1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands - by marshmellow, holiman, iceman and
9 // many others who came before
12 // LF Demod functions are placed here to allow the flexability to use client or
13 // device side. Most BUT NOT ALL of these functions are currenlty safe for
14 // device side use currently. (DetectST for example...)
16 // There are likely many improvements to the code that could be made, please
17 // make suggestions...
19 // we tried to include author comments so any questions could be directed to
22 // There are 4 main sections of code below:
25 // for general utilities used by multiple other functions
27 // Clock / Bitrate Detection Section:
28 // for clock detection functions for each modulation
30 // Modulation Demods &/or Decoding Section:
31 // for main general modulation demodulating and encoding decoding code.
33 // Tag format detection section:
34 // for detection of specific tag formats within demodulated data
37 //-----------------------------------------------------------------------------
40 #include <string.h> // for memset, memcmp and size_t
41 #include <stdlib.h> // qsort
42 #include "parity.h" // for parity test
43 #include "pm3_cmd.h" // error codes
44 #include "commonutil.h" // Arraylen
46 // **********************************************************************************************
47 // ---------------------------------Utilities Section--------------------------------------------
48 // **********************************************************************************************
49 #define LOWEST_DEFAULT_CLOCK 32
50 #define FSK_PSK_THRESHOLD 123
52 //to allow debug print calls when used not on dev
58 # define prnt(args...) PrintAndLogEx(DEBUG, ## args );
61 uint8_t g_debugMode
= 0;
62 # define prnt Dbprintf
65 static signal_t signalprop
= { 255, -255, 0, 0, true };
66 signal_t
*getSignalProperties(void) {
70 static void resetSignal(void) {
72 signalprop
.high
= -255;
74 signalprop
.amplitude
= 0;
75 signalprop
.isnoise
= true;
78 static void printSignal(void) {
79 prnt("LF signal properties:");
80 prnt(" high..........%d", signalprop
.high
);
81 prnt(" low...........%d", signalprop
.low
);
82 prnt(" mean..........%d", signalprop
.mean
);
83 prnt(" amplitude.....%d", signalprop
.amplitude
);
84 prnt(" is Noise......%s", (signalprop
.isnoise
) ? _RED_("Yes") : _GREEN_("No"));
85 prnt(" THRESHOLD noise amplitude......%d", NOISE_AMPLITUDE_THRESHOLD
);
89 static int cmp_uint8(const void *a
, const void *b
) {
90 if (*(const uint8_t *)a
< * (const uint8_t *)b
)
93 return *(const uint8_t *)a
> *(const uint8_t *)b
;
97 void computeSignalProperties(uint8_t *samples
, uint32_t size
) {
100 if (samples
== NULL
|| size
< SIGNAL_MIN_SAMPLES
) return;
103 uint32_t offset_size
= size
- SIGNAL_IGNORE_FIRST_SAMPLES
;
106 uint8_t tmp
[offset_size
];
107 memcpy(tmp
, samples
+ SIGNAL_IGNORE_FIRST_SAMPLES
, sizeof(tmp
));
108 qsort(tmp
, sizeof(tmp
), sizeof(uint8_t), cmp_uint8
);
110 uint8_t low10
= 0.5 * (tmp
[(int)(offset_size
* 0.1)] + tmp
[(int)((offset_size
- 1) * 0.1)]);
111 uint8_t hi90
= 0.5 * (tmp
[(int)(offset_size
* 0.9)] + tmp
[(int)((offset_size
- 1) * 0.9)]);
113 for (uint32_t i
= SIGNAL_IGNORE_FIRST_SAMPLES
; i
< size
; i
++) {
115 if (samples
[i
] < signalprop
.low
) signalprop
.low
= samples
[i
];
116 if (samples
[i
] > signalprop
.high
) signalprop
.high
= samples
[i
];
118 if (samples
[i
] < low10
|| samples
[i
] > hi90
)
125 signalprop
.mean
= sum
/ cnt
;
129 for (uint32_t i
= SIGNAL_IGNORE_FIRST_SAMPLES
; i
< size
; i
++) {
130 if (samples
[i
] < signalprop
.low
) signalprop
.low
= samples
[i
];
131 if (samples
[i
] > signalprop
.high
) signalprop
.high
= samples
[i
];
134 signalprop
.mean
= sum
/ offset_size
;
137 // measure amplitude of signal
138 signalprop
.amplitude
= signalprop
.high
- signalprop
.mean
;
139 // By measuring mean and look at amplitude of signal from HIGH / LOW,
140 // we can detect noise
141 signalprop
.isnoise
= signalprop
.amplitude
< NOISE_AMPLITUDE_THRESHOLD
;
147 void removeSignalOffset(uint8_t *samples
, uint32_t size
) {
148 if (samples
== NULL
|| size
< SIGNAL_MIN_SAMPLES
) return;
151 uint32_t offset_size
= size
- SIGNAL_IGNORE_FIRST_SAMPLES
;
155 uint8_t tmp
[offset_size
];
156 memcpy(tmp
, samples
+ SIGNAL_IGNORE_FIRST_SAMPLES
, sizeof(tmp
));
157 qsort(tmp
, sizeof(tmp
), sizeof(uint8_t), cmp_uint8
);
159 uint8_t low10
= 0.5 * (tmp
[(int)(offset_size
* 0.05)] + tmp
[(int)((offset_size
- 1) * 0.05)]);
160 uint8_t hi90
= 0.5 * (tmp
[(int)(offset_size
* 0.95)] + tmp
[(int)((offset_size
- 1) * 0.95)]);
162 for (uint32_t i
= SIGNAL_IGNORE_FIRST_SAMPLES
; i
< size
; i
++) {
164 if (samples
[i
] < low10
|| samples
[i
] > hi90
)
167 acc_off
+= samples
[i
] - 128;
175 for (uint32_t i
= SIGNAL_IGNORE_FIRST_SAMPLES
; i
< size
; i
++)
176 acc_off
+= samples
[i
] - 128;
178 acc_off
/= (int)offset_size
;
181 // shift and saturate samples to center the mean
182 for (uint32_t i
= 0; i
< size
; i
++) {
184 samples
[i
] = (samples
[i
] >= acc_off
) ? samples
[i
] - acc_off
: 0;
187 samples
[i
] = (255 - samples
[i
] >= -acc_off
) ? samples
[i
] - acc_off
: 255;
193 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
194 //void getHiLo(uint8_t *bits, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) {
195 void getHiLo(int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
) {
197 *high
= (signalprop
.high
* fuzzHi
) / 100;
198 if (signalprop
.low
< 0) {
199 *low
= (signalprop
.low
* fuzzLo
) / 100;
201 uint8_t range
= signalprop
.high
- signalprop
.low
;
203 *low
= signalprop
.low
+ ((range
* (100 - fuzzLo
)) / 100);
206 // if fuzzing to great and overlap
208 *high
= signalprop
.high
;
209 *low
= signalprop
.low
;
212 // prnt("getHiLo fuzzed: High %d | Low %d", *high, *low);
216 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
217 // returns 1 if passed
218 bool parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
) {
219 return oddparity32(bits
) ^ pType
;
223 // takes a array of binary values, start position, length of bits per parity (includes parity bit - MAX 32),
224 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
225 size_t removeParity(uint8_t *bits
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
) {
226 uint32_t parityWd
= 0;
228 for (int word
= 0; word
< (bLen
); word
+= pLen
) {
229 for (int bit
= 0; bit
< pLen
; bit
++) {
230 if (word
+ bit
>= bLen
) break;
231 parityWd
= (parityWd
<< 1) | bits
[startIdx
+ word
+ bit
];
232 bits
[bitCnt
++] = (bits
[startIdx
+ word
+ bit
]);
234 if (word
+ pLen
> bLen
) break;
236 bitCnt
--; // overwrite parity with next data
237 // if parity fails then return 0
240 if (bits
[bitCnt
] == 1) {return 0;}
241 break; //should be 0 spacer bit
243 if (bits
[bitCnt
] == 0) {return 0;}
244 break; //should be 1 spacer bit
246 if (parityTest(parityWd
, pLen
, pType
) == 0) { return 0; }
251 // if we got here then all the parities passed
256 static size_t removeEm410xParity(uint8_t *bits
, size_t startIdx
, bool isLong
, bool *validShort
, bool *validShortExtended
, bool *validLong
) {
257 uint32_t parityWd
= 0;
259 bool validColParity
= false;
260 bool validRowParity
= true;
261 bool validRowParitySkipColP
= true;
263 *validShortExtended
= false;
265 uint8_t bLen
= isLong
? 110 : 55;
266 uint16_t parityCol
[4] = { 0, 0, 0, 0 };
267 for (int word
= 0; word
< bLen
; word
+= 5) {
268 for (int bit
= 0; bit
< 5; bit
++) {
269 if (word
+ bit
>= bLen
) break;
270 parityWd
= (parityWd
<< 1) | bits
[startIdx
+ word
+ bit
];
271 if ((word
<= 50) && (bit
< 4))
272 parityCol
[bit
] = (parityCol
[bit
] << 1) | bits
[startIdx
+ word
+ bit
];
273 bits
[bitCnt
++] = (bits
[startIdx
+ word
+ bit
]);
275 if (word
+ 5 > bLen
) break;
277 bitCnt
--; // overwrite parity with next data
278 validRowParity
&= parityTest(parityWd
, 5, 0) != 0;
279 if (word
== 50) { // column parity nibble on short EM and on Electra
280 validColParity
= parityTest(parityCol
[0], 11, 0) != 0;
281 validColParity
&= parityTest(parityCol
[1], 11, 0) != 0;
282 validColParity
&= parityTest(parityCol
[2], 11, 0) != 0;
283 validColParity
&= parityTest(parityCol
[3], 11, 0) != 0;
285 validRowParitySkipColP
&= parityTest(parityWd
, 5, 0) != 0;
289 if (!isLong
&& validRowParitySkipColP
&& validColParity
) {
292 if (isLong
&& validRowParity
) {
295 if (isLong
&& validRowParitySkipColP
&& validColParity
) {
296 *validShortExtended
= true;
298 if (*validShort
|| *validShortExtended
|| *validLong
) {
306 // takes a array of binary values, length of bits per parity (includes parity bit),
307 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
308 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
309 size_t addParity(uint8_t *src
, uint8_t *dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
) {
310 uint32_t parityWd
= 0;
311 size_t j
= 0, bitCnt
= 0;
312 for (int word
= 0; word
< sourceLen
; word
+= pLen
- 1) {
313 for (int bit
= 0; bit
< pLen
- 1; bit
++) {
314 parityWd
= (parityWd
<< 1) | src
[word
+ bit
];
315 dest
[j
++] = (src
[word
+ bit
]);
317 // if parity fails then return 0
321 break; // marker bit which should be a 0
324 break; // marker bit which should be a 1
326 dest
[j
++] = parityTest(parityWd
, pLen
- 1, pType
) ^ 1;
332 // if we got here then all the parities passed
333 //return ID start index and size
337 // array must be size dividable with 8
338 int bits_to_array(const uint8_t *bits
, size_t size
, uint8_t *dest
) {
339 if ((size
== 0) || (size
% 8) != 0) return PM3_EINVARG
;
341 for (uint32_t i
= 0; i
< (size
/ 8); i
++)
342 dest
[i
] = bytebits_to_byte((uint8_t *) bits
+ (i
* 8), 8);
347 uint32_t bytebits_to_byte(uint8_t *src
, size_t numbits
) {
349 for (int i
= 0 ; i
< numbits
; i
++) {
350 num
= (num
<< 1) | (*src
);
356 //least significant bit first
357 uint32_t bytebits_to_byteLSBF(uint8_t *src
, size_t numbits
) {
359 for (int i
= 0 ; i
< numbits
; i
++) {
360 num
= (num
<< 1) | *(src
+ (numbits
- (i
+ 1)));
366 //search for given preamble in given BitStream and return success = TRUE or fail = FALSE and startIndex and length
367 bool preambleSearch(uint8_t *bits
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
) {
368 return preambleSearchEx(bits
, preamble
, pLen
, size
, startIdx
, false);
371 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone
372 // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
373 //(iceman) FINDONE, only finds start index. NOT SIZE!. I see Em410xDecode (lfdemod.c) uses SIZE to determine success
374 bool preambleSearchEx(uint8_t *bits
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
, bool findone
) {
375 // Sanity check. If preamble length is bigger than bits length.
