1 //-----------------------------------------------------------------------------
2 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU General Public License as published by
6 // the Free Software Foundation, either version 3 of the License, or
7 // (at your option) any later version.
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // See LICENSE.txt for the text of the license.
15 //-----------------------------------------------------------------------------
16 // Utility functions used in many places, not specific to any piece of code.
17 //-----------------------------------------------------------------------------
18 #include "commonutil.h"
21 /* Similar to FpgaGatherVersion this formats stored version information
22 * into a string representation. It takes a pointer to the struct version_information_t,
23 * verifies the magic properties, then stores a formatted string, prefixed by
26 void FormatVersionInformation(char *dst
, int len
, const char *prefix
, const void *version_info
) {
27 const struct version_information_t
*v
= (const struct version_information_t
*)version_info
;
29 strncat(dst
, prefix
, len
- 1);
30 if (v
->magic
!= VERSION_INFORMATION_MAGIC
) {
31 strncat(dst
, "Missing/Invalid version information", len
- strlen(dst
) - 1);
34 if (v
->versionversion
!= 1) {
35 strncat(dst
, "Version information not understood", len
- strlen(dst
) - 1);
39 strncat(dst
, "Version information not available", len
- strlen(dst
) - 1);
43 strncat(dst
, v
->gitversion
, len
- strlen(dst
) - 1);
45 strncat(dst
, "-unclean", len
- strlen(dst
) - 1);
46 } else if (v
->clean
== 2) {
47 strncat(dst
, "-suspect", len
- strlen(dst
) - 1);
50 strncat(dst
, " ", len
- strlen(dst
) - 1);
51 strncat(dst
, v
->buildtime
, len
- strlen(dst
) - 1);
52 strncat(dst
, " ", len
- strlen(dst
) - 1);
53 strncat(dst
, v
->armsrc
, len
- strlen(dst
) - 1);
56 void format_version_information_short(char *dst
, int len
, const void *version_info
) {
57 const struct version_information_t
*v
= (const struct version_information_t
*)version_info
;
59 if (v
->magic
!= VERSION_INFORMATION_MAGIC
) {
60 strncat(dst
, "Missing/Invalid version information", len
- strlen(dst
) - 1);
63 if (v
->versionversion
!= 1) {
64 strncat(dst
, "Version information not understood", len
- strlen(dst
) - 1);
68 strncat(dst
, "Version information not available", len
- strlen(dst
) - 1);
72 strncat(dst
, v
->gitversion
, len
- strlen(dst
) - 1);
73 strncat(dst
, " ", len
- strlen(dst
) - 1);
74 strncat(dst
, v
->buildtime
, len
- strlen(dst
) - 1);
