Merge pull request #2593 from Akury83/master
[RRG-proxmark3.git] / client / deps / liblua / ltable.c
blob59218b6c562a90e5372d0a2f29e53e8194ab5aa0
1 /*
2 ** $Id: ltable.c $
3 ** Lua tables (hash)
4 ** See Copyright Notice in lua.h
5 */
7 #define ltable_c
8 #define LUA_CORE
10 #include "lprefix.h"
14 ** Implementation of tables (aka arrays, objects, or hash tables).
15 ** Tables keep its elements in two parts: an array part and a hash part.
16 ** Non-negative integer keys are all candidates to be kept in the array
17 ** part. The actual size of the array is the largest 'n' such that
18 ** more than half the slots between 1 and n are in use.
19 ** Hash uses a mix of chained scatter table with Brent's variation.
20 ** A main invariant of these tables is that, if an element is not
21 ** in its main position (i.e. the 'original' position that its hash gives
22 ** to it), then the colliding element is in its own main position.
23 ** Hence even when the load factor reaches 100%, performance remains good.
26 #include <math.h>
27 #include <limits.h>
29 #include "lua.h"
31 #include "ldebug.h"
32 #include "ldo.h"
33 #include "lgc.h"
34 #include "lmem.h"
35 #include "lobject.h"
36 #include "lstate.h"
37 #include "lstring.h"
38 #include "ltable.h"
39 #include "lvm.h"
43 ** MAXABITS is the largest integer such that MAXASIZE fits in an
44 ** unsigned int.
46 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
50 ** MAXASIZE is the maximum size of the array part. It is the minimum
51 ** between 2^MAXABITS and the maximum size that, measured in bytes,
52 ** fits in a 'size_t'.
54 #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
57 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
58 ** signed int.
60 #define MAXHBITS (MAXABITS - 1)
64 ** MAXHSIZE is the maximum size of the hash part. It is the minimum
65 ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
66 ** it fits in a 'size_t'.
68 #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
72 ** When the original hash value is good, hashing by a power of 2
73 ** avoids the cost of '%'.
75 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
78 ** for other types, it is better to avoid modulo by power of 2, as
79 ** they can have many 2 factors.
81 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
84 #define hashstr(t,str) hashpow2(t, (str)->hash)
85 #define hashboolean(t,p) hashpow2(t, p)
88 #define hashpointer(t,p) hashmod(t, point2uint(p))
91 #define dummynode (&dummynode_)
93 static const Node dummynode_ = {
94 { {NULL}, LUA_VEMPTY, /* value's value and type */
95 LUA_VNIL, 0, {NULL}
96 } /* key type, next, and key value */
100 static const TValue absentkey = {ABSTKEYCONSTANT};
104 ** Hash for integers. To allow a good hash, use the remainder operator
105 ** ('%'). If integer fits as a non-negative int, compute an int
106 ** remainder, which is faster. Otherwise, use an unsigned-integer
107 ** remainder, which uses all bits and ensures a non-negative result.
109 static Node *hashint(const Table *t, lua_Integer i) {
110 lua_Unsigned ui = l_castS2U(i);
111 if (ui <= cast_uint(INT_MAX))
112 return hashmod(t, cast_int(ui));
113 else
114 return hashmod(t, ui);
119 ** Hash for floating-point numbers.
120 ** The main computation should be just
121 ** n = frexp(n, &i); return (n * INT_MAX) + i
122 ** but there are some numerical subtleties.
123 ** In a two-complement representation, INT_MAX does not has an exact
124 ** representation as a float, but INT_MIN does; because the absolute
125 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
126 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
127 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
128 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
129 ** INT_MIN.
131 #if !defined(l_hashfloat)
132 static int l_hashfloat(lua_Number n) {
133 int i;
134 lua_Integer ni;
135 n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
136 if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
137 lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
138 return 0;
139 } else { /* normal case */
140 unsigned int u = cast_uint(i) + cast_uint(ni);
141 return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
144 #endif
148 ** returns the 'main' position of an element in a table (that is,
149 ** the index of its hash value).
