4 ** See Copyright Notice in lua.h
14 ** Implementation of tables (aka arrays, objects, or hash tables).
15 ** Tables keep its elements in two parts: an array part and a hash part.
16 ** Non-negative integer keys are all candidates to be kept in the array
17 ** part. The actual size of the array is the largest 'n' such that
18 ** more than half the slots between 1 and n are in use.
19 ** Hash uses a mix of chained scatter table with Brent's variation.
20 ** A main invariant of these tables is that, if an element is not
21 ** in its main position (i.e. the 'original' position that its hash gives
22 ** to it), then the colliding element is in its own main position.
23 ** Hence even when the load factor reaches 100%, performance remains good.
43 ** MAXABITS is the largest integer such that MAXASIZE fits in an
46 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
50 ** MAXASIZE is the maximum size of the array part. It is the minimum
51 ** between 2^MAXABITS and the maximum size that, measured in bytes,
52 ** fits in a 'size_t'.
54 #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
57 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
60 #define MAXHBITS (MAXABITS - 1)
64 ** MAXHSIZE is the maximum size of the hash part. It is the minimum
65 ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
66 ** it fits in a 'size_t'.
68 #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
72 ** When the original hash value is good, hashing by a power of 2
73 ** avoids the cost of '%'.
75 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
78 ** for other types, it is better to avoid modulo by power of 2, as
79 ** they can have many 2 factors.
81 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
84 #define hashstr(t,str) hashpow2(t, (str)->hash)
85 #define hashboolean(t,p) hashpow2(t, p)
88 #define hashpointer(t,p) hashmod(t, point2uint(p))
91 #define dummynode (&dummynode_)
93 static const Node dummynode_
= {
94 { {NULL
}, LUA_VEMPTY
, /* value's value and type */
96 } /* key type, next, and key value */
100 static const TValue absentkey
= {ABSTKEYCONSTANT
};
104 ** Hash for integers. To allow a good hash, use the remainder operator
105 ** ('%'). If integer fits as a non-negative int, compute an int
106 ** remainder, which is faster. Otherwise, use an unsigned-integer
107 ** remainder, which uses all bits and ensures a non-negative result.
109 static Node
*hashint(const Table
*t
, lua_Integer i
) {
110 lua_Unsigned ui
= l_castS2U(i
);
111 if (ui
<= cast_uint(INT_MAX
))
112 return hashmod(t
, cast_int(ui
));
114 return hashmod(t
, ui
);
119 ** Hash for floating-point numbers.
120 ** The main computation should be just
121 ** n = frexp(n, &i); return (n * INT_MAX) + i
122 ** but there are some numerical subtleties.
123 ** In a two-complement representation, INT_MAX does not has an exact
124 ** representation as a float, but INT_MIN does; because the absolute
125 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
126 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
127 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
128 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
131 #if !defined(l_hashfloat)
132 static int l_hashfloat(lua_Number n
) {
135 n
= l_mathop(frexp
)(n
, &i
) * -cast_num(INT_MIN
);
136 if (!lua_numbertointeger(n
, &ni
)) { /* is 'n' inf/-inf/NaN? */
137 lua_assert(luai_numisnan(n
) || l_mathop(fabs
)(n
) == cast_num(HUGE_VAL
));
139 } else { /* normal case */
140 unsigned int u
= cast_uint(i
) + cast_uint(ni
);
141 return cast_int(u
<= cast_uint(INT_MAX
) ? u
: ~u
);
148 ** returns the 'main' position of an element in a table (that is,
149 ** the index of its hash value).