78 ref http://www.csm.ornl.gov/~dunigan/crc.html
79 Returns the value v with the bottom b [0,32] bits reflected.
80 Example: reflect(0x3e23L,3) == 0x3e26
82 uint32_t reflect(uint32_t v
, int b
) {
84 for (int i
= 0; i
< b
; ++i
) {
86 v
|= BITMASK((b
- 1) - i
);
88 v
&= ~BITMASK((b
- 1) - i
);
94 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
96 // Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division):
97 uint8_t reflect8(uint8_t b
) {
98 return (b
* 0x0202020202ULL
& 0x010884422010ULL
) % 1023;
102 // Reverse the bits in a byte with 4 operations (64-bit multiply, no division):
104 uint8_t reflect8(uint8_t b) {
105 return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
109 uint16_t reflect16(uint16_t b
) {
111 v
|= (b
& 0x8000) >> 15;
112 v
|= (b
& 0x4000) >> 13;
113 v
|= (b
& 0x2000) >> 11;
114 v
|= (b
& 0x1000) >> 9;
115 v
|= (b
& 0x0800) >> 7;
116 v
|= (b
& 0x0400) >> 5;
117 v
|= (b
& 0x0200) >> 3;
118 v
|= (b
& 0x0100) >> 1;
120 v
|= (b
& 0x0080) << 1;
121 v
|= (b
& 0x0040) << 3;
122 v
|= (b
& 0x0020) << 5;
123 v
|= (b
& 0x0010) << 7;
124 v
|= (b
& 0x0008) << 9;
125 v
|= (b
& 0x0004) << 11;
126 v
|= (b
& 0x0002) << 13;
127 v
|= (b
& 0x0001) << 15;
131 uint32_t reflect32(uint32_t b
) {
132 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
133 uint32_t v
= b
; // 32-bit word to reverse bit order
134 // swap odd and even bits
135 v
= ((v
>> 1) & 0x55555555) | ((v
& 0x55555555) << 1);
136 // swap consecutive pairs
137 v
= ((v
>> 2) & 0x33333333) | ((v
& 0x33333333) << 2);
139 v
= ((v
>> 4) & 0x0F0F0F0F) | ((v
& 0x0F0F0F0F) << 4);
141 v
= ((v
>> 8) & 0x00FF00FF) | ((v
& 0x00FF00FF) << 8);
142 // swap 2-byte long pairs
143 v
= (v
>> 16) | (v
<< 16);
147 uint64_t reflect64(uint64_t b
) {
148 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
149 uint64_t v
= b
; // 32-bit word to reverse bit order
150 // swap 2-byte long pairs
151 uint64_t v1
= reflect32(v
>> 32);
152 uint64_t v2
= reflect32(v
);
153 v
= (v1
<< 32) | (v2
& 0xFFFFFFFF);
157 void num_to_bytes(uint64_t n
, size_t len
, uint8_t *dest
) {
159 dest
[len
] = (uint8_t) n
;
164 uint64_t bytes_to_num(const uint8_t *src
, size_t len
) {
167 num
= (num
<< 8) | (*src
);
173 uint16_t MemLeToUint2byte(const uint8_t *data
) {
175 (((uint16_t)(data
[1])) << 8) +
176 (((uint16_t)(data
[0])) << 0)
180 uint32_t MemLeToUint3byte(const uint8_t *data
) {
182 (((uint32_t)(data
[2])) << 16) +
183 (((uint32_t)(data
[1])) << 8) +
184 (((uint32_t)(data
[0])) << 0)
188 uint32_t MemLeToUint4byte(const uint8_t *data
) {
190 (((uint32_t)(data
[3])) << 24) +
191 (((uint32_t)(data
[2])) << 16) +
192 (((uint32_t)(data
[1])) << 8) +
193 (((uint32_t)(data
[0])) << 0)
197 uint64_t MemLeToUint5byte(const uint8_t *data
) {
199 (((uint64_t)(data
[4])) << 32) +
200 (((uint64_t)(data
[3])) << 24) +
201 (((uint64_t)(data
[2])) << 16) +
202 (((uint64_t)(data
[1])) << 8) +
203 (((uint64_t)(data
[0])) << 0)
207 uint64_t MemLeToUint6byte(const uint8_t *data
) {
209 (((uint64_t)(data
[5])) << 40) +
210 (((uint64_t)(data
[4])) << 32) +
211 (((uint64_t)(data
[3])) << 24) +
212 (((uint64_t)(data
[2])) << 16) +