379 uint8_t foundCnt
= 0;
380 for (size_t idx
= 0; idx
< *size
- pLen
; idx
++) {
381 if (memcmp(bits
+ idx
, preamble
, pLen
) == 0) {
385 if (g_debugMode
>= 1) prnt("DEBUG: (preambleSearchEx) preamble found at %zu", idx
);
391 if (g_debugMode
>= 1) prnt("DEBUG: (preambleSearchEx) preamble 2 found at %zu", idx
);
392 *size
= idx
- *startIdx
;
397 return (foundCnt
> 0);
400 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
401 static size_t findModStart(uint8_t *src
, size_t size
, uint8_t expWaveSize
) {
403 size_t waveSizeCnt
= 0;
404 uint8_t thresholdCnt
= 0;
405 bool isAboveThreshold
= src
[i
++] >= signalprop
.mean
; //FSK_PSK_THRESHOLD;
406 for (; i
< size
- 20; i
++) {
407 if (src
[i
] < signalprop
.mean
&& isAboveThreshold
) {
409 if (thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1) break;
410 isAboveThreshold
= false;
412 } else if (src
[i
] >= signalprop
.mean
&& !isAboveThreshold
) {
414 if (thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1) break;
415 isAboveThreshold
= true;
420 if (thresholdCnt
> 10) break;
422 if (g_debugMode
== 2) prnt("DEBUG: threshold Count reached at index %zu, count: %u", i
, thresholdCnt
);
426 static int getClosestClock(int testclk
) {
427 uint16_t clocks
[] = {8, 16, 32, 40, 50, 64, 100, 128, 256, 384};
428 uint8_t limit
[] = {1, 2, 4, 4, 5, 8, 8, 8, 8, 8};
430 for (uint8_t i
= 0; i
< 10; i
++) {
431 if (testclk
>= clocks
[i
] - limit
[i
] && testclk
<= clocks
[i
] + limit
[i
])
437 void getNextLow(uint8_t *samples
, size_t size
, int low
, size_t *i
) {
438 while ((samples
[*i
] > low
) && (*i
< size
))
442 void getNextHigh(uint8_t *samples
, size_t size
, int high
, size_t *i
) {
443 while ((samples
[*i
] < high
) && (*i
< size
))
447 // load wave counters
448 bool loadWaveCounters(uint8_t *samples
, size_t size
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int *waveCnt
, int *skip
, int *minClk
, int *high
, int *low
) {
450 //size_t testsize = (size < 512) ? size : 512;
452 // just noise - no super good detection. good enough
453 if (signalprop
.isnoise
) {
454 if (g_debugMode
== 2) prnt("DEBUG STT: just noise detected - quitting");
458 getHiLo(high
, low
, 80, 80);
460 // get to first full low to prime loop and skip incomplete first pulse
461 getNextHigh(samples
, size
, *high
, &i
);
462 getNextLow(samples
, size
, *low
, &i
);
465 // populate tmpbuff buffer with pulse lengths
467 // measure from low to low
469 //find first high point for this wave
470 getNextHigh(samples
, size
, *high
, &i
);
471 size_t firstHigh
= i
;
473 getNextLow(samples
, size
, *low
, &i
);
475 if (*waveCnt
>= (size
/ LOWEST_DEFAULT_CLOCK
))
478 highToLowWaveLen
[*waveCnt
] = i
- firstHigh
; //first high to first low
479 lowToLowWaveLen
[*waveCnt
] = i
- firstLow
;
481 if (i
- firstLow
< *minClk
&& i
< size
) {
482 *minClk
= i
- firstLow
;
488 size_t pskFindFirstPhaseShift(uint8_t *samples
, size_t size
, uint8_t *curPhase
, size_t waveStart
, uint16_t fc
, uint16_t *fullWaveLen
) {
489 uint16_t loopCnt
= (size
+ 3 < 4096) ? size
: 4096; //don't need to loop through entire array...
491 uint16_t avgWaveVal
= 0, lastAvgWaveVal
;
492 size_t i
= waveStart
, waveEnd
, waveLenCnt
, firstFullWave
;
493 for (; i
< loopCnt
; i
++) {
494 // find peak // was "samples[i] + fc" but why? must have been used to weed out some wave error... removed..
495 if (samples
[i
] < samples
[i
+ 1] && samples
[i
+ 1] >= samples
[i
+ 2]) {
497 if (g_debugMode
== 2) prnt("DEBUG PSK: waveEnd: %zu, waveStart: %zu", waveEnd
, waveStart
);
498 waveLenCnt
= waveEnd
- waveStart
;
499 if (waveLenCnt
> fc
&& waveStart
> fc
&& !(waveLenCnt
> fc
+ 8)) { //not first peak and is a large wave but not out of whack
500 lastAvgWaveVal
= avgWaveVal
/ (waveLenCnt
);
501 firstFullWave
= waveStart
;
502 *fullWaveLen
= waveLenCnt
;
503 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
504 if (lastAvgWaveVal
> FSK_PSK_THRESHOLD
) *curPhase
^= 1;
505 return firstFullWave
;
510 avgWaveVal
+= samples
[i
+ 2];
516 //amplify based on ask edge detection - not accurate enough to use all the time
517 void askAmp(uint8_t *bits
, size_t size
) {
519 for (size_t i
= 1; i
< size
; ++i
) {
520 if (bits
[i
] - bits
[i
- 1] >= 30) //large jump up
522 else if (bits
[i
- 1] - bits
[i
] >= 20) //large jump down
529 // iceman, simplify this
530 uint32_t manchesterEncode2Bytes(uint16_t datain
) {
532 for (uint8_t i
= 0; i
< 16; i
++) {
533 uint8_t b
= (datain
>> (15 - i
) & 1);
534 output
|= (1 << (((15 - i
) * 2) + b
));
539 void manchesterEncodeUint32(uint32_t data_in
, uint8_t bitlen_in
, uint8_t *bits_out
, uint16_t *index
) {
540 for (int i
= bitlen_in
- 1; i
>= 0; i
--) {
541 if ((data_in
>> i
) & 1) {
542 bits_out
[(*index
)++] = 1;
543 bits_out
[(*index
)++] = 0;
545 bits_out
[(*index
)++] = 0;
546 bits_out
[(*index
)++] = 1;
552 //encode binary data into binary manchester
553 //NOTE: bitstream must have triple the size of "size" available in memory to do the swap
554 int ManchesterEncode(uint8_t *bits
, size_t size
) {
555 //allow up to 4096b out (means bits must be at least 2048+4096 to handle the swap)
556 size
= (size
> 2048) ? 2048 : size
;
557 size_t modIdx
= size
;
559 for (size_t idx
= 0; idx
< size
; idx
++) {
560 bits
[idx
+ modIdx
++] = bits
[idx
];
561 bits
[idx
+ modIdx
++] = bits
[idx
] ^ 1;
563 for (i
= 0; i
< (size
* 2); i
++) {
564 bits
[i
] = bits
[i
+ size
];
570 // to detect a wave that has heavily clipped (clean) samples
571 // loop 1024 samples, if 250 of them is deemed maxed out, we assume the wave is clipped.