151 static Node
*mainpositionTV(const Table
*t
, const TValue
*key
) {
152 switch (ttypetag(key
)) {
154 lua_Integer i
= ivalue(key
);
155 return hashint(t
, i
);
158 lua_Number n
= fltvalue(key
);
159 return hashmod(t
, l_hashfloat(n
));
162 TString
*ts
= tsvalue(key
);
163 return hashstr(t
, ts
);
166 TString
*ts
= tsvalue(key
);
167 return hashpow2(t
, luaS_hashlongstr(ts
));
170 return hashboolean(t
, 0);
172 return hashboolean(t
, 1);
173 case LUA_VLIGHTUSERDATA
: {
174 void *p
= pvalue(key
);
175 return hashpointer(t
, p
);
178 lua_CFunction f
= fvalue(key
);
179 return hashpointer(t
, f
);
182 GCObject
*o
= gcvalue(key
);
183 return hashpointer(t
, o
);
189 l_sinline Node
*mainpositionfromnode(const Table
*t
, Node
*nd
) {
191 getnodekey(cast(lua_State
*, NULL
), &key
, nd
);
192 return mainpositionTV(t
, &key
);
197 ** Check whether key 'k1' is equal to the key in node 'n2'. This
198 ** equality is raw, so there are no metamethods. Floats with integer
199 ** values have been normalized, so integers cannot be equal to
200 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
201 ** that short strings are handled in the default case.
202 ** A true 'deadok' means to accept dead keys as equal to their original
203 ** values. All dead keys are compared in the default case, by pointer
204 ** identity. (Only collectable objects can produce dead keys.) Note that
205 ** dead long strings are also compared by identity.
206 ** Once a key is dead, its corresponding value may be collected, and
207 ** then another value can be created with the same address. If this
208 ** other value is given to 'next', 'equalkey' will signal a false
209 ** positive. In a regular traversal, this situation should never happen,
210 ** as all keys given to 'next' came from the table itself, and therefore
211 ** could not have been collected. Outside a regular traversal, we
212 ** have garbage in, garbage out. What is relevant is that this false
213 ** positive does not break anything. (In particular, 'next' will return
214 ** some other valid item on the table or nil.)
216 static int equalkey(const TValue
*k1
, const Node
*n2
, int deadok
) {
217 if ((rawtt(k1
) != keytt(n2
)) && /* not the same variants? */
218 !(deadok
&& keyisdead(n2
) && iscollectable(k1
)))
219 return 0; /* cannot be same key */
226 return (ivalue(k1
) == keyival(n2
));
228 return luai_numeq(fltvalue(k1
), fltvalueraw(keyval(n2
)));
229 case LUA_VLIGHTUSERDATA
:
230 return pvalue(k1
) == pvalueraw(keyval(n2
));
232 return fvalue(k1
) == fvalueraw(keyval(n2
));
233 case ctb(LUA_VLNGSTR
):
234 return luaS_eqlngstr(tsvalue(k1
), keystrval(n2
));
236 return gcvalue(k1
) == gcvalueraw(keyval(n2
));
242 ** True if value of 'alimit' is equal to the real size of the array
243 ** part of table 't'. (Otherwise, the array part must be larger than
246 #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
250 ** Returns the real size of the 'array' array
252 LUAI_FUNC
unsigned int luaH_realasize(const Table
*t
) {
253 if (limitequalsasize(t
))
254 return t
->alimit
; /* this is the size */
256 unsigned int size
= t
->alimit
;
257 /* compute the smallest power of 2 not smaller than 'size' */
262 #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */
263 size
|= (size
>> 16);
264 #if (UINT_MAX >> 30) > 3
265 size
|= (size
>> 32); /* unsigned int has more than 32 bits */
269 lua_assert(ispow2(size
) && size
/ 2 < t
->alimit
&& t
->alimit
< size
);
276 ** Check whether real size of the array is a power of 2.
277 ** (If it is not, 'alimit' cannot be changed to any other value
278 ** without changing the real size.)
280 static int ispow2realasize(const Table
*t
) {
281 return (!isrealasize(t
) || ispow2(t
->alimit
));
285 static unsigned int setlimittosize(Table
*t
) {
286 t
->alimit
= luaH_realasize(t
);
292 #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
297 ** "Generic" get version. (Not that generic: not valid for integers,
298 ** which may be in array part, nor for floats with integral values.)
