6) + (sector * 6));
374 return PM3_SUCCESS;
377 // Skylanders
378 static uint64_t sky_crc64_like(uint64_t result, uint8_t sector) {
379 #define SKY_POLY UINT64_C(0x42f0e1eba9ea3693)
380 #define SKY_TOP UINT64_C(0x800000000000)
381 result ^= (uint64_t)sector << 40;
382 for (int i = 0; i < 8; i++) {
383 result = (result & SKY_TOP) ? (result << 1) ^ SKY_POLY : result << 1;
385 return result;
387 int mfc_algo_sky_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
389 #define SKY_KEY_MASK 0xFFFFFFFFFFFF
391 if (sector > 15) return PM3_EINVARG;
392 if (key == NULL) return PM3_EINVARG;
394 if (sector == 0 && keytype == 0) {
395 *key = 0x4B0B20107CCB;
396 return PM3_SUCCESS;
398 if (keytype == 1) {
399 *key = 0x000000000000;
400 return PM3_SUCCESS;
403 // hash UID
404 uint64_t hash = 0x9AE903260CC4;
405 for (int i = 0; i < 4; i++) {
406 hash = sky_crc64_like(hash, uid[i]);
409 uint64_t sectorhash = sky_crc64_like(hash, sector);
410 *key = BSWAP_64(sectorhash & SKY_KEY_MASK) >> 16;
411 return PM3_SUCCESS;
413 int mfc_algo_sky_all(uint8_t *uid, uint8_t *keys) {
414 if (keys == NULL) return PM3_EINVARG;
415 for (int keytype = 0; keytype < 2; keytype++) {
416 for (int sector = 0; sector < 16; sector++) {
417 uint64_t key = 0;
418 mfc_algo_sky_one(uid, sector, keytype, &key);
419 num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
422 return PM3_SUCCESS;
425 // LF T55x7 White gun cloner algo
426 uint32_t lf_t55xx_white_pwdgen(uint32_t id) {
427 uint32_t r1 = rotl(id & 0x000000ec, 8);
428 uint32_t r2 = rotl(id & 0x86000000, 16);
429 uint32_t pwd = 0x10303;
430 pwd += ((id & 0x86ee00ec) ^ r1 ^ r2);
431 return pwd;
434 // Gallagher Desfire Key Diversification Input for Cardax Card Data Application
435 int mfdes_kdf_input_gallagher(uint8_t *uid, uint8_t uidLen, uint8_t keyNo, uint32_t aid, uint8_t *kdfInputOut, uint8_t *kdfInputLen) {
436 if (uid == NULL || (uidLen != 4 && uidLen != 7) || keyNo > 2 || kdfInputOut == NULL || kdfInputLen == NULL) {
437 if (g_debugMode) {
438 PrintAndLogEx(WARNING, "Invalid arguments");
440 return PM3_EINVARG;
443 // Verify the AppID is a valid Gallagher AppID
444 if ((aid & 0xF0FFFF) != 0x2081F4) {
445 if (g_debugMode) {
446 PrintAndLogEx(WARNING, "Invalid Gallagher AID %06X", aid);
448 return PM3_EINVARG;
451 int len = 0;
452 // If the keyNo == 1, then omit the UID.