572 bool DetectCleanAskWave(uint8_t *dest
, size_t size
, uint8_t high
, uint8_t low
) {
573 bool allArePeaks
= true;
574 uint16_t cntPeaks
= 0;
575 size_t loopEnd
= 1024 + 160;
578 if (loopEnd
> size
) loopEnd
= size
;
580 for (size_t i
= 160; i
< loopEnd
; i
++) {
582 if (dest
[i
] > low
&& dest
[i
] < high
)
586 //if (g_debugMode == 2) prnt("DEBUG DetectCleanAskWave: peaks (200) %u", cntPeaks);
587 if (cntPeaks
> 200) return true;
591 if (allArePeaks
== false) {
592 if (g_debugMode
== 2) prnt("DEBUG DetectCleanAskWave: peaks (200) %u", cntPeaks
);
593 if (cntPeaks
> 200) return true;
599 // **********************************************************************************************
600 // -------------------Clock / Bitrate Detection Section------------------------------------------
601 // **********************************************************************************************
605 // to help detect clocks on heavily clipped samples
606 // based on count of low to low
607 int DetectStrongAskClock(uint8_t *dest
, size_t size
, int high
, int low
, int *clock
) {
610 uint16_t shortestWaveIdx
= 0;
612 // get to first full low to prime loop and skip incomplete first pulse
613 getNextHigh(dest
, size
, high
, &i
);
614 getNextLow(dest
, size
, low
, &i
);
621 // clock, numoftimes, first idx
622 uint16_t tmpclk
[10][3] = {
635 // loop through all samples (well, we don't want to go out-of-bounds)
636 while (i
< (size
- 512)) {
637 // measure from low to low
638 size_t startwave
= i
;
640 getNextHigh(dest
, size
, high
, &i
);
641 getNextLow(dest
, size
, low
, &i
);
643 //get minimum measured distance
644 if (i
- startwave
< minClk
&& i
< size
) {
645 minClk
= i
- startwave
;
646 shortestWaveIdx
= startwave
;
649 int foo
= getClosestClock(minClk
);
651 for (uint8_t j
= 0; j
< 10; j
++) {
652 if (tmpclk
[j
][0] == foo
) {
655 if (tmpclk
[j
][2] == 0) {
656 tmpclk
[j
][2] = shortestWaveIdx
;
664 // find the clock with most hits and it the first index it was encountered.
666 for (uint8_t j
= 0; j
< 10; j
++) {
667 if (g_debugMode
== 2) {
668 prnt("DEBUG, ASK, clocks %u | hits %u | idx %u"
674 if (max
< tmpclk
[j
][1]) {
675 *clock
= tmpclk
[j
][0];
676 shortestWaveIdx
= tmpclk
[j
][2];
684 return shortestWaveIdx
;
688 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
689 // maybe somehow adjust peak trimming value based on samples to fix?
690 // return start index of best starting position for that clock and return clock (by reference)
691 int DetectASKClock(uint8_t *dest
, size_t size
, int *clock
, int maxErr
) {
693 //don't need to loop through entire array. (cotag has clock of 384)
694 uint16_t loopCnt
= 2000;
696 // not enough samples
697 if (size
<= loopCnt
+ 60) {
698 if (g_debugMode
== 2) prnt("DEBUG DetectASKClock: not enough samples - aborting");
702 // just noise - no super good detection. good enough
703 if (signalprop
.isnoise
) {
704 if (g_debugMode
== 2) prnt("DEBUG DetectASKClock: just noise detected - aborting");
709 uint16_t num_clks
= 9;
710 // first 255 value pos0 is placeholder for user inputed clock.
711 uint16_t clk
[] = {255, 8, 16, 32, 40, 50, 64, 100, 128, 255};
713 // sometimes there is a strange end wave - filter out this
717 // already have a valid clock?
718 uint8_t found_clk
= 0;
719 for (; i
< num_clks
; ++i
) {
720 if (clk
[i
] == *clock
) {
725 // threshold 75% of high, low peak
726 int peak_hi
, peak_low
;
727 getHiLo(&peak_hi
, &peak_low
, 75, 75);
729 // test for large clean, STRONG, CLIPPED peaks
733 if (DetectCleanAskWave(dest
, size
, peak_hi
, peak_low
)) {
735 int idx
= DetectStrongAskClock(dest
, size
, peak_hi
, peak_low
, clock
);
736 if (g_debugMode
== 2)
737 prnt("DEBUG ASK: DetectASKClock Clean ASK Wave detected: clk %i, Best Starting Position: %i", *clock
, idx
);
739 // return shortest wave start position
744 // test for weak peaks
746 // test clock if given as cmd parameter
752 uint16_t bestErr
[] = {1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000};
753 uint8_t bestStart
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
754 size_t errCnt
, arrLoc
, loopEnd
;
758 num_clks
= found_clk
+ 1;
763 //test each valid clock from smallest to greatest to see which lines up
764 for (; clkCnt
< num_clks
; clkCnt
++) {
765 if (clk
[clkCnt
] <= 32) {
770 //if no errors allowed - keep start within the first clock
771 if (!maxErr
&& size
> clk
[clkCnt
] * 2 + tol
&& clk
[clkCnt
] < 128)
772 loopCnt
= clk
[clkCnt
] * 2;
774 bestErr
[clkCnt
] = 1000;
776 //try lining up the peaks by moving starting point (try first few clocks)
778 // get to first full low to prime loop and skip incomplete first pulse
779 getNextHigh(dest
, size
, peak_hi
, &j
);
780 getNextLow(dest
, size
, peak_low
, &j
);
782 for (; j
< loopCnt
; j
++) {
784 // now that we have the first one lined up test rest of wave array
785 loopEnd
= ((size
- j
- tol
) / clk
[clkCnt
]) - 1;
786 for (i
= 0; i
< loopEnd
; ++i
) {
787 arrLoc
= j
+ (i
* clk
[clkCnt
]);
788 if (dest
[arrLoc
] >= peak_hi
|| dest
[arrLoc
] <= peak_low
) {
789 } else if (dest
[arrLoc
- tol
] >= peak_hi
|| dest
[arrLoc
- tol
] <= peak_low
) {
790 } else if (dest
[arrLoc
+ tol
] >= peak_hi
|| dest
[arrLoc
+ tol
] <= peak_low
) {
791 } else { //error no peak detected
795 // if we found no errors then we can stop here and a low clock (common clocks)
796 // this is correct one - return this clock
797 // if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, j, i);
798 if (errCnt
== 0 && clkCnt
< 7) {
800 *clock
= clk
[clkCnt
];
803 // if we found errors see if it is lowest so far and save it as best run
804 if (errCnt
< bestErr
[clkCnt
]) {
805 bestErr
[clkCnt
] = errCnt
;
806 bestStart
[clkCnt
] = j
;
813 for (k
= 1; k
< num_clks
; ++k
) {
814 if (bestErr
[k
] < bestErr
[best
]) {
815 if (bestErr
[k
] == 0) bestErr
[k
] = 1;
816 // current best bit to error ratio vs new bit to error ratio
817 if ((size
/ clk
[best
]) / bestErr
[best
] < (size
/ clk
[k
]) / bestErr
[k
]) {
821 //if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]);
825 for (i
= 0; i
< ARRAYLEN(bestErr
); i
++) {
826 chg
= (bestErr
[i
] != 1000);
829 chg
= (bestStart
[i
] != 0);
834 // just noise - no super good detection. good enough
836 if (g_debugMode
== 2) prnt("DEBUG DetectASKClock: no good values detected - aborting");
843 return bestStart
[best
];
846 int DetectStrongNRZClk(uint8_t *dest
, size_t size
, int peak
, int low
, bool *strong
) {
847 //find shortest transition from high to low
850 size_t transition1
= 0;
851 int lowestTransition
= 255;
852 bool lastWasHigh
= false;
853 size_t transitionSampleCount
= 0;
854 //find first valid beginning of a high or low wave
855 while ((dest
[i
] >= peak
|| dest
[i
] <= low
) && (i
< size
))
857 while ((dest
[i
] < peak
&& dest
[i
] > low
) && (i
< size
))
860 lastWasHigh
= (dest
[i
] >= peak
);
867 for (; i
< size
; i
++) {
868 if ((dest
[i
] >= peak
&& !lastWasHigh
) || (dest
[i
] <= low
&& lastWasHigh
)) {
869 lastWasHigh
= (dest
[i
] >= peak
);
870 if (i
- transition1
< lowestTransition
)
871 lowestTransition
= i
- transition1
;
873 } else if (dest
[i
] < peak
&& dest
[i
] > low
) {
874 transitionSampleCount
++;
877 if (lowestTransition
== 255)
878 lowestTransition
= 0;
880 if (g_debugMode
== 2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d", lowestTransition
);
881 // if less than 10% of the samples were not peaks (or 90% were peaks) then we have a strong wave
882 if (transitionSampleCount
/ size
< 10) {
884 lowestTransition
= getClosestClock(lowestTransition
);
886 return lowestTransition
;
890 //detect nrz clock by reading #peaks vs no peaks(or errors)
891 int DetectNRZClock(uint8_t *dest
, size_t size
, int clock
, size_t *clockStartIdx
) {
893 uint8_t clk
[] = {8, 16, 32, 40, 50, 64, 100, 128, 255};
894 size_t loopCnt
= 4096; //don't need to loop through entire array...
