made a multi threaded version of ht2crack2search since the file lookups should benefi...
[RRG-proxmark3.git] / common / commonutil.c
blob09608ac9ed6259e2d36cc26e047ea86bb3d31d1f
1 //-----------------------------------------------------------------------------
2 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU General Public License as published by
6 // the Free Software Foundation, either version 3 of the License, or
7 // (at your option) any later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // See LICENSE.txt for the text of the license.
15 //-----------------------------------------------------------------------------
16 // Utility functions used in many places, not specific to any piece of code.
17 //-----------------------------------------------------------------------------
18 #include "commonutil.h"
19 #include <string.h>
21 /* Similar to FpgaGatherVersion this formats stored version information
22 * into a string representation. It takes a pointer to the struct version_information_t,
23 * verifies the magic properties, then stores a formatted string, prefixed by
24 * prefix in dst.
26 void FormatVersionInformation(char *dst, int len, const char *prefix, const void *version_info) {
27 const struct version_information_t *v = (const struct version_information_t *)version_info;
28 dst[0] = 0;
29 strncat(dst, prefix, len - 1);
30 if (v->magic != VERSION_INFORMATION_MAGIC) {
31 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
32 return;
34 if (v->versionversion != 1) {
35 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
36 return;
38 if (!v->present) {
39 strncat(dst, "Version information not available", len - strlen(dst) - 1);
40 return;
43 strncat(dst, v->gitversion, len - strlen(dst) - 1);
44 if (v->clean == 0) {
45 strncat(dst, "-unclean", len - strlen(dst) - 1);
46 } else if (v->clean == 2) {
47 strncat(dst, "-suspect", len - strlen(dst) - 1);
50 strncat(dst, " ", len - strlen(dst) - 1);
51 strncat(dst, v->buildtime, len - strlen(dst) - 1);
52 strncat(dst, " ", len - strlen(dst) - 1);
53 strncat(dst, v->armsrc, len - strlen(dst) - 1);
56 void format_version_information_short(char *dst, int len, const void *version_info) {
57 const struct version_information_t *v = (const struct version_information_t *)version_info;
58 dst[0] = 0;
59 if (v->magic != VERSION_INFORMATION_MAGIC) {
60 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
61 return;
63 if (v->versionversion != 1) {
64 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
65 return;
67 if (!v->present) {
68 strncat(dst, "Version information not available", len - strlen(dst) - 1);
69 return;
72 strncat(dst, v->gitversion, len - strlen(dst) - 1);
73 strncat(dst, " ", len - strlen(dst) - 1);
74 strncat(dst, v->buildtime, len - strlen(dst) - 1);
78 ref http://www.csm.ornl.gov/~dunigan/crc.html
79 Returns the value v with the bottom b [0,32] bits reflected.
80 Example: reflect(0x3e23L,3) == 0x3e26
82 uint32_t reflect(uint32_t v, int b) {
83 uint32_t t = v;
84 for (int i = 0; i < b; ++i) {
85 if (t & 1)
86 v |= BITMASK((b - 1) - i);
87 else
88 v &= ~BITMASK((b - 1) - i);
89 t >>= 1;
91 return v;
94 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
96 // Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division):
97 uint8_t reflect8(uint8_t b) {
98 return (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
102 // Reverse the bits in a byte with 4 operations (64-bit multiply, no division):
104 uint8_t reflect8(uint8_t b) {
105 return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
109 uint16_t reflect16(uint16_t b) {
110 uint16_t v = 0;
111 v |= (b & 0x8000) >> 15;
112 v |= (b & 0x4000) >> 13;
113 v |= (b & 0x2000) >> 11;
114 v |= (b & 0x1000) >> 9;
115 v |= (b & 0x0800) >> 7;
116 v |= (b & 0x0400) >> 5;
117 v |= (b & 0x0200) >> 3;
118 v |= (b & 0x0100) >> 1;
120 v |= (b & 0x0080) << 1;
121 v |= (b & 0x0040) << 3;
122 v |= (b & 0x0020) << 5;
123 v |= (b & 0x0010) << 7;
124 v |= (b & 0x0008) << 9;
125 v |= (b & 0x0004) << 11;
126 v |= (b & 0x0002) << 13;
127 v |= (b & 0x0001) << 15;
128 return v;
131 uint32_t reflect32(uint32_t b) {
132 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
133 uint32_t v = b; // 32-bit word to reverse bit order
134 // swap odd and even bits
135 v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1);
136 // swap consecutive pairs
137 v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2);
138 // swap nibbles ...