213 (((uint64_t)(data
[1])) << 8) +
214 (((uint64_t)(data
[0])) << 0)
218 uint64_t MemLeToUint7byte(const uint8_t *data
) {
220 (((uint64_t)(data
[6])) << 48) +
221 (((uint64_t)(data
[5])) << 40) +
222 (((uint64_t)(data
[4])) << 32) +
223 (((uint64_t)(data
[3])) << 24) +
224 (((uint64_t)(data
[2])) << 16) +
225 (((uint64_t)(data
[1])) << 8) +
226 (((uint64_t)(data
[0])) << 0)
230 uint64_t MemLeToUint8byte(const uint8_t *data
) {
232 (((uint64_t)(data
[7])) << 56) +
233 (((uint64_t)(data
[6])) << 48) +
234 (((uint64_t)(data
[5])) << 40) +
235 (((uint64_t)(data
[4])) << 32) +
236 (((uint64_t)(data
[3])) << 24) +
237 (((uint64_t)(data
[2])) << 16) +
238 (((uint64_t)(data
[1])) << 8) +
239 (((uint64_t)(data
[0])) << 0)
243 uint16_t MemBeToUint2byte(const uint8_t *data
) {
245 (((uint16_t)(data
[0])) << 8) +
246 (((uint16_t)(data
[1])) << 0)
250 uint32_t MemBeToUint3byte(const uint8_t *data
) {
252 (((uint32_t)(data
[0])) << 16) +
253 (((uint32_t)(data
[1])) << 8) +
254 (((uint32_t)(data
[2])) << 0)
258 uint32_t MemBeToUint4byte(const uint8_t *data
) {
260 (((uint32_t)(data
[0])) << 24) +
261 (((uint32_t)(data
[1])) << 16) +
262 (((uint32_t)(data
[2])) << 8) +
263 (((uint32_t)(data
[3])) << 0)
267 uint64_t MemBeToUint5byte(const uint8_t *data
) {
269 (((uint64_t)(data
[0])) << 32) +
270 (((uint64_t)(data
[1])) << 24) +
271 (((uint64_t)(data
[2])) << 16) +
272 (((uint64_t)(data
[3])) << 8) +
273 (((uint64_t)(data
[4])) << 0)
277 uint64_t MemBeToUint6byte(const uint8_t *data
) {
279 (((uint64_t)(data
[0])) << 40) +
280 (((uint64_t)(data
[1])) << 32) +
281 (((uint64_t)(data
[2])) << 24) +
282 (((uint64_t)(data
[3])) << 16) +
283 (((uint64_t)(data
[4])) << 8) +
284 (((uint64_t)(data
[5])) << 0)
288 uint64_t MemBeToUint7byte(const uint8_t *data
) {
290 (((uint64_t)(data
[0])) << 48) +
291 (((uint64_t)(data
[1])) << 40) +
292 (((uint64_t)(data
[2])) << 32) +
293 (((uint64_t)(data
[3])) << 24) +
294 (((uint64_t)(data
[4])) << 16) +
295 (((uint64_t)(data
[5])) << 8) +
296 (((uint64_t)(data
[6])) << 0)
300 uint64_t MemBeToUint8byte(const uint8_t *data
) {
302 (((uint64_t)(data
[0])) << 56) +
303 (((uint64_t)(data
[1])) << 48) +
304 (((uint64_t)(data
[2])) << 40) +
305 (((uint64_t)(data
[3])) << 32) +
306 (((uint64_t)(data
[4])) << 24) +
307 (((uint64_t)(data
[5])) << 16) +
308 (((uint64_t)(data
[6])) << 8) +
309 (((uint64_t)(data
[7])) << 0)
313 void Uint2byteToMemLe(uint8_t *data
, uint16_t value
) {
314 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
315 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
318 void Uint3byteToMemLe(uint8_t *data
, uint32_t value
) {
319 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
320 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
321 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
324 void Uint4byteToMemLe(uint8_t *data
, uint32_t value
) {
325 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
326 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
327 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
328 data
[3] = (uint8_t)((value
>> 24) & 0xffu
);
331 void Uint5byteToMemLe(uint8_t *data