896 //if we already have a valid clock quit
898 if (clk
[i
] == clock
) return clock
;
900 if (size
< 20) return 0;
901 // size must be larger than 20 here
902 if (size
< loopCnt
) loopCnt
= size
- 20;
905 // just noise - no super good detection. good enough
906 if (signalprop
.isnoise
) {
907 if (g_debugMode
== 2) prnt("DEBUG DetectNZRClock: just noise detected - quitting");
911 //get high and low peak
913 //getHiLo(dest, loopCnt, &peak, &low, 90, 90);
914 getHiLo(&peak
, &low
, 90, 90);
917 int lowestTransition
= DetectStrongNRZClk(dest
, size
- 20, peak
, low
, &strong
);
918 if (strong
) return lowestTransition
;
922 uint16_t smplCnt
= 0;
924 int16_t peaksdet
[] = {0, 0, 0, 0, 0, 0, 0, 0};
925 uint16_t minPeak
= 255;
926 bool firstpeak
= true;
927 //test for large clipped waves - ignore first peak
928 for (i
= 0; i
< loopCnt
; i
++) {
929 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
930 if (firstpeak
) continue;
935 if (minPeak
> smplCnt
&& smplCnt
> 7) minPeak
= smplCnt
;
937 if (g_debugMode
== 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d", minPeak
, smplCnt
, peakcnt
);
942 if (minPeak
< 8) return 0;
944 bool errBitHigh
= 0, bitHigh
= 0, lastPeakHigh
= 0;
945 uint8_t ignoreCnt
= 0, ignoreWindow
= 4;
947 size_t bestStart
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
949 //test each valid clock from smallest to greatest to see which lines up
950 for (clkCnt
= 0; clkCnt
< 8; ++clkCnt
) {
951 //ignore clocks smaller than smallest peak
952 if (clk
[clkCnt
] < minPeak
- (clk
[clkCnt
] / 4)) continue;
953 //try lining up the peaks by moving starting point (try first 256)
954 for (ii
= 20; ii
< loopCnt
; ++ii
) {
955 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)) {
959 lastBit
= ii
- clk
[clkCnt
];
960 //loop through to see if this start location works
961 for (i
= ii
; i
< size
- 20; ++i
) {
962 //if we are at a clock bit
963 if ((i
>= lastBit
+ clk
[clkCnt
] - tol
) && (i
<= lastBit
+ clk
[clkCnt
] + tol
)) {
965 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
966 //if same peak don't count it
967 if ((dest
[i
] >= peak
&& !lastPeakHigh
) || (dest
[i
] <= low
&& lastPeakHigh
)) {
970 lastPeakHigh
= (dest
[i
] >= peak
);
973 ignoreCnt
= ignoreWindow
;
974 lastBit
+= clk
[clkCnt
];
975 } else if (i
== lastBit
+ clk
[clkCnt
] + tol
) {
976 lastBit
+= clk
[clkCnt
];
978 //else if not a clock bit and no peaks
979 } else if (dest
[i
] < peak
&& dest
[i
] > low
) {
980 if (ignoreCnt
== 0) {
982 if (errBitHigh
== true)
988 // else if not a clock bit but we have a peak
989 } else if ((dest
[i
] >= peak
|| dest
[i
] <= low
) && (!bitHigh
)) {
990 //error bar found no clock...
994 if (peakcnt
> peaksdet
[clkCnt
]) {
995 bestStart
[clkCnt
] = ii
;
996 peaksdet
[clkCnt
] = peakcnt
;
1003 for (int m
= 7; m
> 0; m
--) {
1004 if ((peaksdet
[m
] >= (peaksdet
[best
] - 1)) && (peaksdet
[m
] <= peaksdet
[best
] + 1) && lowestTransition
) {
1005 if (clk
[m
] > (lowestTransition
- (clk
[m
] / 8)) && clk
[m
] < (lowestTransition
+ (clk
[m
] / 8))) {
1008 } else if (peaksdet
[m
] > peaksdet
[best
]) {
1011 if (g_debugMode
== 2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d", clk
[m
], peaksdet
[m
], minPeak
, clk
[best
], lowestTransition
);
1013 *clockStartIdx
= bestStart
[best
];
1018 //countFC is to detect the field clock lengths.
1019 //counts and returns the 2 most common wave lengths
1020 //mainly used for FSK field clock detection
1021 uint16_t countFC(uint8_t *bits
, size_t size
, bool fskAdj
) {
1022 uint8_t fcLens
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
1023 uint16_t fcCnts
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
1024 uint8_t fcLensFnd
= 0;
1025 uint8_t lastFCcnt
= 0;
1026 uint8_t fcCounter
= 0;
1028 if (size
< 180) return 0;
1030 // prime i to first up transition
1031 for (i
= 160; i
< size
- 20; i
++)
1032 if (bits
[i
] > bits
[i
- 1] && bits
[i
] >= bits
[i
+ 1])
1035 for (; i
< size
- 20; i
++) {
1036 if (bits
[i
] > bits
[i
- 1] && bits
[i
] >= bits
[i
+ 1]) {
1037 // new up transition
1040 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1041 if (lastFCcnt
== 5 && fcCounter
== 9) fcCounter
--;
1043 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1044 if ((fcCounter
== 9) || fcCounter
== 4) fcCounter
++;
1045 // save last field clock count (fc/xx)
1046 lastFCcnt
= fcCounter
;
1048 // find which fcLens to save it to:
1049 for (int m
= 0; m
< 15; m
++) {
1050 if (fcLens
[m
] == fcCounter
) {
1056 if (fcCounter
> 0 && fcLensFnd
< 15) {
1058 fcCnts
[fcLensFnd
]++;
1059 fcLens
[fcLensFnd
++] = fcCounter
;
1068 uint8_t best1
= 14, best2
= 14, best3
= 14;
1069 uint16_t maxCnt1
= 0;
1070 // go through fclens and find which ones are bigest 2
1071 for (i
= 0; i
< 15; i
++) {
1072 // get the 3 best FC values
1073 if (fcCnts
[i
] > maxCnt1
) {
1076 maxCnt1
= fcCnts
[i
];
1078 } else if (fcCnts
[i
] > fcCnts
[best2
]) {
1081 } else if (fcCnts
[i
] > fcCnts
[best3
]) {
1084 if (g_debugMode
== 2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u", fcLens
[i
], fcCnts
[i
], fcLens
[best1
], fcLens
[best2
]);
1085 if (fcLens
[i
] == 0) break;
1088 if (fcLens
[best1
] == 0) return 0;
1089 uint8_t fcH
= 0, fcL
= 0;
1090 if (fcLens
[best1
] > fcLens
[best2
]) {
1091 fcH
= fcLens
[best1
];
1092 fcL
= fcLens
[best2
];
1094 fcH
= fcLens
[best2
];
1095 fcL
= fcLens
[best1
];
1097 if ((size
- 180) / fcH
/ 3 > fcCnts
[best1
] + fcCnts
[best2
]) {
1098 if (g_debugMode
== 2) prnt("DEBUG countfc: fc is too large: %zu > %u. Not psk or fsk", (size
- 180) / fcH
/ 3, fcCnts
[best1
] + fcCnts
[best2
]);
1099 return 0; //lots of waves not psk or fsk
1101 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1103 uint16_t fcs
= (((uint16_t)fcH
) << 8) | fcL
;
1104 if (fskAdj
) return fcs
;
1105 return (uint16_t)fcLens
[best2
] << 8 | fcLens
[best1
];
1109 //detect psk clock by reading each phase shift
1110 // a phase shift is determined by measuring the sample length of each wave
1111 int DetectPSKClock(uint8_t *dest
, size_t size
, int clock
, size_t *firstPhaseShift
, uint8_t *curPhase
, uint8_t *fc
) {
1112 uint8_t clk
[] = {255, 16, 32, 40, 50, 64, 100, 128, 255}; //255 is not a valid clock
1113 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1115 if (size
< 160 + 20) return 0;
1116 // size must be larger than 20 here, and 160 later on.
1117 if (size
< loopCnt
) loopCnt
= size
- 20;
1119 uint16_t fcs
= countFC(dest
, size
, 0);
1123 if (g_debugMode
== 2) prnt("DEBUG PSK: FC: %d, FC2: %d", *fc
, fcs
>> 8);
1125 if ((fcs
>> 8) == 10 && *fc
== 8) return 0;
1127 if (*fc
!= 2 && *fc
!= 4 && *fc
!= 8) return 0;
1130 size_t waveEnd
, firstFullWave
= 0;
1133 uint16_t waveLenCnt
, fullWaveLen
= 0;
1134 uint16_t bestErr
[] = {1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000};
1135 uint16_t peaksdet
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
1137 //find start of modulating data in trace
1138 size_t i
= findModStart(dest
, size
, *fc
);
1140 firstFullWave
= pskFindFirstPhaseShift(dest
, size
, curPhase
, i
, *fc
, &fullWaveLen
);
1141 if (firstFullWave
== 0) {
1142 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1143 // so skip a little to ensure we are past any Start Signal
1144 firstFullWave
= 160;
1148 *firstPhaseShift
= firstFullWave
;
1149 if (g_debugMode
== 2) prnt("DEBUG PSK: firstFullWave: %zu, waveLen: %d", firstFullWave
, fullWaveLen
);
1151 // Avoid autodetect if user selected a clock
1152 for (uint8_t validClk
= 1; validClk
< 8; validClk
++) {
1153 if (clock
== clk
[validClk
]) return (clock
);
1156 //test each valid clock from greatest to smallest to see which lines up
1157 for (clkCnt
= 7; clkCnt
>= 1 ; clkCnt
--) {
1158 uint8_t tol
= *fc
/ 2;
1159 size_t lastClkBit
= firstFullWave
; //set end of wave as clock align
1160 size_t waveStart
= 0;
1161 uint16_t errCnt
= 0;
1162 uint16_t peakcnt
= 0;
1163 if (g_debugMode
== 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %zu", clk
[clkCnt
], lastClkBit
);
1165 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< loopCnt
- 2; i
++) {
1166 //top edge of wave = start of new wave
1167 if (dest
[i
] < dest
[i
+ 1] && dest
[i
+ 1] >= dest
[i
+ 2]) {
1168 if (waveStart
== 0) {
1172 waveLenCnt
= waveEnd
- waveStart
;
1173 if (waveLenCnt
> *fc
) {
1174 //if this wave is a phase shift
1175 if (g_debugMode
== 2) prnt("DEBUG PSK: phase shift at: %zu, len: %d, nextClk: %zu, i: %zu, fc: %d", waveStart
, waveLenCnt
, lastClkBit
+ clk
[clkCnt
] - tol
, i
+ 1, *fc
);
1176 if (i
+ 1 >= lastClkBit
+ clk
[clkCnt
] - tol
) { //should be a clock bit
1178 lastClkBit
+= clk
[clkCnt
];
1179 } else if (i
< lastClkBit
+ 8) {
1180 //noise after a phase shift - ignore
1181 } else { //phase shift before supposed to based on clock
1184 } else if (i
+ 1 > lastClkBit
+ clk
[clkCnt
] + tol
+ *fc
) {
1185 lastClkBit
+= clk
[clkCnt
]; //no phase shift but clock bit
1191 if (errCnt
== 0) return clk
[clkCnt
];
1192 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
] = errCnt
;
1193 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
] = peakcnt
;
1195 //all tested with errors
1196 //return the highest clk with the most peaks found
1198 for (i
= 7; i
>= 1; i
--) {
1199 if (peaksdet
[i
] > peaksdet
[best
])
1202 if (g_debugMode
== 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d", clk
[i
], peaksdet
[i
], bestErr
[i
], clk
[best
]);
1208 //detects the bit clock for FSK given the high and low Field Clocks
1209 uint8_t detectFSKClk(uint8_t *bits
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
, int *firstClockEdge
) {
1214 uint8_t clk
[] = {8, 16, 32, 40, 50, 64, 100, 128, 0};
1215 uint16_t rfLens
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
1216 uint8_t rfCnts
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
1217 uint8_t rfLensFnd
= 0;
1218 uint8_t lastFCcnt
= 0;
1219 uint16_t fcCounter
= 0;
1220 uint16_t rfCounter
= 0;
1221 uint8_t firstBitFnd
= 0;
1223 uint8_t fcTol
= ((fcHigh
* 100 - fcLow
* 100) / 2 + 50) / 100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1225 // prime i to first peak / up transition
1226 for (i
= 160; i
< size
- 20; i
++)
1227 if (bits
[i
] > bits
[i
- 1] && bits
[i
] >= bits
[i
+ 1])
1230 for (; i
< size
- 20; i
++) {
1234 if (bits
[i
] <= bits
[i
- 1] || bits
[i
] < bits
[i
+ 1])
1237 // if we got less than the small fc + tolerance then set it to the small fc
1238 // if it is inbetween set it to the last counter
1239 if (fcCounter
< fcHigh
&& fcCounter
> fcLow
)
1240 fcCounter
= lastFCcnt
;
1241 else if (fcCounter
< fcLow
+ fcTol
)
1243 else //set it to the large fc
1246 //look for bit clock (rf/xx)
1247 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)) {
1248 //not the same size as the last wave - start of new bit sequence
1249 if (firstBitFnd
> 1) { //skip first wave change - probably not a complete bit
1250 for (int ii
= 0; ii
< 15; ii
++) {
1251 if (rfLens
[ii
] >= (rfCounter
- 4) && rfLens
[ii
] <= (rfCounter
+ 4)) {
1257 if (rfCounter
> 0 && rfLensFnd
< 15) {
1258 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1259 rfCnts
[rfLensFnd
]++;
1260 rfLens
[rfLensFnd
++] = rfCounter
;
1263 *firstClockEdge
= i
;
1267 lastFCcnt
= fcCounter
;
1271 uint8_t rfHighest
= 15, rfHighest2
= 15, rfHighest3
= 15;
1273 for (i
= 0; i
< 15; i
++) {
1274 //get highest 2 RF values (might need to get more values to compare or compare all?)
