made a multi threaded version of ht2crack2search since the file lookups should benefi...
[RRG-proxmark3.git] / common / bruteforce.c
blobb271d0002297bc82a89b2af6473b0beb2dc3377f
1 //-----------------------------------------------------------------------------
2 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU General Public License as published by
6 // the Free Software Foundation, either version 3 of the License, or
7 // (at your option) any later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // See LICENSE.txt for the text of the license.
15 //-----------------------------------------------------------------------------
17 #include "bruteforce.h"
18 #include <string.h>
19 #include <stdio.h>
21 uint8_t charset_digits[] = {
22 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
25 uint8_t charset_uppercase[] = {
26 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K',
27 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'W',
28 'X', 'Y', 'Z'
31 smart_generator_t *smart_generators[] = {
32 smart_generator_byte_repeat,
33 smart_generator_msb_byte_only,
34 smart_generator_nibble_sequence,
35 NULL
39 void bf_generator_init(generator_context_t *ctx, uint8_t mode, uint8_t key_length) {
40 memset(ctx, 0, sizeof(generator_context_t));
41 ctx->mode = mode;
42 ctx->key_length = key_length;
45 int bf_generator_set_charset(generator_context_t *ctx, uint8_t charsets) {
46 if (ctx->mode != BF_MODE_CHARSET) {
47 return -1;
50 if (charsets & BF_CHARSET_DIGITS) {
51 memcpy(ctx->charset, charset_digits, sizeof(charset_digits));
52 ctx->charset_length += sizeof(charset_digits);
55 if (charsets & BF_CHARSET_UPPERCASE) {
56 memcpy(ctx->charset + ctx->charset_length, charset_uppercase, sizeof(charset_uppercase));
57 ctx->charset_length += sizeof(charset_uppercase);
60 return 0;
63 int bf_generate(generator_context_t *ctx) {
65 switch (ctx->mode) {
66 case BF_MODE_RANGE: {
67 return _bf_generate_mode_range(ctx);
69 case BF_MODE_CHARSET: {
70 return _bf_generate_mode_charset(ctx);
72 case BF_MODE_SMART: {
73 return _bf_generate_mode_smart(ctx);
77 return BF_GENERATOR_ERROR;
81 // increments values in array with carryover using modulo limit for each byte
82 // this is used to iterate each byte in key over charset table
83 // returns -1 if incrementing reaches its end
84 int bf_array_increment(uint8_t *data, uint8_t data_len, uint8_t modulo) {
86 // check if we reached max value already
87 uint8_t i;
88 for (i = 0; i < data_len; i++) {
89 if (data[i] < modulo - 1) {
90 break;
94 if (i == data_len) {
95 return -1;
98 for (uint8_t pos = data_len - 1;; pos--) {
100 uint8_t prev_value = ++data[pos];
102 data[pos] = data[pos] % modulo;
104 if (prev_value == data[pos]) {
105 return 0;
106 } else if (pos == 0) {
107 // we cannot carryover to next byte
108 // with the max value check in place before, we should not reach this place
109 return -1;
113 return 0;
116 // get current key casted to 32 bit
117 uint32_t bf_get_key32(const generator_context_t *ctx) {
118 return ctx->current_key & 0xFFFFFFFF;
121 // get current key casted to 48 bit
122 uint64_t bf_get_key48(const generator_context_t *ctx) {
123 return ctx->current_key & 0xFFFFFFFFFFFF;
126 void bf_generator_clear(generator_context_t *ctx) {
127 ctx->flag1 = 0;
128 ctx->flag2 = 0;
129 ctx->flag3 = 0;
130 ctx->counter1 = 0;
131 ctx->counter2 = 0;
134 int _bf_generate_mode_range(generator_context_t *ctx) {