299 ** See explanation about 'deadok' in function 'equalkey'.
301 static const TValue
*getgeneric(Table
*t
, const TValue
*key
, int deadok
) {
302 Node
*n
= mainpositionTV(t
, key
);
303 for (;;) { /* check whether 'key' is somewhere in the chain */
304 if (equalkey(key
, n
, deadok
))
305 return gval(n
); /* that's it */
309 return &absentkey
; /* not found */
317 ** returns the index for 'k' if 'k' is an appropriate key to live in
318 ** the array part of a table, 0 otherwise.
320 static unsigned int arrayindex(lua_Integer k
) {
321 if (l_castS2U(k
) - 1u < MAXASIZE
) /* 'k' in [1, MAXASIZE]? */
322 return cast_uint(k
); /* 'key' is an appropriate array index */
329 ** returns the index of a 'key' for table traversals. First goes all
330 ** elements in the array part, then elements in the hash part. The
331 ** beginning of a traversal is signaled by 0.
333 static unsigned int findindex(lua_State
*L
, Table
*t
, TValue
*key
,
334 unsigned int asize
) {
336 if (ttisnil(key
)) return 0; /* first iteration */
337 i
= ttisinteger(key
) ? arrayindex(ivalue(key
)) : 0;
338 if (i
- 1u < asize
) /* is 'key' inside array part? */
339 return i
; /* yes; that's the index */
341 const TValue
*n
= getgeneric(t
, key
, 1);
342 if (l_unlikely(isabstkey(n
)))
343 luaG_runerror(L
, "invalid key to 'next'"); /* key not found */
344 i
= cast_int(nodefromval(n
) - gnode(t
, 0)); /* key index in hash table */
345 /* hash elements are numbered after array ones */
346 return (i
+ 1) + asize
;
351 int luaH_next(lua_State
*L
, Table
*t
, StkId key
) {
352 unsigned int asize
= luaH_realasize(t
);
353 unsigned int i
= findindex(L
, t
, s2v(key
), asize
); /* find original key */
354 for (; i
< asize
; i
++) { /* try first array part */
355 if (!isempty(&t
->array
[i
])) { /* a non-empty entry? */
356 setivalue(s2v(key
), i
+ 1);
357 setobj2s(L
, key
+ 1, &t
->array
[i
]);
361 for (i
-= asize
; cast_int(i
) < sizenode(t
); i
++) { /* hash part */
362 if (!isempty(gval(gnode(t
, i
)))) { /* a non-empty entry? */
363 Node
*n
= gnode(t
, i
);
364 getnodekey(L
, s2v(key
), n
);
365 setobj2s(L
, key
+ 1, gval(n
));
369 return 0; /* no more elements */
373 static void freehash(lua_State
*L
, Table
*t
) {
375 luaM_freearray(L
, t
->node
, cast_sizet(sizenode(t
)));
380 ** {=============================================================
382 ** ==============================================================
386 ** Compute the optimal size for the array part of table 't'. 'nums' is a
387 ** "count array" where 'nums[i]' is the number of integers in the table
388 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
389 ** integer keys in the table and leaves with the number of keys that
390 ** will go to the array part; return the optimal size. (The condition
391 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
393 static unsigned int computesizes(unsigned int nums
[], unsigned int *pna
) {
395 unsigned int twotoi
; /* 2^i (candidate for optimal size) */
396 unsigned int a
= 0; /* number of elements smaller than 2^i */
397 unsigned int na
= 0; /* number of elements to go to array part */
398 unsigned int optimal
= 0; /* optimal size for array part */
399 /* loop while keys can fill more than half of total size */
400 for (i
= 0, twotoi
= 1;
401 twotoi
> 0 && *pna
> twotoi
/ 2;
404 if (a
> twotoi
/ 2) { /* more than half elements present? */
405 optimal
= twotoi
; /* optimal size (till now) */
406 na
= a
; /* all elements up to 'optimal' will go to array part */
409 lua_assert((optimal
== 0 || optimal
/ 2 < na
) && na
<= optimal
);
415 static int countint(lua_Integer key
, unsigned int *nums
) {
416 unsigned int k
= arrayindex(key
);
417 if (k
!= 0) { /* is 'key' an appropriate array index? */
418 nums
[luaO_ceillog2(k
)]++; /* count as such */
426 ** Count keys in array part of table 't': Fill 'nums[i]' with
427 ** number of keys that will go into corresponding slice and return
428 ** total number of non-nil keys.