1275 if (rfCnts
[i
] > rfCnts
[rfHighest
]) {
1276 rfHighest3
= rfHighest2
;
1277 rfHighest2
= rfHighest
;
1279 } else if (rfCnts
[i
] > rfCnts
[rfHighest2
]) {
1280 rfHighest3
= rfHighest2
;
1282 } else if (rfCnts
[i
] > rfCnts
[rfHighest3
]) {
1285 if (g_debugMode
== 2)
1286 prnt("DEBUG FSK: RF %d, cnts %d", rfLens
[i
], rfCnts
[i
]);
1288 // set allowed clock remainder tolerance to be 1 large field clock length+1
1289 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1290 uint8_t tol1
= fcHigh
+ 1;
1292 if (g_debugMode
== 2)
1293 prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d", rfLens
[rfHighest
], rfLens
[rfHighest2
], rfLens
[rfHighest3
]);
1295 // loop to find the highest clock that has a remainder less than the tolerance
1296 // compare samples counted divided by
1297 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1299 for (; m
>= 2; m
--) {
1300 if (rfLens
[rfHighest
] % clk
[m
] < tol1
|| rfLens
[rfHighest
] % clk
[m
] > clk
[m
] - tol1
) {
1301 if (rfLens
[rfHighest2
] % clk
[m
] < tol1
|| rfLens
[rfHighest2
] % clk
[m
] > clk
[m
] - tol1
) {
1302 if (rfLens
[rfHighest3
] % clk
[m
] < tol1
|| rfLens
[rfHighest3
] % clk
[m
] > clk
[m
] - tol1
) {
1303 if (g_debugMode
== 2)
1304 prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance", clk
[m
]);
1311 if (m
< 2) return 0; // oops we went too far
1317 // **********************************************************************************************
1318 // --------------------Modulation Demods &/or Decoding Section-----------------------------------
1319 // **********************************************************************************************
1322 // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index...
1323 static bool findST(int *stStopLoc
, int *stStartIdx
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int clk
, int tol
, int buffSize
, size_t *i
) {
1324 if (buffSize
< *i
+ 4) return false;
1326 for (; *i
< buffSize
- 4; *i
+= 1) {
1327 *stStartIdx
+= lowToLowWaveLen
[*i
]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now...
1328 if (lowToLowWaveLen
[*i
] >= clk
* 1 - tol
&& lowToLowWaveLen
[*i
] <= (clk
* 2) + tol
&& highToLowWaveLen
[*i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1329 if (lowToLowWaveLen
[*i
+ 1] >= clk
* 2 - tol
&& lowToLowWaveLen
[*i
+ 1] <= clk
* 2 + tol
&& highToLowWaveLen
[*i
+ 1] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1330 if (lowToLowWaveLen
[*i
+ 2] >= (clk
* 3) / 2 - tol
&& lowToLowWaveLen
[*i
+ 2] <= clk
* 2 + tol
&& highToLowWaveLen
[*i
+ 2] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1331 if (lowToLowWaveLen
[*i
+ 3] >= clk
* 1 - tol
&& lowToLowWaveLen
[*i
+ 3] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1332 *stStopLoc
= *i
+ 3;
1342 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1343 bool DetectST(uint8_t *buffer
, size_t *size
, int *foundclock
, size_t *ststart
, size_t *stend
) {
1344 size_t bufsize
= *size
;
1345 //need to loop through all samples and identify our clock, look for the ST pattern
1348 int j
= 0, high
, low
, skip
= 0, start
= 0, end
= 0, minClk
= 255;
1350 //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow]
1351 int tmpbuff
[bufsize
/ LOWEST_DEFAULT_CLOCK
]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1352 int waveLen
[bufsize
/ LOWEST_DEFAULT_CLOCK
]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed...
1353 //size_t testsize = (bufsize < 512) ? bufsize : 512;
1356 memset(tmpbuff
, 0, sizeof(tmpbuff
));
1357 memset(waveLen
, 0, sizeof(waveLen
));
1359 if (!loadWaveCounters(buffer
, bufsize
, tmpbuff
, waveLen
, &j
, &skip
, &minClk
, &high
, &low
)) return false;
1360 // set clock - might be able to get this externally and remove this work...
1361 clk
= getClosestClock(minClk
);
1362 // clock not found - ERROR
1364 if (g_debugMode
== 2) prnt("DEBUG STT: clock not found - quitting");
1370 if (!findST(&start
, &skip
, tmpbuff
, waveLen
, clk
, tol
, j
, &i
)) {
1371 // first ST not found - ERROR
1372 if (g_debugMode
== 2) prnt("DEBUG STT: first STT not found - quitting");
1375 if (g_debugMode
== 2) prnt("DEBUG STT: first STT found at wave: %i, skip: %i, j=%i", start
, skip
, j
);
1377 if (waveLen
[i
+ 2] > clk
* 1 + tol
)
1382 // skip over the remainder of ST
1383 skip
+= clk
* 7 / 2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1385 // now do it again to find the end
1389 if (!findST(&dummy1
, &end
, tmpbuff
, waveLen
, clk
, tol
, j
, &i
)) {
1390 //didn't find second ST - ERROR
1391 if (g_debugMode
== 2) prnt("DEBUG STT: second STT not found - quitting");
1395 if (g_debugMode
== 2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip
, end
, end
- skip
, clk
, (end
- skip
) / clk
, phaseoff
);
1396 //now begin to trim out ST so we can use normal demod cmds
1398 size_t datalen
= end
- start
;
1399 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1400 if (clk
- (datalen
% clk
) <= clk
/ 8) {
1401 // padd the amount off - could be problematic... but shouldn't happen often
1402 datalen
+= clk
- (datalen
% clk
);
1403 } else if ((datalen
% clk
) <= clk
/ 8) {
1404 // padd the amount off - could be problematic... but shouldn't happen often
1405 datalen
-= datalen
% clk
;
1407 if (g_debugMode
== 2) prnt("DEBUG STT: datalen not divisible by clk: %zu %% %d = %zu - quitting", datalen
, clk
, datalen
% clk
);
1410 // if datalen is less than one t55xx block - ERROR
1411 if (datalen
/ clk
< 8 * 4) {
1412 if (g_debugMode
== 2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1415 size_t dataloc
= start
;
1416 if (buffer
[dataloc
- (clk
* 4) - (clk
/ 4)] <= low
&& buffer
[dataloc
] <= low
&& buffer
[dataloc
- (clk
* 4)] >= high
) {
1417 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1418 for (i
= 0; i
<= (clk
/ 4); ++i
) {
1419 if (buffer
[dataloc
- (clk
* 4) - i
] <= low
) {
1428 if (g_debugMode
== 2) prnt("DEBUG STT: Starting STT trim - start: %zu, datalen: %zu ", dataloc
, datalen
);
1429 bool firstrun
= true;
1430 // warning - overwriting buffer given with raw wave data with ST removed...
1431 while (dataloc
< bufsize
- (clk
/ 2)) {
1432 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1433 if (buffer
[dataloc
] < high
&& buffer
[dataloc
] > low
&& buffer
[dataloc
+ clk
/ 4] < high
&& buffer
[dataloc
+ clk
/ 4] > low
) {
1434 for (i
= 0; i
< clk
/ 2 - tol
; ++i
) {
1435 buffer
[dataloc
+ i
] = high
+ 5;
1437 } //test for small spike outlier (high between two lows) in the case of very strong waves
1438 if (buffer
[dataloc
] > low
&& buffer
[dataloc
+ clk
/ 4] <= low
) {
1439 for (i
= 0; i
< clk
/ 4; ++i
) {
1440 buffer
[dataloc
+ i
] = buffer
[dataloc
+ clk
/ 4];
1445 *ststart
= dataloc
- (clk
* 4);
1448 for (i
= 0; i
< datalen
; ++i
) {
1449 if (i
+ newloc
< bufsize
) {
1450 if (i
+ newloc
< dataloc
)
1451 buffer
[i
+ newloc
] = buffer
[dataloc
];
1457 //skip next ST - we just assume it will be there from now on...