139 v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4);
140 // swap bytes
141 v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8);
142 // swap 2-byte long pairs
143 v = (v >> 16) | (v << 16);
144 return v;
147 uint64_t reflect64(uint64_t b) {
148 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
149 uint64_t v = b; // 32-bit word to reverse bit order
150 // swap 2-byte long pairs
151 uint64_t v1 = reflect32(v >> 32);
152 uint64_t v2 = reflect32(v);
153 v = (v1 << 32) | (v2 & 0xFFFFFFFF);
154 return v;
157 void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) {
158 while (len--) {
159 dest[len] = (uint8_t) n;
160 n >>= 8;
164 uint64_t bytes_to_num(const uint8_t *src, size_t len) {
165 uint64_t num = 0;
166 while (len--) {
167 num = (num << 8) | (*src);
168 src++;
170 return num;
173 uint16_t MemLeToUint2byte(const uint8_t *data) {
174 return (uint16_t)(
175 (((uint16_t)(data[1])) << 8) +
176 (((uint16_t)(data[0])) << 0)
180 uint32_t MemLeToUint3byte(const uint8_t *data) {
181 return (uint32_t)(
182 (((uint32_t)(data[2])) << 16) +
183 (((uint32_t)(data[1])) << 8) +
184 (((uint32_t)(data[0])) << 0)
188 uint32_t MemLeToUint4byte(const uint8_t *data) {
189 return (uint32_t)(
190 (((uint32_t)(data[3])) << 24) +
191 (((uint32_t)(data[2])) << 16) +
192 (((uint32_t)(data[1])) << 8) +
193 (((uint32_t)(data[0])) << 0)
197 uint64_t MemLeToUint5byte(const uint8_t *data) {
198 return (uint64_t)(
199 (((uint64_t)(data[4])) << 32) +
200 (((uint64_t)(data[3])) << 24) +
201 (((uint64_t)(data[2])) << 16) +
202 (((uint64_t)(data[1])) << 8) +
203 (((uint64_t)(data[0])) << 0)
207 uint64_t MemLeToUint6byte(const uint8_t *data) {
208 return (uint64_t)(
209 (((uint64_t)(data[5])) << 40) +
210 (((uint64_t)(data[4])) << 32) +
211 (((uint64_t)(data[3])) << 24) +
212 (((uint64_t)(data[2])) << 16) +
213 (((uint64_t)(data[1])) << 8) +
214 (((uint64_t)(data[0])) << 0)
218 uint64_t MemLeToUint7byte(const uint8_t *data) {
219 return (uint64_t)(
220 (((uint64_t)(data[6])) << 48) +
221 (((uint64_t)(data[5])) << 40) +
222 (((uint64_t)(data[4])) << 32) +
223 (((uint64_t)(data[3])) << 24) +
224 (((uint64_t)(data[2])) << 16) +
225 (((uint64_t)(data[1])) << 8) +
226 (((uint64_t)(data[0])) << 0)
230 uint64_t MemLeToUint8byte(const uint8_t *data) {
231 return (uint64_t)(
232 (((uint64_t)(data[7])) << 56) +
233 (((uint64_t)(data[6])) << 48) +
234 (((uint64_t)(data[5])) << 40) +
235 (((uint64_t)(data[4])) << 32) +
236 (((uint64_t)(data[3])) << 24) +
237 (((uint64_t)(data[2])) << 16) +
238 (((uint64_t)(data[1])) << 8) +
239 (((uint64_t)(data[0])) << 0)
243 uint16_t MemBeToUint2byte(const uint8_t *data) {
244 return (uint16_t)(
245 (((uint16_t)(data[0])) << 8) +
246 (((uint16_t)(data[1])) << 0)
250 uint32_t MemBeToUint3byte(const uint8_t *data) {
251 return (uint32_t)(
252 (((uint32_t)(data[0])) << 16) +