430 static unsigned int numusearray(const Table
*t
, unsigned int *nums
) {
432 unsigned int ttlg
; /* 2^lg */
433 unsigned int ause
= 0; /* summation of 'nums' */
434 unsigned int i
= 1; /* count to traverse all array keys */
435 unsigned int asize
= limitasasize(t
); /* real array size */
436 /* traverse each slice */
437 for (lg
= 0, ttlg
= 1; lg
<= MAXABITS
; lg
++, ttlg
*= 2) {
438 unsigned int lc
= 0; /* counter */
439 unsigned int lim
= ttlg
;
441 lim
= asize
; /* adjust upper limit */
443 break; /* no more elements to count */
445 /* count elements in range (2^(lg - 1), 2^lg] */
446 for (; i
<= lim
; i
++) {
447 if (!isempty(&t
->array
[i
- 1]))
457 static int numusehash(const Table
*t
, unsigned int *nums
, unsigned int *pna
) {
458 int totaluse
= 0; /* total number of elements */
459 int ause
= 0; /* elements added to 'nums' (can go to array part) */
462 Node
*n
= &t
->node
[i
];
463 if (!isempty(gval(n
))) {
465 ause
+= countint(keyival(n
), nums
);
475 ** Creates an array for the hash part of a table with the given
476 ** size, or reuses the dummy node if size is zero.
477 ** The computation for size overflow is in two steps: the first
478 ** comparison ensures that the shift in the second one does not
481 static void setnodevector(lua_State
*L
, Table
*t
, unsigned int size
) {
482 if (size
== 0) { /* no elements to hash part? */
483 t
->node
= cast(Node
*, dummynode
); /* use common 'dummynode' */
485 t
->lastfree
= NULL
; /* signal that it is using dummy node */
488 int lsize
= luaO_ceillog2(size
);
489 if (lsize
> MAXHBITS
|| (1u << lsize
) > MAXHSIZE
)
490 luaG_runerror(L
, "table overflow");
492 t
->node
= luaM_newvector(L
, size
, Node
);
493 for (i
= 0; i
< cast_int(size
); i
++) {
494 Node
*n
= gnode(t
, i
);
499 t
->lsizenode
= cast_byte(lsize
);
500 t
->lastfree
= gnode(t
, size
); /* all positions are free */
506 ** (Re)insert all elements from the hash part of 'ot' into table 't'.
508 static void reinsert(lua_State
*L
, Table
*ot
, Table
*t
) {
510 int size
= sizenode(ot
);
511 for (j
= 0; j
< size
; j
++) {
512 Node
*old
= gnode(ot
, j
);
513 if (!isempty(gval(old
))) {
514 /* doesn't need barrier/invalidate cache, as entry was
515 already present in the table */
517 getnodekey(L
, &k
, old
);
518 luaH_set(L
, t
, &k
, gval(old
));
525 ** Exchange the hash part of 't1' and 't2'.