1458 if (g_debugMode
== 2) prnt("DEBUG STT: skipping STT at %zu to %zu", dataloc
, dataloc
+ (clk
* 4));
1466 //take 11 10 01 11 00 and make 01100 ... miller decoding
1467 //check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row
1468 //decodes miller encoded binary
1469 //NOTE askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as!
1471 static int millerRawDecode(uint8_t *bits, size_t *size, int invert) {
1472 if (*size < 16) return -1;
1474 uint16_t MaxBits = 512, errCnt = 0;
1475 size_t i, bitCnt = 0;
1476 uint8_t alignCnt = 0, curBit = bits[0], alignedIdx = 0, halfClkErr = 0;
1478 //find alignment, needs 4 1s or 0s to properly align
1479 for (i = 1; i < *size - 1; i++) {
1480 alignCnt = (bits[i] == curBit) ? alignCnt + 1 : 0;
1482 if (alignCnt == 4) break;
1484 // for now error if alignment not found. later add option to run it with multiple offsets...
1485 if (alignCnt != 4) {
1486 if (g_debugMode) prnt("ERROR MillerDecode: alignment not found so either your bits is not miller or your data does not have a 101 in it");
1489 alignedIdx = (i - 1) % 2;
1490 for (i = alignedIdx; i < *size - 3; i += 2) {
1491 halfClkErr = (uint8_t)((halfClkErr << 1 | bits[i]) & 0xFF);
1492 if ((halfClkErr & 0x7) == 5 || (halfClkErr & 0x7) == 2 || (i > 2 && (halfClkErr & 0x7) == 0) || (halfClkErr & 0x1F) == 0x1F) {
1497 bits[bitCnt++] = bits[i] ^ bits[i + 1] ^ invert;
1499 if (bitCnt > MaxBits) break;
1507 //take 01 or 10 = 1 and 11 or 00 = 0
1508 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
1509 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
1510 int BiphaseRawDecode(uint8_t *bits
, size_t *size
, int *offset
, int invert
) {
1512 if (*size
< 51) return -1;
1514 if (*offset
< 0) *offset
= 0;
1516 uint16_t bitnum
= 0;
1517 uint16_t errCnt
= 0;
1519 uint16_t maxbits
= 512;
1521 //check for phase change faults - skip one sample if faulty
1522 bool offsetA
= true, offsetB
= true;
1523 for (; i
< *offset
+ 48; i
+= 2) {
1524 if (bits
[i
+ 1] == bits
[i
+ 2]) offsetA
= false;
1525 if (bits
[i
+ 2] == bits
[i
+ 3]) offsetB
= false;
1527 if (!offsetA
&& offsetB
) ++*offset
;
1530 for (i
= *offset
; i
< *size
- 1; i
+= 2) {
1531 //check for phase error
1532 if (bits
[i
+ 1] == bits
[i
+ 2]) {
1536 if ((bits
[i
] == 1 && bits
[i
+ 1] == 0) || (bits
[i
] == 0 && bits
[i
+ 1] == 1)) {
1537 bits
[bitnum
++] = 1 ^ invert
;
1538 } else if ((bits
[i
] == 0 && bits
[i
+ 1] == 0) || (bits
[i
] == 1 && bits
[i
+ 1] == 1)) {
1539 bits
[bitnum
++] = invert
;
1544 if (bitnum
> maxbits
) break;
1551 //take 10 and 01 and manchester decode
1552 //run through 2 times and take least errCnt
1553 // "," indicates 00 or 11 wrong bit
1554 uint16_t manrawdecode(uint8_t *bits
, size_t *size
, uint8_t invert
, uint8_t *alignPos
) {
1557 if (*size
< 16) return 0xFFFF;
1559 int errCnt
= 0, bestErr
= 1000;
1560 uint16_t bitnum
= 0, maxBits
= 512, bestRun
= 0;
1563 //find correct start position [alignment]
1564 for (uint8_t k
= 0; k
< 2; k
++) {
1566 for (i
= k
; i
< *size
- 1; i
+= 2) {
1568 if (bits
[i
] == bits
[i
+ 1])
1575 if (bestErr
> errCnt
) {
1578 if (g_debugMode
== 2) prnt("DEBUG manrawdecode: bestErr %d | bestRun %u", bestErr
, bestRun
);
1583 *alignPos
= bestRun
;
1585 for (i
= bestRun
; i
< *size
; i
+= 2) {
1586 if (bits
[i
] == 1 && (bits
[i
+ 1] == 0)) {
1587 bits
[bitnum
++] = invert
;
1588 } else if ((bits
[i
] == 0) && bits
[i
+ 1] == 1) {
1589 bits
[bitnum
++] = invert
^ 1;
1593 if (bitnum
> maxBits
) break;
1600 //demodulates strong heavily clipped samples
1601 //RETURN: num of errors. if 0, is ok.
1602 static uint16_t cleanAskRawDemod(uint8_t *bits
, size_t *size
, int clk
, int invert
, int high
, int low
, int *startIdx
) {
1604 size_t bitCnt
= 0, smplCnt
= 1, errCnt
= 0, pos
= 0;
1605 uint8_t cl_4
= clk
/ 4;
1606 uint8_t cl_2
= clk
/ 2;
1607 bool waveHigh
= true;
1609 getNextHigh(bits
, *size
, high
, &pos
);
1610 // getNextLow(bits, *size, low, &pos);
1612 // do not skip first transition
1613 if ((pos
> cl_2
- cl_4
- 1) && (pos
<= clk
+ cl_4
+ 1)) {
1614 bits
[bitCnt
++] = invert
^ 1;
1617 // sample counts, like clock = 32.. it tries to find 32/4 = 8, 32/2 = 16
1618 for (size_t i
= pos
; i
< *size
; i
++) {
1619 if (bits
[i
] >= high
&& waveHigh
) {
1621 } else if (bits
[i
] <= low
&& !waveHigh
) {
1625 if ((bits
[i
] >= high
&& !waveHigh
) || (bits
[i
] <= low
&& waveHigh
)) {
1627 // 8 :: 8-2-1 = 5 8+2+1 = 11
1628 // 16 :: 16-4-1 = 11 16+4+1 = 21
1629 // 32 :: 32-8-1 = 23 32+8+1 = 41
1630 // 64 :: 64-16-1 = 47 64+16+1 = 81
1631 if (smplCnt
> clk
- cl_4
- 1) { //full clock
1633 if (smplCnt
> clk
+ cl_4
+ 1) {
1636 if (g_debugMode
== 2) prnt("DEBUG ASK: cleanAskRawDemod ASK Modulation Error FULL at: %zu [%zu > %u]", i
, smplCnt
, clk
+ cl_4
+ 1);
1638 } else if (waveHigh
) {
1639 bits
[bitCnt
++] = invert
;
1640 bits
[bitCnt
++] = invert
;
1642 bits
[bitCnt
++] = invert
^ 1;
1643 bits
[bitCnt
++] = invert
^ 1;
1645 if (*startIdx
== 0) {
1646 *startIdx
= i
- clk
;
1647 if (g_debugMode
== 2) prnt("DEBUG ASK: cleanAskRawDemod minus clock [%d]", *startIdx
);
1649 waveHigh
= !waveHigh
;
1653 } else if (smplCnt
> cl_2
- cl_4
- 1) { //half clock
1655 if (smplCnt
> cl_2
+ cl_4
+ 1) { //too many samples
1657 if (g_debugMode
== 2) prnt("DEBUG ASK: cleanAskRawDemod ASK Modulation Error HALF at: %zu [%zu]", i
, smplCnt
);
1662 bits
[bitCnt
++] = invert
;
1664 bits
[bitCnt
++] = invert
^ 1;
1667 if (*startIdx
== 0) {
1668 *startIdx
= i
- cl_2
;
1669 if (g_debugMode
== 2) prnt("DEBUG ASK: cleanAskRawDemod minus half clock [%d]", *startIdx
);
1671 waveHigh
= !waveHigh
;
1675 //transition bit oops
1677 } else { //haven't hit new high or new low yet
1685 if (g_debugMode
== 2) prnt("DEBUG ASK: cleanAskRawDemod Startidx %d", *startIdx
);
1691 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
1692 int askdemod_ext(uint8_t *bits
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
, int *startIdx
) {
1694 if (*size
== 0) return -1;
1696 if (signalprop
.isnoise
) {
1697 if (g_debugMode
== 2) prnt("DEBUG (askdemod_ext) just noise detected - aborting");
1701 int start
= DetectASKClock(bits
, *size
, clk
, maxErr
);
1702 if (*clk
== 0 || start
< 0) return -3;
1704 if (*invert
!= 1) *invert
= 0;
1706 // amplify signal data.