, uint64_t value
) {
332 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
333 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
334 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
335 data
[3] = (uint8_t)((value
>> 24) & 0xffu
);
336 data
[4] = (uint8_t)((value
>> 32) & 0xffu
);
339 void Uint6byteToMemLe(uint8_t *data
, uint64_t value
) {
340 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
341 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
342 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
343 data
[3] = (uint8_t)((value
>> 24) & 0xffu
);
344 data
[4] = (uint8_t)((value
>> 32) & 0xffu
);
345 data
[5] = (uint8_t)((value
>> 40) & 0xffu
);
348 void Uint7byteToMemLe(uint8_t *data
, uint64_t value
) {
349 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
350 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
351 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
352 data
[3] = (uint8_t)((value
>> 24) & 0xffu
);
353 data
[4] = (uint8_t)((value
>> 32) & 0xffu
);
354 data
[5] = (uint8_t)((value
>> 40) & 0xffu
);
355 data
[6] = (uint8_t)((value
>> 48) & 0xffu
);
358 void Uint8byteToMemLe(uint8_t *data
, uint64_t value
) {
359 data
[0] = (uint8_t)((value
>> 0) & 0xffu
);
360 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
361 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
362 data
[3] = (uint8_t)((value
>> 24) & 0xffu
);
363 data
[4] = (uint8_t)((value
>> 32) & 0xffu
);
364 data
[5] = (uint8_t)((value
>> 40) & 0xffu
);
365 data
[6] = (uint8_t)((value
>> 48) & 0xffu
);
366 data
[7] = (uint8_t)((value
>> 56) & 0xffu
);
369 void Uint2byteToMemBe(uint8_t *data
, uint16_t value
) {
370 data
[0] = (uint8_t)((value
>> 8) & 0xffu
);
371 data
[1] = (uint8_t)((value
>> 0) & 0xffu
);
374 void Uint3byteToMemBe(uint8_t *data
, uint32_t value
) {
375 data
[0] = (uint8_t)((value
>> 16) & 0xffu
);
376 data
[1] = (uint8_t)((value
>> 8) & 0xffu
);
377 data
[2] = (uint8_t)((value
>> 0) & 0xffu
);
380 void Uint4byteToMemBe(uint8_t *data
, uint32_t value
) {
381 data
[0] = (uint8_t)((value
>> 24) & 0xffu
);
382 data
[1] = (uint8_t)((value
>> 16) & 0xffu
);
383 data
[2] = (uint8_t)((value
>> 8) & 0xffu
);
384 data
[3] = (uint8_t)((value
>> 0) & 0xffu
);
387 void Uint5byteToMemBe(uint8_t *data
, uint64_t value
) {
388 data
[0] = (uint8_t)((value
>> 32) & 0xffu
);
389 data
[1] = (uint8_t)((value
>> 24) & 0xffu
);
390 data
[2] = (uint8_t)((value
>> 16) & 0xffu
);
391 data
[3] = (uint8_t)((value
>> 8) & 0xffu
);
392 data
[4] = (uint8_t)((value
>> 0) & 0xffu
);
395 void Uint6byteToMemBe(uint8_t *data
, uint64_t value
) {
396 data
[0] = (uint8_t)((value
>> 40) & 0xffu
);
397 data
[1] = (uint8_t)((value
>> 32) & 0xffu
);
398 data
[2] = (uint8_t)((value
>> 24) & 0xffu
);
399 data
[3] = (uint8_t)((value
>> 16) & 0xffu
);
400 data
[4] = (uint8_t)((value
>> 8) & 0xffu
);
401 data
[5] = (uint8_t)((value
>> 0) & 0xffu
);
404 void Uint7byteToMemBe(uint8_t *data
, uint64_t value
) {
405 data
[0] = (uint8_t)((value
>> 48) & 0xffu
);
406 data
[1] = (uint8_t)((value
>> 40) & 0xffu
);
407 data
[2] = (uint8_t)((value
>> 32) & 0xffu