151 static Node *mainpositionTV(const Table *t, const TValue *key) {
152 switch (ttypetag(key)) {
153 case LUA_VNUMINT: {
154 lua_Integer i = ivalue(key);
155 return hashint(t, i);
157 case LUA_VNUMFLT: {
158 lua_Number n = fltvalue(key);
159 return hashmod(t, l_hashfloat(n));
161 case LUA_VSHRSTR: {
162 TString *ts = tsvalue(key);
163 return hashstr(t, ts);
165 case LUA_VLNGSTR: {
166 TString *ts = tsvalue(key);
167 return hashpow2(t, luaS_hashlongstr(ts));
169 case LUA_VFALSE:
170 return hashboolean(t, 0);
171 case LUA_VTRUE:
172 return hashboolean(t, 1);
173 case LUA_VLIGHTUSERDATA: {
174 void *p = pvalue(key);
175 return hashpointer(t, p);
177 case LUA_VLCF: {
178 lua_CFunction f = fvalue(key);
179 return hashpointer(t, f);
181 default: {
182 GCObject *o = gcvalue(key);
183 return hashpointer(t, o);
189 l_sinline Node *mainpositionfromnode(const Table *t, Node *nd) {
190 TValue key;
191 getnodekey(cast(lua_State *, NULL), &key, nd);
192 return mainpositionTV(t, &key);
197 ** Check whether key 'k1' is equal to the key in node 'n2'. This
198 ** equality is raw, so there are no metamethods. Floats with integer
199 ** values have been normalized, so integers cannot be equal to
200 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
201 ** that short strings are handled in the default case.
202 ** A true 'deadok' means to accept dead keys as equal to their original
203 ** values. All dead keys are compared in the default case, by pointer
204 ** identity. (Only collectable objects can produce dead keys.) Note that
205 ** dead long strings are also compared by identity.
206 ** Once a key is dead, its corresponding value may be collected, and
207 ** then another value can be created with the same address. If this
208 ** other value is given to 'next', 'equalkey' will signal a false
209 ** positive. In a regular traversal, this situation should never happen,
210 ** as all keys given to 'next' came from the table itself, and therefore
211 ** could not have been collected. Outside a regular traversal, we
212 ** have garbage in, garbage out. What is relevant is that this false
213 ** positive does not break anything. (In particular, 'next' will return
214 ** some other valid item on the table or nil.)
216 static int equalkey(const TValue *k1, const Node *n2, int deadok) {
217 if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
218 !(deadok && keyisdead(n2) && iscollectable(k1)))
219 return 0; /* cannot be same key */
220 switch (keytt(n2)) {
221 case LUA_VNIL:
222 case LUA_VFALSE:
223 case LUA_VTRUE:
224 return 1;
225 case LUA_VNUMINT:
226 return (ivalue(k1) == keyival(n2));
227 case LUA_VNUMFLT:
228 return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
229 case LUA_VLIGHTUSERDATA:
230 return pvalue(k1) == pvalueraw(keyval(n2));
231 case LUA_VLCF:
232 return fvalue(k1) == fvalueraw(keyval(n2));
233 case ctb(LUA_VLNGSTR):
234 return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
235 default:
236 return gcvalue(k1) == gcvalueraw(keyval(n2));
242 ** True if value of 'alimit' is equal to the real size of the array
243 ** part of table 't'. (Otherwise, the array part must be larger than
244 ** 'alimit'.)
246 #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
250 ** Returns the real size of the 'array' array
252 LUAI_FUNC unsigned int luaH_realasize(const Table *t) {
253 if (limitequalsasize(t))
254 return t->alimit; /* this is the size */
255 else {
256 unsigned int size = t->alimit;
257 /* compute the smallest power of 2 not smaller than 'size' */
258 size |= (size >> 1);
259 size |= (size >> 2);
260 size |= (size >> 4);
261 size |= (size >> 8);
262 #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */
263 size |= (size >> 16);
264 #if (UINT_MAX >> 30) > 3
265 size |= (size >> 32); /* unsigned int has more than 32 bits */
266 #endif
267 #endif
268 size++;
269 lua_assert(ispow2(size) && size / 2 < t->alimit && t->alimit < size);
270 return size;
276 ** Check whether real size of the array is a power of 2.