1708 if (amp
== 1) askAmp(bits
, *size
);
1710 if (g_debugMode
== 2) prnt("DEBUG (askdemod_ext) clk %d, beststart %d, amp %d", *clk
, start
, amp
);
1712 // Detect high and lows
1713 //25% clip in case highs and lows aren't clipped [marshmellow]
1715 getHiLo(&high
, &low
, 75, 75);
1718 // if clean clipped waves detected run alternate demod
1719 if (DetectCleanAskWave(bits
, *size
, high
, low
)) {
1721 //start pos from detect ask clock is 1/2 clock offset
1722 // NOTE: can be negative (demod assumes rest of wave was there)
1723 *startIdx
= start
- (*clk
/ 2);
1724 if (g_debugMode
== 2) prnt("DEBUG: (askdemod_ext) Clean wave detected --- startindex %d", *startIdx
);
1726 errCnt
= cleanAskRawDemod(bits
, size
, *clk
, *invert
, high
, low
, startIdx
);
1728 if (askType
) { //ask/manchester
1729 uint8_t alignPos
= 0;
1730 errCnt
= manrawdecode(bits
, size
, 0, &alignPos
);
1731 *startIdx
+= ((*clk
/ 2) * alignPos
);
1733 if (g_debugMode
== 2) prnt("DEBUG: (askdemod_ext) CLEAN: startIdx %i, alignPos %u , bestError %zu", *startIdx
, alignPos
, errCnt
);
1738 *startIdx
= start
- (*clk
/ 2);
1739 if (g_debugMode
== 2) prnt("DEBUG: (askdemod_ext) Weak wave detected: startIdx %i", *startIdx
);
1741 int lastBit
; // set first clock check - can go negative
1742 size_t i
, bitnum
= 0; // output counter
1744 uint8_t tol
= 0; // clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1745 if (*clk
<= 32) tol
= 1; // clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1746 size_t MaxBits
= 3072; // max bits to collect
1747 lastBit
= start
- *clk
;
1749 for (i
= start
; i
< *size
; ++i
) {
1750 if (i
- lastBit
>= *clk
- tol
) {
1751 if (bits
[i
] >= high
) {
1752 bits
[bitnum
++] = *invert
;
1753 } else if (bits
[i
] <= low
) {
1754 bits
[bitnum
++] = *invert
^ 1;
1755 } else if (i
- lastBit
>= *clk
+ tol
) {
1757 // if (g_debugMode == 2) prnt("DEBUG: (askdemod_ext) Modulation Error at: %u", i);
1761 } else { //in tolerance - looking for peak
1766 } else if (i
- lastBit
>= (*clk
/ 2 - tol
) && !midBit
&& !askType
) {
1767 if (bits
[i
] >= high
) {
1768 bits
[bitnum
++] = *invert
;
1769 } else if (bits
[i
] <= low
) {
1770 bits
[bitnum
++] = *invert
^ 1;
1771 } else if (i
- lastBit
>= *clk
/ 2 + tol
) {
1773 bits
[bitnum
] = bits
[bitnum
- 1];
1779 } else { //in tolerance - looking for peak
1784 if (bitnum
>= MaxBits
) break;
1790 int askdemod(uint8_t *bits
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
) {
1792 return askdemod_ext(bits
, size
, clk
, invert
, maxErr
, amp
, askType
, &start
);
1795 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1796 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1797 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int *startIdx
) {
1799 if (signalprop
.isnoise
) {
1800 if (g_debugMode
== 2) prnt("DEBUG nrzRawDemod: just noise detected - quitting");
1804 size_t clkStartIdx
= 0;
1805 *clk
= DetectNRZClock(dest
, *size
, *clk
, &clkStartIdx
);
1806 if (*clk
== 0) return -2;
1811 getHiLo(&high
, &low
, 75, 75);
1814 //convert wave samples to 1's and 0's
1815 for (i
= 20; i
< *size
- 20; i
++) {
1816 if (dest
[i
] >= high
) bit
= 1;
1817 if (dest
[i
] <= low
) bit
= 0;
1820 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1823 for (i
= 21; i
< *size
- 20; i
++) {
1824 //if transition detected or large number of same bits - store the passed bits
1825 if (dest
[i
] != dest
[i
- 1] || (i
- lastBit
) == (10 * *clk
)) {
1826 memset(dest
+ numBits
, dest
[i
- 1] ^ *invert
, (i
- lastBit
+ (*clk
/ 4)) / *clk
);
1827 numBits
+= (i
- lastBit
+ (*clk
/ 4)) / *clk
;
1829 *startIdx
= i
- (numBits
* *clk
);
1830 if (g_debugMode
== 2) prnt("DEBUG NRZ: startIdx %i", *startIdx
);
1839 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
1840 static size_t fsk_wave_demod(uint8_t *dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
, int *startIdx
) {
1842 if (size
< 1024) return 0; // not enough samples
1844 if (fchigh
== 0) fchigh
= 10;
1845 if (fclow
== 0) fclow
= 8;
1847 //set the threshold close to 0 (graph) or 128 std to avoid static
1848 size_t preLastSample
, LastSample
= 0;
1849 size_t currSample
= 0, last_transition
= 0;
1850 size_t idx
, numBits
= 0;
1852 //find start of modulating data in trace
1853 idx
= findModStart(dest
, size
, fchigh
);
1854 // Need to threshold first sample
1855 dest
[idx
] = (dest
[idx
] < signalprop
.mean
) ? 0 : 1;
1857 last_transition
= idx
;
1860 // Definition: cycles between consecutive lo-hi transitions
1861 // Lets define some expected lengths. FSK1 is easier since it has bigger differences between.
1863 // 50/8 = 6 | 40/8 = 5 | 64/8 = 8
1864 // 50/5 = 10 | 40/5 = 8 | 64/5 = 12
1867 // 50/10 = 5 | 40/10 = 4 | 64/10 = 6
1868 // 50/8 = 6 | 40/8 = 5 | 64/8 = 8
1870 // count cycles between consecutive lo-hi transitions,
1871 // in practice due to noise etc we may end up with anywhere
1872 // To allow fuzz would mean +-1 on expected cycle width.
1874 // 50/8 = 6 (5-7) | 40/8 = 5 (4-6) | 64/8 = 8 (7-9)
1875 // 50/5 = 10 (9-11) | 40/5 = 8 (7-9) | 64/5 = 12 (11-13)
1878 // 50/10 = 5 (4-6) | 40/10 = 4 (3-5) | 64/10 = 6 (5-7)
1879 // 50/8 = 6 (5-7) | 40/8 = 5 (4-6) | 64/8 = 8 (7-9)
1881 // It easy to see to the overgaping, but luckily we the group value also, like 1111000001111
1882 // to separate between which bit to demodulate to.
1885 // count width from 0-1 transition to 1-0.
1886 // determine the width is withing FUZZ_min and FUZZ_max tolerances
1887 // width should be divided with exp_one. i:e 6+7+6+2=21, 21/5 = 4,
1888 // the 1-0 to 0-1 width should be divided with exp_zero. Ie: 3+5+6+7 = 21/6 = 3
1890 for (; idx
< size
- 20; idx
++) {
1892 // threshold current value
1893 dest
[idx
] = (dest
[idx
] < signalprop
.mean
) ? 0 : 1;
1895 // Check for 0->1 transition
1896 if (dest
[idx
- 1] < dest
[idx
]) {
1897 preLastSample
= LastSample
;
1898 LastSample
= currSample
;
1899 currSample
= idx
- last_transition
;
1900 if (currSample
< (fclow
- 2)) { //0-5 = garbage noise (or 0-3)
1901 //do nothing with extra garbage
1902 } else if (currSample
< (fchigh
- 1)) { //6-8 = 8 sample waves (or 3-6 = 5)
1903 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
1904 if (numBits
> 1 && LastSample
> (fchigh
- 2) && (preLastSample
< (fchigh
- 1))) {
1905 dest
[numBits
- 1] = 1;
1907 dest
[numBits
++] = 1;
1910 if (numBits
> 0 && *startIdx
== 0)
1911 *startIdx
= idx
- fclow
;
1913 } else if (currSample
> (fchigh
+ 1) && numBits
< 3) { //12 + and first two bit = unusable garbage
1914 //do nothing with beginning garbage and reset.. should be rare..
1916 } else if (currSample
== (fclow
+ 1) && LastSample
== (fclow
- 1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
1917 dest
[numBits
++] = 1;
1918 if (numBits
> 0 && *startIdx
== 0) {
1919 *startIdx
= idx
- fclow
;
1921 } else { //9+ = 10 sample waves (or 6+ = 7)
1922 dest
[numBits
++] = 0;
1923 if (numBits
> 0 && *startIdx
== 0) {
1924 *startIdx
= idx
- fchigh
;
1927 last_transition
= idx
;
1930 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
1933 //translate 11111100000 to 10
1934 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
1935 static size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t clk
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int *startIdx
) {
1937 uint8_t lastval
= dest
[0];
1941 uint8_t hclk
= clk
/ 2;
1943 for (i
= 1; i
< size
; i
++) {
1945 if (dest
[i
] == lastval
) continue; //skip until we hit a transition
1947 //find out how many bits (n) we collected (use 1/2 clk tolerance)
1949 if (dest
[i
- 1] == 1)
1950 //if lastval was 1, we have a 1->0 crossing
1951 n
= (n
* fclow
+ hclk
) / clk
;
1954 n
= (n
* fchigh
+ hclk
) / clk
;
1959 //first transition - save startidx
1961 if (lastval
== 1) { //high to low
1962 *startIdx
+= (fclow
* i
) - (n
* clk
);
1963 if (g_debugMode
== 2) prnt("DEBUG (aggregate_bits) FSK startIdx %i, fclow*idx %zu, n*clk %u", *startIdx
, fclow
* i
, n
* clk
);
1965 *startIdx
+= (fchigh
* i
) - (n
* clk
);
1966 if (g_debugMode
== 2) prnt("DEBUG (aggregate_bits) FSK startIdx %i, fchigh*idx %zu, n*clk %u", *startIdx
, fchigh
* i
, n
* clk
);
1970 //add to our destination the bits we collected
1971 memset(dest
+ numBits
, dest
[i
- 1] ^ invert
, n
);
1979 // if valid extra bits at the end were all the same frequency - add them in
1980 if (n
> clk
/ fchigh
) {
1981 if (dest
[i
- 2] == 1) {
1982 n
= (n
* fclow
+ clk
/ 2) / clk
;
1984 n
= (n
* fchigh
+ clk
/ 2) / clk
;
1986 memset(dest
+ numBits
, dest
[i
- 1] ^ invert
, n
);
1988 if (g_debugMode
== 2) prnt("DEBUG (aggregate_bits) extra bits in the end");
1993 //by marshmellow (from holiman's base)
1994 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
1995 size_t fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int *start_idx
) {
1996 if (signalprop
.isnoise
) return 0;
1998 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
, start_idx
);
1999 if (g_debugMode
== 2) prnt("DEBUG (fskdemod) got %zu bits", size
);
2000 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
, start_idx
);
2001 if (g_debugMode
== 2) prnt("DEBUG (fskdemod) got %zu bits", size
);
2006 // convert psk1 demod to psk2 demod
2007 // only transition waves are 1s
2008 //TODO: Iceman - hard coded value 7, should be #define
2009 void psk1TOpsk2(uint8_t *bits
, size_t size
) {
2010 uint8_t lastbit
= bits
[0];
2011 for (size_t i
= 1; i
< size
; i
++) {
2013 if (bits
[i
] == 7) continue;
2015 if (lastbit
!= bits
[i
]) {
2025 // convert psk2 demod to psk1 demod
2026 // from only transition waves are 1s to phase shifts change bit
2027 void psk2TOpsk1(uint8_t *bits
, size_t size
) {
2029 for (size_t i
= 0; i
< size
; i
++) {
2037 //by marshmellow - demodulate PSK1 wave
2038 //uses wave lengths (# Samples)
2039 //TODO: Iceman - hard coded value 7, should be #define
2040 int pskRawDemod_ext(uint8_t *dest
, size_t *size
, int *clock
, int *invert
, int *startIdx
) {
2043 if (*size
< 170) return -1;
2045 uint8_t curPhase
= *invert
;
2047 size_t i
= 0, numBits
= 0, waveStart
= 1, waveEnd
, firstFullWave
= 0, lastClkBit
= 0;
2048 uint16_t fullWaveLen
= 0, waveLenCnt
;
2049 //uint16_t avgWaveVal = 0;
2050 uint16_t errCnt
= 0, errCnt2
= 0;
2052 *clock
= DetectPSKClock(dest
, *size
, *clock
, &firstFullWave
, &curPhase
, &fc
);
2053 if (*clock
<= 0) return -1;
2054 //if clock detect found firstfullwave...