253 (((uint32_t)(data[1])) << 8) +
254 (((uint32_t)(data[2])) << 0)
258 uint32_t MemBeToUint4byte(const uint8_t *data) {
259 return (uint32_t)(
260 (((uint32_t)(data[0])) << 24) +
261 (((uint32_t)(data[1])) << 16) +
262 (((uint32_t)(data[2])) << 8) +
263 (((uint32_t)(data[3])) << 0)
267 uint64_t MemBeToUint5byte(const uint8_t *data) {
268 return (uint64_t)(
269 (((uint64_t)(data[0])) << 32) +
270 (((uint64_t)(data[1])) << 24) +
271 (((uint64_t)(data[2])) << 16) +
272 (((uint64_t)(data[3])) << 8) +
273 (((uint64_t)(data[4])) << 0)
277 uint64_t MemBeToUint6byte(const uint8_t *data) {
278 return (uint64_t)(
279 (((uint64_t)(data[0])) << 40) +
280 (((uint64_t)(data[1])) << 32) +
281 (((uint64_t)(data[2])) << 24) +
282 (((uint64_t)(data[3])) << 16) +
283 (((uint64_t)(data[4])) << 8) +
284 (((uint64_t)(data[5])) << 0)
288 uint64_t MemBeToUint7byte(const uint8_t *data) {
289 return (uint64_t)(
290 (((uint64_t)(data[0])) << 48) +
291 (((uint64_t)(data[1])) << 40) +
292 (((uint64_t)(data[2])) << 32) +
293 (((uint64_t)(data[3])) << 24) +
294 (((uint64_t)(data[4])) << 16) +
295 (((uint64_t)(data[5])) << 8) +
296 (((uint64_t)(data[6])) << 0)
300 uint64_t MemBeToUint8byte(const uint8_t *data) {
301 return (uint64_t)(
302 (((uint64_t)(data[0])) << 56) +
303 (((uint64_t)(data[1])) << 48) +
304 (((uint64_t)(data[2])) << 40) +
305 (((uint64_t)(data[3])) << 32) +
306 (((uint64_t)(data[4])) << 24) +
307 (((uint64_t)(data[5])) << 16) +
308 (((uint64_t)(data[6])) << 8) +
309 (((uint64_t)(data[7])) << 0)
313 void Uint2byteToMemLe(uint8_t *data, uint16_t value) {
314 data[0] = (uint8_t)((value >> 0) & 0xffu);
315 data[1] = (uint8_t)((value >> 8) & 0xffu);
318 void Uint3byteToMemLe(uint8_t *data, uint32_t value) {
319 data[0] = (uint8_t)((value >> 0) & 0xffu);
320 data[1] = (uint8_t)((value >> 8) & 0xffu);
321 data[2] = (uint8_t)((value >> 16) & 0xffu);
324 void Uint4byteToMemLe(uint8_t *data, uint32_t value) {
325 data[0] = (uint8_t)((value >> 0) & 0xffu);
326 data[1] = (uint8_t)((value >> 8) & 0xffu);
327 data[2] = (uint8_t)((value >> 16) & 0xffu);
328 data[3] = (uint8_t)((value >> 24) & 0xffu);
331 void Uint5byteToMemLe(uint8_t *data, uint64_t value) {
332 data[0] = (uint8_t)((value >> 0) & 0xffu);
333 data[1] = (uint8_t)((value >> 8) & 0xffu);
334 data[2] = (uint8_t)((value >> 16) & 0xffu);
335 data[3] = (uint8_t)((value >> 24) & 0xffu);
336 data[4] = (uint8_t)((value >> 32) & 0xffu);
339 void Uint6byteToMemLe(uint8_t *data, uint64_t value) {
340 data[0] = (uint8_t)((value >> 0) & 0xffu);
341 data[1] = (uint8_t)((value >> 8) & 0xffu);
342 data[2] = (uint8_t)((value >> 16) & 0xffu);
343 data[3] = (uint8_t)((value >> 24) & 0xffu);
344 data[4] = (uint8_t)((value >> 32) & 0xffu);
345 data[5] = (uint8_t)((value >> 40) & 0xffu);
348 void Uint7byteToMemLe(uint8_t *data, uint64_t value) {