527 static void exchangehashpart(Table
*t1
, Table
*t2
) {
528 lu_byte lsizenode
= t1
->lsizenode
;
529 Node
*node
= t1
->node
;
530 Node
*lastfree
= t1
->lastfree
;
531 t1
->lsizenode
= t2
->lsizenode
;
533 t1
->lastfree
= t2
->lastfree
;
534 t2
->lsizenode
= lsizenode
;
536 t2
->lastfree
= lastfree
;
541 ** Resize table 't' for the new given sizes. Both allocations (for
542 ** the hash part and for the array part) can fail, which creates some
543 ** subtleties. If the first allocation, for the hash part, fails, an
544 ** error is raised and that is it. Otherwise, it copies the elements from
545 ** the shrinking part of the array (if it is shrinking) into the new
546 ** hash. Then it reallocates the array part. If that fails, the table
547 ** is in its original state; the function frees the new hash part and then
548 ** raises the allocation error. Otherwise, it sets the new hash part
549 ** into the table, initializes the new part of the array (if any) with
550 ** nils and reinserts the elements of the old hash back into the new
551 ** parts of the table.
553 void luaH_resize(lua_State
*L
, Table
*t
, unsigned int newasize
,
554 unsigned int nhsize
) {
556 Table newt
; /* to keep the new hash part */
557 unsigned int oldasize
= setlimittosize(t
);
559 /* create new hash part with appropriate size into 'newt' */
560 setnodevector(L
, &newt
, nhsize
);
561 if (newasize
< oldasize
) { /* will array shrink? */
562 t
->alimit
= newasize
; /* pretend array has new size... */
563 exchangehashpart(t
, &newt
); /* and new hash */
564 /* re-insert into the new hash the elements from vanishing slice */
565 for (i
= newasize
; i
< oldasize
; i
++) {
566 if (!isempty(&t
->array
[i
]))
567 luaH_setint(L
, t
, i
+ 1, &t
->array
[i
]);
569 t
->alimit
= oldasize
; /* restore current size... */
570 exchangehashpart(t
, &newt
); /* and hash (in case of errors) */
572 /* allocate new array */
573 newarray
= luaM_reallocvector(L
, t
->array
, oldasize
, newasize
, TValue
);
574 if (l_unlikely(newarray
== NULL
&& newasize
> 0)) { /* allocation failed? */
575 freehash(L
, &newt
); /* release new hash part */
576 luaM_error(L
); /* raise error (with array unchanged) */
578 /* allocation ok; initialize new part of the array */
579 exchangehashpart(t
, &newt
); /* 't' has the new hash ('newt' has the old) */
580 t
->array
= newarray
; /* set new array part */
581 t
->alimit
= newasize
;
582 for (i
= oldasize
; i
< newasize
; i
++) /* clear new slice of the array */
583 setempty(&t
->array
[i
]);
584 /* re-insert elements from old hash part into new parts */
585 reinsert(L
, &newt
, t
); /* 'newt' now has the old hash */
586 freehash(L
, &newt
); /* free old hash part */
590 void luaH_resizearray(lua_State
*L
, Table
*t
, unsigned int nasize
) {
591 int nsize
= allocsizenode(t
);
592 luaH_resize(L
, t
, nasize
, nsize
);
596 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
598 static void rehash(lua_State
*L
, Table
*t
, const TValue
*ek
) {
599 unsigned int asize
; /* optimal size for array part */
600 unsigned int na
; /* number of keys in the array part */
601 unsigned int nums
[MAXABITS
+ 1];
604 for (i
= 0; i
<= MAXABITS
; i
++) nums
[i
] = 0; /* reset counts */
606 na
= numusearray(t
, nums
); /* count keys in array part */
607 totaluse
= na
; /* all those keys are integer keys */
608 totaluse
+= numusehash(t
, nums
, &na
); /* count keys in hash part */
609 /* count extra key */
611 na
+= countint(ivalue(ek
), nums
);
613 /* compute new size for array part */
614 asize
= computesizes(nums
, &na
);
615 /* resize the table to new computed sizes */
616 luaH_resize(L
, t
, asize
, totaluse
- na
);
622 ** }=============================================================
626 Table
*luaH_new(lua_State
*L
) {
627 GCObject
*o
= luaC_newobj(L
, LUA_VTABLE
, sizeof(Table
));
630 t
->flags
= cast_byte(maskflags
); /* table has no metamethod fields */
633 setnodevector(L
, t
, 0);
638 void luaH_free(lua_State
*L
, Table
*t
) {
640 luaM_freearray(L
, t
->array
, luaH_realasize(t
));
645 static Node
*getfreepos(Table
*t
) {
647 while (t
->lastfree
> t
->node
) {
649 if (keyisnil(t
->lastfree
))
653 return NULL
; /* could not find a free place */
659 ** inserts a new key into a hash table; first, check whether key's main
660 ** position is free. If not, check whether colliding node is in its main
661 ** position or not: if it is not, move colliding node to an empty place and
662 ** put new key in its main position; otherwise (colliding node is in its main
663 ** position), new key goes to an empty position.