);
408 data
[3] = (uint8_t)((value
>> 24) & 0xffu
);
409 data
[4] = (uint8_t)((value
>> 16) & 0xffu
);
410 data
[5] = (uint8_t)((value
>> 8) & 0xffu
);
411 data
[6] = (uint8_t)((value
>> 0) & 0xffu
);
414 void Uint8byteToMemBe(uint8_t *data
, uint64_t value
) {
415 data
[0] = (uint8_t)((value
>> 56) & 0xffu
);
416 data
[1] = (uint8_t)((value
>> 48) & 0xffu
);
417 data
[2] = (uint8_t)((value
>> 40) & 0xffu
);
418 data
[3] = (uint8_t)((value
>> 32) & 0xffu
);
419 data
[4] = (uint8_t)((value
>> 24) & 0xffu
);
420 data
[5] = (uint8_t)((value
>> 16) & 0xffu
);
421 data
[6] = (uint8_t)((value
>> 8) & 0xffu
);
422 data
[7] = (uint8_t)((value
>> 0) & 0xffu
);
425 // Rotate Left - Ultralight, Desfire
426 void rol(uint8_t *data
, const size_t len
) {
427 uint8_t first
= data
[0];
428 for (size_t i
= 0; i
< len
- 1; i
++) {
429 data
[i
] = data
[i
+ 1];
431 data
[len
- 1] = first
;
434 // Rotate Right - Ultralight, Desfire
435 void ror(uint8_t *data
, const size_t len
) {
436 uint8_t last
= data
[len
- 1];
438 for (int i
= len
- 1; i
> 0; i
--) {
439 data
[i
] = data
[i
- 1];
446 void lsl(uint8_t *data
, size_t len
) {
447 for (size_t n
= 0; n
< len
- 1; n
++) {
448 data
[n
] = (data
[n
] << 1) | (data
[n
+ 1] >> 7);
454 // BSWAP24 of array[3]
455 uint32_t le24toh(const uint8_t data
[3]) {
456 return (data
[2] << 16) | (data
[1] << 8) | data
[0];
459 // BSWAP24, take u32, output array
460 void htole24(uint32_t val
, uint8_t data
[3]) {
461 data
[0] = (uint8_t) val
;
462 data
[1] = (uint8_t)(val
>> 8);
463 data
[2] = (uint8_t)(val
>> 16);
468 uint32_t rotl(uint32_t a
, uint8_t n
) {
470 return (a
<< n
) | (a
>> (32 - n
));
474 uint32_t rotr(uint32_t a
, uint8_t n
) {
476 return (a
>> n
) | (a
<< (32 - n
));
479 uint16_t get_sw(const uint8_t *d
, uint16_t n
) {
484 return (d
[n
] << 8 | d
[n
+ 1]);
487 // reverse same array
488 void reverse_array(uint8_t *d
, size_t n
) {
489 if (d
== NULL
|| n
< 2) {
493 for (int i
= 0, j
= n
- 1; i
< j
; ++i
, --j
) {
500 // reverse src array into dest array
501 void reverse_array_copy(const uint8_t *src
, int src_len
, uint8_t *dest
) {
502 if (src
== NULL
|| src_len
== 0 || dest
== NULL
) {
506 for (int i
= 0; i
< src_len
; i
++) {
507 dest
[i
] = src
[(src_len
- 1) - i
];
511 static int hexchar_to_dec(char ch
) {
512 if (ch
>= '0' && ch
<= '9') {
515 if (ch
>= 'a' && ch
<= 'f') {
516 return ch
- 'a' + 10;
518 if (ch
>= 'A' && ch
<= 'F') {
519 return ch
- 'A' + 10;
524 // no spaces allowed for input hex string
525 bool hexstr_to_byte_array(const char *hexstr
, uint8_t *d
, size_t *n
) {
527 size_t hexstr_len
= strlen(hexstr
);
528 if (hexstr_len
& 1) {
532 *n
= (hexstr_len
>> 1);
534 for (int i
= 0; i
< *n
; i
++) {
539 if (c1
== '\0' || c2
== '\0') {
543 int b
= (hexchar_to_dec(c1
) << 4) | hexchar_to_dec(c2
);
545 // Error: invalid hex character
553 void reverse_arraybytes(uint8_t *arr
, size_t len
) {
555 for (i
= 0; i
< len
; i
++) {
556 arr
[i
] = reflect8(arr
[i
]);
560 void reverse_arraybytes_copy(uint8_t *arr
, uint8_t *dest
, size_t len
) {
562 for (i
= 0; i
< len
; i
++) {
563 dest
[i
] = reflect8(arr
[i
]);