277 ** (If it is not, 'alimit' cannot be changed to any other value
278 ** without changing the real size.)
280 static int ispow2realasize(const Table *t) {
281 return (!isrealasize(t) || ispow2(t->alimit));
285 static unsigned int setlimittosize(Table *t) {
286 t->alimit = luaH_realasize(t);
287 setrealasize(t);
288 return t->alimit;
292 #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
297 ** "Generic" get version. (Not that generic: not valid for integers,
298 ** which may be in array part, nor for floats with integral values.)
299 ** See explanation about 'deadok' in function 'equalkey'.
301 static const TValue *getgeneric(Table *t, const TValue *key, int deadok) {
302 Node *n = mainpositionTV(t, key);
303 for (;;) { /* check whether 'key' is somewhere in the chain */
304 if (equalkey(key, n, deadok))
305 return gval(n); /* that's it */
306 else {
307 int nx = gnext(n);
308 if (nx == 0)
309 return &absentkey; /* not found */
310 n += nx;
317 ** returns the index for 'k' if 'k' is an appropriate key to live in
318 ** the array part of a table, 0 otherwise.
320 static unsigned int arrayindex(lua_Integer k) {
321 if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
322 return cast_uint(k); /* 'key' is an appropriate array index */
323 else
324 return 0;
329 ** returns the index of a 'key' for table traversals. First goes all
330 ** elements in the array part, then elements in the hash part. The
331 ** beginning of a traversal is signaled by 0.
333 static unsigned int findindex(lua_State *L, Table *t, TValue *key,
334 unsigned int asize) {
335 unsigned int i;
336 if (ttisnil(key)) return 0; /* first iteration */
337 i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
338 if (i - 1u < asize) /* is 'key' inside array part? */
339 return i; /* yes; that's the index */
340 else {
341 const TValue *n = getgeneric(t, key, 1);
342 if (l_unlikely(isabstkey(n)))
343 luaG_runerror(L, "invalid key to 'next'"); /* key not found */
344 i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
345 /* hash elements are numbered after array ones */
346 return (i + 1) + asize;
351 int luaH_next(lua_State *L, Table *t, StkId key) {
352 unsigned int asize = luaH_realasize(t);
353 unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
354 for (; i < asize; i++) { /* try first array part */
355 if (!isempty(&t->array[i])) { /* a non-empty entry? */
356 setivalue(s2v(key), i + 1);
357 setobj2s(L, key + 1, &t->array[i]);
358 return 1;
361 for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
362 if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
363 Node *n = gnode(t, i);
364 getnodekey(L, s2v(key), n);
365 setobj2s(L, key + 1, gval(n));
366 return 1;
369 return 0; /* no more elements */
373 static void freehash(lua_State *L, Table *t) {
374 if (!isdummy(t))
375 luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
380 ** {=============================================================
381 ** Rehash
382 ** ==============================================================
386 ** Compute the optimal size for the array part of table 't'. 'nums' is a
387 ** "count array" where 'nums[i]' is the number of integers in the table
388 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
389 ** integer keys in the table and leaves with the number of keys that
390 ** will go to the array part; return the optimal size. (The condition
391 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
393 static unsigned int computesizes(unsigned int nums[], unsigned int *pna) {
394 int i;
395 unsigned int twotoi; /* 2^i (candidate for optimal size) */
396 unsigned int a = 0; /* number of elements smaller than 2^i */
397 unsigned int na = 0; /* number of elements to go to array part */
398 unsigned int optimal = 0; /* optimal size for array part */
399 /* loop while keys can fill more than half of total size */
400 for (i = 0, twotoi = 1;
401 twotoi > 0 && *pna > twotoi / 2;
402 i++, twotoi *= 2) {
403 a += nums[i];
404 if (a > twotoi / 2) { /* more than half elements present? */
405 optimal = twotoi; /* optimal size (till now) */
406 na = a; /* all elements up to 'optimal' will go to array part */
409 lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
410 *pna = na;
411 return optimal;
415 static int countint(lua_Integer key, unsigned int *nums) {
416 unsigned int k = arrayindex(key);
417 if (k != 0) { /* is 'key' an appropriate array index? */
418 nums[luaO_ceillog2(k)]++; /* count as such */
419 return 1;
420 } else
421 return 0;
426 ** Count keys in array part of table 't': Fill 'nums[i]' with
427 ** number of keys that will go into corresponding slice and return
428 ** total number of non-nil keys.