665 static void luaH_newkey(lua_State
*L
, Table
*t
, const TValue
*key
,
669 if (l_unlikely(ttisnil(key
)))
670 luaG_runerror(L
, "table index is nil");
671 else if (ttisfloat(key
)) {
672 lua_Number f
= fltvalue(key
);
674 if (luaV_flttointeger(f
, &k
, F2Ieq
)) { /* does key fit in an integer? */
676 key
= &aux
; /* insert it as an integer */
677 } else if (l_unlikely(luai_numisnan(f
)))
678 luaG_runerror(L
, "table index is NaN");
681 return; /* do not insert nil values */
682 mp
= mainpositionTV(t
, key
);
683 if (!isempty(gval(mp
)) || isdummy(t
)) { /* main position is taken? */
685 Node
*f
= getfreepos(t
); /* get a free place */
686 if (f
== NULL
) { /* cannot find a free place? */
687 rehash(L
, t
, key
); /* grow table */
688 /* whatever called 'newkey' takes care of TM cache */
689 luaH_set(L
, t
, key
, value
); /* insert key into grown table */
692 lua_assert(!isdummy(t
));
693 othern
= mainpositionfromnode(t
, mp
);
694 if (othern
!= mp
) { /* is colliding node out of its main position? */
695 /* yes; move colliding node into free position */
696 while (othern
+ gnext(othern
) != mp
) /* find previous */
697 othern
+= gnext(othern
);
698 gnext(othern
) = cast_int(f
- othern
); /* rechain to point to 'f' */
699 *f
= *mp
; /* copy colliding node into free pos. (mp->next also goes) */
700 if (gnext(mp
) != 0) {
701 gnext(f
) += cast_int(mp
- f
); /* correct 'next' */
702 gnext(mp
) = 0; /* now 'mp' is free */
705 } else { /* colliding node is in its own main position */
706 /* new node will go into free position */
708 gnext(f
) = cast_int((mp
+ gnext(mp
)) - f
); /* chain new position */
709 else lua_assert(gnext(f
) == 0);
710 gnext(mp
) = cast_int(f
- mp
);
714 setnodekey(L
, mp
, key
);
715 luaC_barrierback(L
, obj2gco(t
), key
);
716 lua_assert(isempty(gval(mp
)));
717 setobj2t(L
, gval(mp
), value
);
722 ** Search function for integers. If integer is inside 'alimit', get it
723 ** directly from the array part. Otherwise, if 'alimit' is not
724 ** the real size of the array, the key still can be in the array part.
725 ** In this case, do the "Xmilia trick" to check whether 'key-1' is
726 ** smaller than the real size.
727 ** The trick works as follow: let 'p' be an integer such that
728 ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'.
729 ** That is, 2^(p+1) is the real size of the array, and 'p' is the highest
730 ** bit on in 'alimit-1'. What we have to check becomes 'key-1 < 2^(p+1)'.