136 if (ctx->key_length != BF_KEY_SIZE_32 && ctx->key_length != BF_KEY_SIZE_48) {
137 return BF_GENERATOR_ERROR;
140 if (ctx->current_key >= ctx->range_high) {
141 return BF_GENERATOR_END;
144 // we use flag1 as indicator if value of range_low was already emitted
145 // so the range generated is <range_low, range_high>
146 if (ctx->current_key <= ctx->range_low && ctx->flag1 == false) {
147 ctx->current_key = ctx->range_low;
148 ctx->flag1 = true;
149 return BF_GENERATOR_NEXT;
152 ctx->current_key++;
153 return BF_GENERATOR_NEXT;
156 int _bf_generate_mode_charset(generator_context_t *ctx) {
158 if (ctx->key_length != BF_KEY_SIZE_32 && ctx->key_length != BF_KEY_SIZE_48) {
159 return BF_GENERATOR_ERROR;
162 if (ctx->flag1) {
163 return BF_GENERATOR_END;
166 uint8_t key_byte = 0;
167 ctx->current_key = 0;
169 for (key_byte = 0; key_byte < ctx->key_length; key_byte++) {
170 ctx->current_key |= (uint64_t) ctx->charset[ctx->pos[key_byte]] << ((ctx->key_length - key_byte - 1) * 8);
173 if (bf_array_increment(ctx->pos, ctx->key_length, ctx->charset_length) == -1) {
174 // set flag1 to emit value last time and end generation on next call
175 ctx->flag1 = true;
178 return BF_GENERATOR_NEXT;
181 int _bf_generate_mode_smart(generator_context_t *ctx) {
183 while (1) {
184 if (smart_generators[ctx->smart_mode_stage] == NULL) {
185 return BF_GENERATOR_END;
188 int ret = smart_generators[ctx->smart_mode_stage](ctx);
190 switch (ret) {
191 case BF_GENERATOR_NEXT: {
192 return ret;
194 case BF_GENERATOR_ERROR: {
195 return ret;
197 case BF_GENERATOR_END: {
198 ctx->smart_mode_stage++;
199 bf_generator_clear(ctx);
200 continue;
207 int smart_generator_byte_repeat(generator_context_t *ctx) {
208 // key consists of repeated single byte
209 uint32_t current_byte = ctx->counter1;
211 if (current_byte > 0xFF) {
212 return BF_GENERATOR_END;
215 ctx->current_key = 0;
217 for (uint8_t key_byte = 0; key_byte < ctx->key_length; key_byte++) {
218 ctx->current_key |= (uint64_t)current_byte << ((ctx->key_length - key_byte - 1) * 8);
221 ctx->counter1++;
222 return BF_GENERATOR_NEXT;
224 int smart_generator_msb_byte_only(generator_context_t *ctx) {
225 // key of one byte (most significant one) and all others being zero
226 uint32_t current_byte = ctx->counter1;
228 if (current_byte > 0xFF) {
229 return BF_GENERATOR_END;
232 ctx->current_key = (uint64_t)current_byte << ((ctx->key_length - 1) * 8);
234 ctx->counter1++;
235 return BF_GENERATOR_NEXT;
239 int smart_generator_nibble_sequence(generator_context_t *ctx) {
240 // patterns like A0A1A2A3...F0F1F2F3
241 // also with offsets - A1A2A3, A2A3A4, etc
242 // counter1 is high nibble (A, B, C), counter2 is low nibble (0,1, etc)
244 if (ctx->counter1 == 0) { // init values on first generator call
245 ctx->counter1 = 0x0A;
248 uint8_t key_byte;
250 // we substract %2 value because max_offset must be even number
251 uint8_t max_offset = 10 - (ctx->key_length / 2) - (ctx->key_length / 2) % 2;
253 if (ctx->counter1 == 0x10) {
254 return BF_GENERATOR_END;
257 ctx->current_key = 0;
259 for (key_byte = 0; key_byte < ctx->key_length; key_byte++) {
260 ctx->current_key |= (uint64_t) ctx->counter1 << (((ctx->key_length - key_byte - 1) * 8) + 4);
261 ctx->current_key |= (uint64_t)(key_byte + ctx->counter2) % 10 << ((ctx->key_length - key_byte - 1) * 8);
264 // counter 2 is the offset
265 ctx->counter2++;
267 if (ctx->counter2 == max_offset) {
268 ctx->counter2 = 0;
269 ctx->counter1++;
272 return BF_GENERATOR_NEXT;