430 static unsigned int numusearray(const Table *t, unsigned int *nums) {
431 int lg;
432 unsigned int ttlg; /* 2^lg */
433 unsigned int ause = 0; /* summation of 'nums' */
434 unsigned int i = 1; /* count to traverse all array keys */
435 unsigned int asize = limitasasize(t); /* real array size */
436 /* traverse each slice */
437 for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
438 unsigned int lc = 0; /* counter */
439 unsigned int lim = ttlg;
440 if (lim > asize) {
441 lim = asize; /* adjust upper limit */
442 if (i > lim)
443 break; /* no more elements to count */
445 /* count elements in range (2^(lg - 1), 2^lg] */
446 for (; i <= lim; i++) {
447 if (!isempty(&t->array[i - 1]))
448 lc++;
450 nums[lg] += lc;
451 ause += lc;
453 return ause;
457 static int numusehash(const Table *t, unsigned int *nums, unsigned int *pna) {
458 int totaluse = 0; /* total number of elements */
459 int ause = 0; /* elements added to 'nums' (can go to array part) */
460 int i = sizenode(t);
461 while (i--) {
462 Node *n = &t->node[i];
463 if (!isempty(gval(n))) {
464 if (keyisinteger(n))
465 ause += countint(keyival(n), nums);
466 totaluse++;
469 *pna += ause;
470 return totaluse;
475 ** Creates an array for the hash part of a table with the given
476 ** size, or reuses the dummy node if size is zero.
477 ** The computation for size overflow is in two steps: the first
478 ** comparison ensures that the shift in the second one does not
479 ** overflow.
481 static void setnodevector(lua_State *L, Table *t, unsigned int size) {
482 if (size == 0) { /* no elements to hash part? */
483 t->node = cast(Node *, dummynode); /* use common 'dummynode' */
484 t->lsizenode = 0;
485 t->lastfree = NULL; /* signal that it is using dummy node */
486 } else {
487 int i;
488 int lsize = luaO_ceillog2(size);
489 if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
490 luaG_runerror(L, "table overflow");
491 size = twoto(lsize);
492 t->node = luaM_newvector(L, size, Node);
493 for (i = 0; i < cast_int(size); i++) {
494 Node *n = gnode(t, i);
495 gnext(n) = 0;
496 setnilkey(n);
497 setempty(gval(n));
499 t->lsizenode = cast_byte(lsize);
500 t->lastfree = gnode(t, size); /* all positions are free */
506 ** (Re)insert all elements from the hash part of 'ot' into table 't'.
508 static void reinsert(lua_State *L, Table *ot, Table *t) {
509 int j;
510 int size = sizenode(ot);
511 for (j = 0; j < size; j++) {
512 Node *old = gnode(ot, j);
513 if (!isempty(gval(old))) {
514 /* doesn't need barrier/invalidate cache, as entry was
515 already present in the table */
516 TValue k;
517 getnodekey(L, &k, old);
518 luaH_set(L, t, &k, gval(old));
525 ** Exchange the hash part of 't1' and 't2'.