2055 uint16_t tol
= fc
/ 2;
2056 if (firstFullWave
== 0) {
2057 //find start of modulating data in trace
2058 i
= findModStart(dest
, *size
, fc
);
2059 //find first phase shift
2060 firstFullWave
= pskFindFirstPhaseShift(dest
, *size
, &curPhase
, i
, fc
, &fullWaveLen
);
2061 if (firstFullWave
== 0) {
2062 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
2063 // so skip a little to ensure we are past any Start Signal
2064 firstFullWave
= 160;
2065 memset(dest
, curPhase
, firstFullWave
/ *clock
);
2067 memset(dest
, curPhase
^ 1, firstFullWave
/ *clock
);
2070 memset(dest
, curPhase
^ 1, firstFullWave
/ *clock
);
2073 numBits
+= (firstFullWave
/ *clock
);
2074 *startIdx
= firstFullWave
- (*clock
* numBits
) + 2;
2075 //set start of wave as clock align
2076 lastClkBit
= firstFullWave
;
2077 if (g_debugMode
== 2) {
2078 prnt("DEBUG PSK: firstFullWave: %zu, waveLen: %u, startIdx %i", firstFullWave
, fullWaveLen
, *startIdx
);
2079 prnt("DEBUG PSK: clk: %d, lastClkBit: %zu, fc: %u", *clock
, lastClkBit
, fc
);
2083 dest
[numBits
++] = curPhase
; //set first read bit
2084 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
- 3; i
++) {
2085 //top edge of wave = start of new wave
2086 if (dest
[i
] + fc
< dest
[i
+ 1] && dest
[i
+ 1] >= dest
[i
+ 2]) {
2087 if (waveStart
== 0) {
2089 //avgWaveVal = dest[i + 1];
2092 waveLenCnt
= waveEnd
- waveStart
;
2093 if (waveLenCnt
> fc
) {
2094 //this wave is a phase shift
2096 prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d"
2099 , lastClkBit + *clock - tol
2103 if (i
+ 1 >= lastClkBit
+ *clock
- tol
) { //should be a clock bit
2105 dest
[numBits
++] = curPhase
;
2106 lastClkBit
+= *clock
;
2107 } else if (i
< lastClkBit
+ 10 + fc
) {
2108 //noise after a phase shift - ignore
2109 } else { //phase shift before supposed to based on clock
2111 dest
[numBits
++] = 7;
2113 } else if (i
+ 1 > lastClkBit
+ *clock
+ tol
+ fc
) {
2114 lastClkBit
+= *clock
; //no phase shift but clock bit
2115 dest
[numBits
++] = curPhase
;
2116 } else if (waveLenCnt
< fc
- 1) { //wave is smaller than field clock (shouldn't happen often)
2118 if (errCnt2
> 101) return errCnt2
;
2119 //avgWaveVal += dest[i + 1];
2126 //avgWaveVal += dest[i + 1];
2132 int pskRawDemod(uint8_t *dest
, size_t *size
, int *clock
, int *invert
) {
2134 return pskRawDemod_ext(dest
, size
, clock
, invert
, &start_idx
);
2138 // **********************************************************************************************
2139 // -----------------Tag format detection section-------------------------------------------------
2140 // **********************************************************************************************
2144 // FSK Demod then try to locate an AWID ID
2145 int detectAWID(uint8_t *dest
, size_t *size
, int *waveStartIdx
) {
2146 //make sure buffer has enough data (96bits * 50clock samples)
2147 if (*size
< 96 * 50) return -1;
2149 if (signalprop
.isnoise
) return -2;
2151 // FSK2a demodulator clock 50, invert 1, fcHigh 10, fcLow 8
2152 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8, waveStartIdx
); //awid fsk2a
2154 //did we get a good demod?
2155 if (*size
< 96) return -3;
2157 size_t start_idx
= 0;
2158 uint8_t preamble
[] = {0, 0, 0, 0, 0, 0, 0, 1};
2159 if (!preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &start_idx
))
2160 return -4; //preamble not found
2162 // wrong size? (between to preambles)
2163 if (*size
!= 96) return -5;
2165 return (int)start_idx
;
2169 //takes 1s and 0s and searches for EM410x format - output EM ID
2170 int Em410xDecode(uint8_t *bits
, size_t *size
, size_t *start_idx
, uint32_t *hi
, uint64_t *lo
) {
2172 if (bits
[1] > 1) return -1;
2173 if (*size
< 64) return -2;
2177 // preamble 0111111111
2178 // include 0 in front to help get start pos
2179 uint8_t preamble
[] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1};
2180 if (!preambleSearch(bits
, preamble
, sizeof(preamble
), size
, start_idx
))
2183 bool validShort
= false;
2184 bool validShortExtended
= false;
2185 bool validLong
= false;
2186 *size
= removeEm410xParity(bits
, *start_idx
+ sizeof(preamble
), *size
== 128, &validShort
, &validShortExtended
, &validLong
);
2189 // std em410x format
2191 *lo
= ((uint64_t)(bytebits_to_byte(bits
, 8)) << 32) | (bytebits_to_byte(bits
+ 8, 32));
2195 if (validShortExtended
|| validLong
) {
2196 // store in long em format
2197 *hi
= (bytebits_to_byte(bits
, 24));
2198 *lo
= ((uint64_t)(bytebits_to_byte(bits
+ 24, 32)) << 32) | (bytebits_to_byte(bits
+ 24 + 32, 32));
2200 // 4 = ShortExtended
2201 return ((int)validShortExtended
<< 2) + ((int)validLong
<< 1);
2206 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
2207 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
, int *waveStartIdx
) {
2208 //make sure buffer has data
2209 if (*size
< 96 * 50) return -1;
2211 if (signalprop
.isnoise
) return -2;
2213 // FSK demodulator fsk2a so invert and fc/10/8
2214 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8, waveStartIdx
); //hid fsk2a
2216 //did we get a good demod?
2217 if (*size
< 96 * 2) return -3;
2219 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
2220 size_t start_idx
= 0;
2221 uint8_t preamble
[] = {0, 0, 0, 1, 1, 1, 0, 1};
2222 if (!preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &start_idx
))
2223 return -4; //preamble not found
2225 // wrong size? (between to preambles)
2226 //if (*size != 96) return -5;
2228 size_t num_start
= start_idx
+ sizeof(preamble
);
2229 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
2230 for (size_t idx
= num_start
; (idx
- num_start
) < *size
- sizeof(preamble
); idx
+= 2) {
2231 if (dest
[idx
] == dest
[idx
+ 1]) {
2232 return -5; //not manchester data
2234 *hi2
= (*hi2
<< 1) | (*hi
>> 31);
2235 *hi
= (*hi
<< 1) | (*lo
>> 31);
2236 //Then, shift in a 0 or one into low
2238 if (dest
[idx
] && !dest
[idx
+ 1]) // 1 0
2243 return (int)start_idx
;
2246 int detectIOProx(uint8_t *dest
, size_t *size
, int *waveStartIdx
) {
2247 //make sure buffer has data
2248 if (*size
< 66 * 64) return -1;
2250 if (signalprop
.isnoise
) return -2;
2252 // FSK demodulator RF/64, fsk2a so invert, and fc/10/8
2253 *size
= fskdemod(dest
, *size
, 64, 1, 10, 8, waveStartIdx
); //io fsk2a
2255 //did we get enough demod data?
2256 if (*size
< 64) return -3;
2259 //0 10 20 30 40 50 60
2261 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
2262 //-----------------------------------------------------------------------------
2263 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
2265 //XSF(version)facility:codeone+codetwo
2267 size_t start_idx
= 0;
2268 uint8_t preamble
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
2269 if (!preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &start_idx
))
2270 return -4; //preamble not found
2272 // wrong size? (between to preambles)
2273 if (*size
!= 64) return -5;
2275 if (!dest
[start_idx
+ 8]
2276 && dest
[start_idx
+ 17] == 1
2277 && dest
[start_idx
+ 26] == 1
2278 && dest
[start_idx
+ 35] == 1
2279 && dest
[start_idx
+ 44] == 1
2280 && dest
[start_idx
+ 53] == 1) {
2281 //confirmed proper separator bits found
2282 //return start position
2283 return (int) start_idx
;