349 data[0] = (uint8_t)((value >> 0) & 0xffu);
350 data[1] = (uint8_t)((value >> 8) & 0xffu);
351 data[2] = (uint8_t)((value >> 16) & 0xffu);
352 data[3] = (uint8_t)((value >> 24) & 0xffu);
353 data[4] = (uint8_t)((value >> 32) & 0xffu);
354 data[5] = (uint8_t)((value >> 40) & 0xffu);
355 data[6] = (uint8_t)((value >> 48) & 0xffu);
358 void Uint8byteToMemLe(uint8_t *data, uint64_t value) {
359 data[0] = (uint8_t)((value >> 0) & 0xffu);
360 data[1] = (uint8_t)((value >> 8) & 0xffu);
361 data[2] = (uint8_t)((value >> 16) & 0xffu);
362 data[3] = (uint8_t)((value >> 24) & 0xffu);
363 data[4] = (uint8_t)((value >> 32) & 0xffu);
364 data[5] = (uint8_t)((value >> 40) & 0xffu);
365 data[6] = (uint8_t)((value >> 48) & 0xffu);
366 data[7] = (uint8_t)((value >> 56) & 0xffu);
369 void Uint2byteToMemBe(uint8_t *data, uint16_t value) {
370 data[0] = (uint8_t)((value >> 8) & 0xffu);
371 data[1] = (uint8_t)((value >> 0) & 0xffu);
374 void Uint3byteToMemBe(uint8_t *data, uint32_t value) {
375 data[0] = (uint8_t)((value >> 16) & 0xffu);
376 data[1] = (uint8_t)((value >> 8) & 0xffu);
377 data[2] = (uint8_t)((value >> 0) & 0xffu);
380 void Uint4byteToMemBe(uint8_t *data, uint32_t value) {
381 data[0] = (uint8_t)((value >> 24) & 0xffu);
382 data[1] = (uint8_t)((value >> 16) & 0xffu);
383 data[2] = (uint8_t)((value >> 8) & 0xffu);
384 data[3] = (uint8_t)((value >> 0) & 0xffu);
387 void Uint5byteToMemBe(uint8_t *data, uint64_t value) {
388 data[0] = (uint8_t)((value >> 32) & 0xffu);
389 data[1] = (uint8_t)((value >> 24) & 0xffu);
390 data[2] = (uint8_t)((value >> 16) & 0xffu);
391 data[3] = (uint8_t)((value >> 8) & 0xffu);
392 data[4] = (uint8_t)((value >> 0) & 0xffu);
395 void Uint6byteToMemBe(uint8_t *data, uint64_t value) {
396 data[0] = (uint8_t)((value >> 40) & 0xffu);
397 data[1] = (uint8_t)((value >> 32) & 0xffu);
398 data[2] = (uint8_t)((value >> 24) & 0xffu);
399 data[3] = (uint8_t)((value >> 16) & 0xffu);
400 data[4] = (uint8_t)((value >> 8) & 0xffu);
401 data[5] = (uint8_t)((value >> 0) & 0xffu);
404 void Uint7byteToMemBe(uint8_t *data, uint64_t value) {
405 data[0] = (uint8_t)((value >> 48) & 0xffu);
406 data[1] = (uint8_t)((value >> 40) & 0xffu);
407 data[2] = (uint8_t)((value >> 32) & 0xffu);
408 data[3] = (uint8_t)((value >> 24) & 0xffu);
409 data[4] = (uint8_t)((value >> 16) & 0xffu);
410 data[5] = (uint8_t)((value >> 8) & 0xffu);
411 data[6] = (uint8_t)((value >> 0) & 0xffu);
414 void Uint8byteToMemBe(uint8_t *data, uint64_t value) {
415 data[0] = (uint8_t)((value >> 56) & 0xffu);
416 data[1] = (uint8_t)((value >> 48) & 0xffu);
417 data[2] = (uint8_t)((value >> 40) & 0xffu);
418 data[3] = (uint8_t)((value >> 32) & 0xffu);
419 data[4] = (uint8_t)((value >> 24) & 0xffu);
420 data[5] = (uint8_t)((value >> 16) & 0xffu);
421 data[6] = (uint8_t)((value >> 8) & 0xffu);
422 data[7] = (uint8_t)((value >> 0) & 0xffu);