527 static void exchangehashpart(Table *t1, Table *t2) {
528 lu_byte lsizenode = t1->lsizenode;
529 Node *node = t1->node;
530 Node *lastfree = t1->lastfree;
531 t1->lsizenode = t2->lsizenode;
532 t1->node = t2->node;
533 t1->lastfree = t2->lastfree;
534 t2->lsizenode = lsizenode;
535 t2->node = node;
536 t2->lastfree = lastfree;
541 ** Resize table 't' for the new given sizes. Both allocations (for
542 ** the hash part and for the array part) can fail, which creates some
543 ** subtleties. If the first allocation, for the hash part, fails, an
544 ** error is raised and that is it. Otherwise, it copies the elements from
545 ** the shrinking part of the array (if it is shrinking) into the new
546 ** hash. Then it reallocates the array part. If that fails, the table
547 ** is in its original state; the function frees the new hash part and then
548 ** raises the allocation error. Otherwise, it sets the new hash part
549 ** into the table, initializes the new part of the array (if any) with
550 ** nils and reinserts the elements of the old hash back into the new
551 ** parts of the table.
553 void luaH_resize(lua_State *L, Table *t, unsigned int newasize,
554 unsigned int nhsize) {
555 unsigned int i;
556 Table newt; /* to keep the new hash part */
557 unsigned int oldasize = setlimittosize(t);
558 TValue *newarray;
559 /* create new hash part with appropriate size into 'newt' */
560 setnodevector(L, &newt, nhsize);
561 if (newasize < oldasize) { /* will array shrink? */
562 t->alimit = newasize; /* pretend array has new size... */
563 exchangehashpart(t, &newt); /* and new hash */
564 /* re-insert into the new hash the elements from vanishing slice */
565 for (i = newasize; i < oldasize; i++) {
566 if (!isempty(&t->array[i]))
567 luaH_setint(L, t, i + 1, &t->array[i]);
569 t->alimit = oldasize; /* restore current size... */
570 exchangehashpart(t, &newt); /* and hash (in case of errors) */
572 /* allocate new array */
573 newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
574 if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
575 freehash(L, &newt); /* release new hash part */
576 luaM_error(L); /* raise error (with array unchanged) */
578 /* allocation ok; initialize new part of the array */
579 exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
580 t->array = newarray; /* set new array part */
581 t->alimit = newasize;
582 for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
583 setempty(&t->array[i]);
584 /* re-insert elements from old hash part into new parts */
585 reinsert(L, &newt, t); /* 'newt' now has the old hash */
586 freehash(L, &newt); /* free old hash part */
590 void luaH_resizearray(lua_State *L, Table *t, unsigned int nasize) {
591 int nsize = allocsizenode(t);
592 luaH_resize(L, t, nasize, nsize);
596 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
598 static void rehash(lua_State *L, Table *t, const TValue *ek) {
599 unsigned int asize; /* optimal size for array part */
600 unsigned int na; /* number of keys in the array part */
601 unsigned int nums[MAXABITS + 1];
602 int i;
603 int totaluse;
604 for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
605 setlimittosize(t);
606 na = numusearray(t, nums); /* count keys in array part */
607 totaluse = na; /* all those keys are integer keys */
608 totaluse += numusehash(t, nums, &na); /* count keys in hash part */
609 /* count extra key */
610 if (ttisinteger(ek))
611 na += countint(ivalue(ek), nums);
612 totaluse++;
613 /* compute new size for array part */
614 asize = computesizes(nums, &na);
615 /* resize the table to new computed sizes */
616 luaH_resize(L, t, asize, totaluse - na);
622 ** }=============================================================
626 Table *luaH_new(lua_State *L) {
627 GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
628 Table *t = gco2t(o);
629 t->metatable = NULL;
630 t->flags = cast_byte(maskflags); /* table has no metamethod fields */
631 t->array = NULL;
632 t->alimit = 0;
633 setnodevector(L, t, 0);
634 return t;
638 void luaH_free(lua_State *L, Table *t) {
639 freehash(L, t);
640 luaM_freearray(L, t->array, luaH_realasize(t));
641 luaM_free(L, t);
645 static Node *getfreepos(Table *t) {
646 if (!isdummy(t)) {
647 while (t->lastfree > t->node) {
648 t->lastfree--;
649 if (keyisnil(t->lastfree))
650 return t->lastfree;
653 return NULL; /* could not find a free place */
659 ** inserts a new key into a hash table; first, check whether key's main
660 ** position is free. If not, check whether colliding node is in its main
661 ** position or not: if it is not, move colliding node to an empty place and
662 ** put new key in its main position; otherwise (colliding node is in its main
663 ** position), new key goes to an empty position.