453 if (keyNo != 1) {
454 if (*kdfInputLen < (4 + uidLen)) {
455 return PM3_EINVARG;
458 memcpy(kdfInputOut, uid, uidLen);
459 len += uidLen;
460 } else if (*kdfInputLen < 4) {
461 return PM3_EINVARG;
464 kdfInputOut[len++] = keyNo;
466 kdfInputOut[len++] = aid & 0xff;
467 kdfInputOut[len++] = (aid >> 8) & 0xff;
468 kdfInputOut[len++] = (aid >> 16) & 0xff;
470 *kdfInputLen = len;
472 return PM3_SUCCESS;
475 int mfc_generate4b_nuid(uint8_t *uid, uint8_t *nuid) {
476 uint16_t crc;
477 uint8_t b1, b2;
479 compute_crc(CRC_14443_A, uid, 3, &b1, &b2);
480 nuid[0] = (b2 & 0xE0) | 0xF;
481 nuid[1] = b1;
482 crc = b1;
483 crc |= b2 << 8;
484 crc = crc16_fast(&uid[3], 4, reflect16(crc), true, true);
485 nuid[2] = (crc >> 8) & 0xFF ;
486 nuid[3] = crc & 0xFF;
487 return PM3_SUCCESS;
490 int mfc_algo_touch_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
491 if (uid == NULL) return PM3_EINVARG;
492 if (key == NULL) return PM3_EINVARG;
494 *key = (
495 (uint64_t)(uid[1] ^ uid[2] ^ uid[3]) << 40 |
496 (uint64_t)uid[1] << 32 |
497 (uint64_t)uid[2] << 24 |
498 (uint64_t)(((uid[0] + uid[1] + uid[2] + uid[3]) % 0x100) ^ uid[3]) << 16 |
499 (uint64_t)0 << 8 |
500 (uint64_t)0
502 return PM3_SUCCESS;
505 //------------------------------------
506 // Self tests
507 //------------------------------------
508 int generator_selftest(void) {
510 #define NUM_OF_TEST 6
512 PrintAndLogEx(INFO, "PWD / KEY generator selftest");
513 PrintAndLogEx(INFO, "----------------------------");
515 uint8_t testresult = 0;
517 uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10};
518 uint32_t pwd1 = ul_ev1_pwdgenA(uid1);
519 bool success = (pwd1 == 0x8432EB17);
520 if (success)
521 testresult++;
523 PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid1, 7), pwd1, success ? "OK" : "->8432EB17<-");
525 uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81};
526 uint32_t pwd2 = ul_ev1_pwdgenB(uid2);
527 success = (pwd2 == 0x5fd37eca);
528 if (success)
529 testresult++;
530 PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid2, 7), pwd2, success ? "OK" : "->5fd37eca<--");
532 uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80};
533 uint32_t pwd3 = ul_ev1_pwdgenC(uid3);
534 success = (pwd3 == 0x5a349515);
535 if (success)
536 testresult++;
537 PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid3, 7), pwd3, success ? "OK" : "->5a349515<--");
539 uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80};
540 uint32_t pwd4 = ul_ev1_pwdgenD(uid4);
541 success = (pwd4 == 0x72B1EC61);
542 if (success)
543 testresult++;
544 PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid4, 7), pwd4, success ? "OK" : "->72B1EC61<--");
546 // uint8_t uid5[] = {0x11, 0x22, 0x33, 0x44};
547 // uint64_t key1 = mfc_algo_a(uid5);
548 // success = (key1 == 0xD1E2AA68E39A);
549 // PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" - %s", sprint_hex(uid5, 4), key1, success ? "OK" : "->D1E2AA68E39A<--");
551 uint8_t uid6[] = {0x74, 0x57, 0xCA, 0xA9};
552 uint64_t key6 = 0;
553 mfc_algo_sky_one(uid6, 15, 0, &key6);
554 success = (key6 == 0x82c7e64bc565);
555 if (success)
556 testresult++;
557 PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" - %s", sprint_hex(uid6, 4), key6, success ? "OK" : "->82C7E64BC565<--");
560 uint32_t lf_id = lf_t55xx_white_pwdgen(0x00000080);
561 success = (lf_id == 0x00018383);
562 if (success)
563 testresult++;
564 PrintAndLogEx(success ? SUCCESS : WARNING, "ID | 0x00000080 | %08"PRIx32 " - %s", lf_id, success ? "OK" : "->00018383<--");
566 PrintAndLogEx(SUCCESS, "------------------- Selftest %s", (testresult == NUM_OF_TEST) ? "OK" : "fail");
567 return PM3_SUCCESS;