425 // Rotate Left - Ultralight, Desfire
426 void rol(uint8_t *data, const size_t len) {
427 uint8_t first = data[0];
428 for (size_t i = 0; i < len - 1; i++) {
429 data[i] = data[i + 1];
431 data[len - 1] = first;
434 // Rotate Right - Ultralight, Desfire
435 void ror(uint8_t *data, const size_t len) {
436 uint8_t last = data[len - 1];
438 for (int i = len - 1; i > 0; i--) {
439 data[i] = data[i - 1];
442 data[0] = last;
446 void lsl(uint8_t *data, size_t len) {
447 for (size_t n = 0; n < len - 1; n++) {
448 data[n] = (data[n] << 1) | (data[n + 1] >> 7);
450 data[len - 1] <<= 1;
454 // BSWAP24 of array[3]
455 uint32_t le24toh(const uint8_t data[3]) {
456 return (data[2] << 16) | (data[1] << 8) | data[0];
459 // BSWAP24, take u32, output array
460 void htole24(uint32_t val, uint8_t data[3]) {
461 data[0] = (uint8_t) val;
462 data[1] = (uint8_t)(val >> 8);
463 data[2] = (uint8_t)(val >> 16);
467 // ROL on u32
468 uint32_t rotl(uint32_t a, uint8_t n) {
469 n &= 31;
470 return (a << n) | (a >> (32 - n));
473 // ROR on u32
474 uint32_t rotr(uint32_t a, uint8_t n) {
475 n &= 31;
476 return (a >> n) | (a << (32 - n));
479 uint16_t get_sw(const uint8_t *d, uint16_t n) {
480 if (n < 2)
481 return 0;
483 n -= 2;
484 return (d[n] << 8 | d[n + 1]);
487 // reverse same array
488 void reverse_array(uint8_t *d, size_t n) {
489 if (d == NULL || n < 2) {
490 return;
493 for (int i = 0, j = n - 1; i < j; ++i, --j) {
494 d[i] ^= d[j];
495 d[j] ^= d[i];
496 d[i] ^= d[j];
500 // reverse src array into dest array
501 void reverse_array_copy(const uint8_t *src, int src_len, uint8_t *dest) {
502 if (src == NULL || src_len == 0 || dest == NULL) {
503 return;
506 for (int i = 0; i < src_len; i++) {
507 dest[i] = src[(src_len - 1) - i];
511 static int hexchar_to_dec(char ch) {
512 if (ch >= '0' && ch <= '9') {
513 return ch - '0';
515 if (ch >= 'a' && ch <= 'f') {
516 return ch - 'a' + 10;
518 if (ch >= 'A' && ch <= 'F') {
519 return ch - 'A' + 10;
521 return -1;
524 // no spaces allowed for input hex string
525 bool hexstr_to_byte_array(const char *hexstr, uint8_t *d, size_t *n) {
527 size_t hexstr_len = strlen(hexstr);
528 if (hexstr_len & 1) {
529 return false;
532 *n = (hexstr_len >> 1);
534 for (int i = 0; i < *n; i++) {
536 char c1 = *hexstr++;
537 char c2 = *hexstr++;
539 if (c1 == '\0' || c2 == '\0') {
540 return false;
543 int b = (hexchar_to_dec(c1) << 4) | hexchar_to_dec(c2);
544 if (b < 0) {
545 // Error: invalid hex character
546 return false;
548 d[i] = (uint8_t) b;
550 return true;
553 void reverse_arraybytes(uint8_t *arr, size_t len) {
554 size_t i;
555 for (i = 0; i < len ; i++) {
556 arr[i] = reflect8(arr[i]);
560 void reverse_arraybytes_copy(uint8_t *arr, uint8_t *dest, size_t len) {
561 size_t i;
562 for (i = 0; i < len ; i++) {
563 dest[i] = reflect8(arr[i]);