665 static void luaH_newkey(lua_State *L, Table *t, const TValue *key,
666 TValue *value) {
667 Node *mp;
668 TValue aux;
669 if (l_unlikely(ttisnil(key)))
670 luaG_runerror(L, "table index is nil");
671 else if (ttisfloat(key)) {
672 lua_Number f = fltvalue(key);
673 lua_Integer k;
674 if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
675 setivalue(&aux, k);
676 key = &aux; /* insert it as an integer */
677 } else if (l_unlikely(luai_numisnan(f)))
678 luaG_runerror(L, "table index is NaN");
680 if (ttisnil(value))
681 return; /* do not insert nil values */
682 mp = mainpositionTV(t, key);
683 if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
684 Node *othern;
685 Node *f = getfreepos(t); /* get a free place */
686 if (f == NULL) { /* cannot find a free place? */
687 rehash(L, t, key); /* grow table */
688 /* whatever called 'newkey' takes care of TM cache */
689 luaH_set(L, t, key, value); /* insert key into grown table */
690 return;
692 lua_assert(!isdummy(t));
693 othern = mainpositionfromnode(t, mp);
694 if (othern != mp) { /* is colliding node out of its main position? */
695 /* yes; move colliding node into free position */
696 while (othern + gnext(othern) != mp) /* find previous */
697 othern += gnext(othern);
698 gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
699 *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
700 if (gnext(mp) != 0) {
701 gnext(f) += cast_int(mp - f); /* correct 'next' */
702 gnext(mp) = 0; /* now 'mp' is free */
704 setempty(gval(mp));
705 } else { /* colliding node is in its own main position */
706 /* new node will go into free position */
707 if (gnext(mp) != 0)
708 gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
709 else lua_assert(gnext(f) == 0);
710 gnext(mp) = cast_int(f - mp);
711 mp = f;
714 setnodekey(L, mp, key);
715 luaC_barrierback(L, obj2gco(t), key);
716 lua_assert(isempty(gval(mp)));
717 setobj2t(L, gval(mp), value);
722 ** Search function for integers. If integer is inside 'alimit', get it
723 ** directly from the array part. Otherwise, if 'alimit' is not
724 ** the real size of the array, the key still can be in the array part.
725 ** In this case, do the "Xmilia trick" to check whether 'key-1' is
726 ** smaller than the real size.
727 ** The trick works as follow: let 'p' be an integer such that
728 ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'.
729 ** That is, 2^(p+1) is the real size of the array, and 'p' is the highest
730 ** bit on in 'alimit-1'. What we have to check becomes 'key-1 < 2^(p+1)'.
731 ** We compute '(key-1) & ~(alimit-1)', which we call 'res'; it will
732 ** have the 'p' bit cleared. If the key is outside the array, that is,
733 ** 'key-1 >= 2^(p+1)', then 'res' will have some bit on higher than 'p',
734 ** therefore it will be larger or equal to 'alimit', and the check
735 ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no bit on higher than
736 ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller
737 ** than 2^p, therefore smaller than 'alimit', and the check succeeds.
738 ** As special cases, when 'alimit' is 0 the condition is trivially false,
739 ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'.
740 ** If key is 0 or negative, 'res' will have its higher bit on, so that
741 ** if cannot be smaller than alimit.
743 const TValue *luaH_getint(Table *t, lua_Integer key) {
744 lua_Unsigned alimit = t->alimit;
745 if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */
746 return &t->array[key - 1];
747 else if (!isrealasize(t) && /* key still may be in the array part? */
748 (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) {
749 t->alimit = cast_uint(key); /* probably '#t' is here now */
750 return &t->array[key - 1];
751 } else { /* key is not in the array part; check the hash */
752 Node *n = hashint(t, key);
753 for (;;) { /* check whether 'key' is somewhere in the chain */
754 if (keyisinteger(n) && keyival(n) == key)
755 return gval(n); /* that's it */
756 else {
757 int nx = gnext(n);
758 if (nx == 0) break;
759 n += nx;
762 return &absentkey;
768 ** search function for short strings
770 const TValue *luaH_getshortstr(Table *t, TString *key) {
771 Node *n = hashstr(t, key);
772 lua_assert(key->tt == LUA_VSHRSTR);
773 for (;;) { /* check whether 'key' is somewhere in the chain */
774 if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
775 return gval(n); /* that's it */
776 else {
777 int nx = gnext(n);
778 if (nx == 0)
779 return &absentkey; /* not found */
780 n += nx;
786 const TValue *luaH_getstr(Table *t, TString *key) {
787 if (key->tt == LUA_VSHRSTR)
788 return luaH_getshortstr(t, key);
789 else { /* for long strings, use generic case */
790 TValue ko;
791 setsvalue(cast(lua_State *, NULL), &ko, key);
792 return getgeneric(t, &ko, 0);
798 ** main search function
800 const TValue *luaH_get(Table *t, const TValue *key) {
801 switch (ttypetag(key)) {
802 case LUA_VSHRSTR:
803 return luaH_getshortstr(t, tsvalue(key));
804 case LUA_VNUMINT:
805 return luaH_getint(t, ivalue(key));
806 case LUA_VNIL:
807 return &absentkey;
808 case LUA_VNUMFLT: {
809 lua_Integer k;
810 if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
811 return luaH_getint(t, k); /* use specialized version */
812 /* else... */
813 } /* FALLTHROUGH */
814 default:
815 return getgeneric(t, key, 0);
821 ** Finish a raw "set table" operation, where 'slot' is where the value
822 ** should have been (the result of a previous "get table").
823 ** Beware: when using this function you probably need to check a GC
824 ** barrier and invalidate the TM cache.
826 void luaH_finishset(lua_State *L, Table *t, const TValue *key,
827 const TValue *slot, TValue *value) {
828 if (isabstkey(slot))
829 luaH_newkey(L, t, key, value);
830 else
831 setobj2t(L, cast(TValue *, slot), value);
836 ** beware: when using this function you probably need to check a GC
837 ** barrier and invalidate the TM cache.
839 void luaH_set(lua_State *L, Table *t, const TValue *key, TValue *value) {
840 const TValue *slot = luaH_get(t, key);
841 luaH_finishset(L, t, key, slot, value);
845 void luaH_setint(lua_State *L, Table *t, lua_Integer key, TValue *value) {
846 const TValue *p = luaH_getint(t, key);
847 if (isabstkey(p)) {
848 TValue k;
849 setivalue(&k, key);
850 luaH_newkey(L, t, &k, value);
851 } else
852 setobj2t(L, cast(TValue *, p), value);
857 ** Try to find a boundary in the hash part of table 't'. From the
858 ** caller, we know that 'j' is zero or present and that 'j + 1' is
859 ** present. We want to find a larger key that is absent from the
860 ** table, so that we can do a binary search between the two keys to
861 ** find a boundary. We keep doubling 'j' until we get an absent index.
862 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
863 ** absent, we are ready for the binary search. ('j', being max integer,
864 ** is larger or equal to 'i', but it cannot be equal because it is
865 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
866 ** boundary. ('j + 1' cannot be a present integer key because it is
867 ** not a valid integer in Lua.)
869 static lua_Unsigned hash_search(Table *t, lua_Unsigned j) {
870 lua_Unsigned i;
871 if (j == 0) j++; /* the caller ensures 'j + 1' is present */
872 do {
873 i = j; /* 'i' is a present index */
874 if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
875 j *= 2;
876 else {
877 j = LUA_MAXINTEGER;
878 if (isempty(luaH_getint(t, j))) /* t[j] not present? */
879 break; /* 'j' now is an absent index */
880 else /* weird case */
881 return j; /* well, max integer is a boundary... */
883 } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
884 /* i < j && t[i] present && t[j] absent */
885 while (j - i > 1u) { /* do a binary search between them */
886 lua_Unsigned m = (i + j) / 2;
887 if (isempty(luaH_getint(t, m))) j = m;
888 else i = m;
890 return i;
894 static unsigned int binsearch(const TValue *array, unsigned int i,
895 unsigned int j) {
896 while (j - i > 1u) { /* binary search */
897 unsigned int m = (i + j) / 2;
898 if (isempty(&array[m - 1])) j = m;
899 else i = m;
901 return i;
906 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
907 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
908 ** and 'maxinteger' if t[maxinteger] is present.)
909 ** (In the next explanation, we use Lua indices, that is, with base 1.
910 ** The code itself uses base 0 when indexing the array part of the table.)
911 ** The code starts with 'limit = t->alimit', a position in the array
912 ** part that may be a boundary.
914 ** (1) If 't[limit]' is empty, there must be a boundary before it.
915 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
916 ** is present. If so, it is a boundary. Otherwise, do a binary search
917 ** between 0 and limit to find a boundary. In both cases, try to
918 ** use this boundary as the new 'alimit', as a hint for the next call.
920 ** (2) If 't[limit]' is not empty and the array has more elements
921 ** after 'limit', try to find a boundary there. Again, try first
922 ** the special case (which should be quite frequent) where 'limit+1'
923 ** is empty, so that 'limit' is a boundary. Otherwise, check the
924 ** last element of the array part. If it is empty, there must be a
925 ** boundary between the old limit (present) and the last element
926 ** (absent), which is found with a binary search. (This boundary always
927 ** can be a new limit.)
929 ** (3) The last case is when there are no elements in the array part
930 ** (limit == 0) or its last element (the new limit) is present.
931 ** In this case, must check the hash part. If there is no hash part
932 ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
933 ** 'hash_search' to find a boundary in the hash part of the table.
934 ** (In those cases, the boundary is not inside the array part, and
935 ** therefore cannot be used as a new limit.)
937 lua_Unsigned luaH_getn(Table *t) {
938 unsigned int limit = t->alimit;
939 if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
940 /* there must be a boundary before 'limit' */
941 if (limit >= 2 && !isempty(&t->array[limit - 2])) {
942 /* 'limit - 1' is a boundary; can it be a new limit? */
943 if (ispow2realasize(t) && !ispow2(limit - 1)) {
944 t->alimit = limit - 1;
945 setnorealasize(t); /* now 'alimit' is not the real size */
947 return limit - 1;
948 } else { /* must search for a boundary in [0, limit] */
949 unsigned int boundary = binsearch(t->array, 0, limit);
950 /* can this boundary represent the real size of the array? */
951 if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
952 t->alimit = boundary; /* use it as the new limit */
953 setnorealasize(t);
955 return boundary;
958 /* 'limit' is zero or present in table */
959 if (!limitequalsasize(t)) { /* (2)? */
960 /* 'limit' > 0 and array has more elements after 'limit' */
961 if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
962 return limit; /* this is the boundary */
963 /* else, try last element in the array */
964 limit = luaH_realasize(t);
965 if (isempty(&t->array[limit - 1])) { /* empty? */
966 /* there must be a boundary in the array after old limit,
967 and it must be a valid new limit */
968 unsigned int boundary = binsearch(t->array, t->alimit, limit);
969 t->alimit = boundary;
970 return boundary;
972 /* else, new limit is present in the table; check the hash part */
974 /* (3) 'limit' is the last element and either is zero or present in table */
975 lua_assert(limit == luaH_realasize(t) &&
976 (limit == 0 || !isempty(&t->array[limit - 1])));
977 if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
978 return limit; /* 'limit + 1' is absent */
979 else /* 'limit + 1' is also present */
980 return hash_search(t, limit);
985 #if defined(LUA_DEBUG)
987 /* export these functions for the test library */
989 Node *luaH_mainposition(const Table *t, const TValue *key) {
990 return mainpositionTV(t, key);
993 #endif