731 ** We compute '(key-1) & ~(alimit-1)', which we call 'res'; it will
732 ** have the 'p' bit cleared. If the key is outside the array, that is,
733 ** 'key-1 >= 2^(p+1)', then 'res' will have some bit on higher than 'p',
734 ** therefore it will be larger or equal to 'alimit', and the check
735 ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no bit on higher than
736 ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller
737 ** than 2^p, therefore smaller than 'alimit', and the check succeeds.
738 ** As special cases, when 'alimit' is 0 the condition is trivially false,
739 ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'.
740 ** If key is 0 or negative, 'res' will have its higher bit on, so that
741 ** if cannot be smaller than alimit.
743 const TValue
*luaH_getint(Table
*t
, lua_Integer key
) {
744 lua_Unsigned alimit
= t
->alimit
;
745 if (l_castS2U(key
) - 1u < alimit
) /* 'key' in [1, t->alimit]? */
746 return &t
->array
[key
- 1];
747 else if (!isrealasize(t
) && /* key still may be in the array part? */
748 (((l_castS2U(key
) - 1u) & ~(alimit
- 1u)) < alimit
)) {
749 t
->alimit
= cast_uint(key
); /* probably '#t' is here now */
750 return &t
->array
[key
- 1];
751 } else { /* key is not in the array part; check the hash */
752 Node
*n
= hashint(t
, key
);
753 for (;;) { /* check whether 'key' is somewhere in the chain */
754 if (keyisinteger(n
) && keyival(n
) == key
)
755 return gval(n
); /* that's it */
768 ** search function for short strings
770 const TValue
*luaH_getshortstr(Table
*t
, TString
*key
) {
771 Node
*n
= hashstr(t
, key
);
772 lua_assert(key
->tt
== LUA_VSHRSTR
);
773 for (;;) { /* check whether 'key' is somewhere in the chain */
774 if (keyisshrstr(n
) && eqshrstr(keystrval(n
), key
))
775 return gval(n
); /* that's it */
779 return &absentkey
; /* not found */
786 const TValue
*luaH_getstr(Table
*t
, TString
*key
) {
787 if (key
->tt
== LUA_VSHRSTR
)
788 return luaH_getshortstr(t
, key
);
789 else { /* for long strings, use generic case */
791 setsvalue(cast(lua_State
*, NULL
), &ko
, key
);
792 return getgeneric(t
, &ko
, 0);
798 ** main search function
800 const TValue
*luaH_get(Table
*t
, const TValue
*key
) {
801 switch (ttypetag(key
)) {
803 return luaH_getshortstr(t
, tsvalue(key
));
805 return luaH_getint(t
, ivalue(key
));
810 if (luaV_flttointeger(fltvalue(key
), &k
, F2Ieq
)) /* integral index? */
811 return luaH_getint(t
, k
); /* use specialized version */
815 return getgeneric(t
, key
, 0);
821 ** Finish a raw "set table" operation, where 'slot' is where the value
822 ** should have been (the result of a previous "get table").
823 ** Beware: when using this function you probably need to check a GC
824 ** barrier and invalidate the TM cache.
826 void luaH_finishset(lua_State
*L
, Table
*t
, const TValue
*key
,
827 const TValue
*slot
, TValue
*value
) {
829 luaH_newkey(L
, t
, key
, value
);
831 setobj2t(L
, cast(TValue
*, slot
), value
);
836 ** beware: when using this function you probably need to check a GC
837 ** barrier and invalidate the TM cache.
839 void luaH_set(lua_State
*L
, Table
*t
, const TValue
*key
, TValue
*value
) {
840 const TValue
*slot
= luaH_get(t
, key
);
841 luaH_finishset(L
, t
, key
, slot
, value
);
845 void luaH_setint(lua_State
*L
, Table
*t
, lua_Integer key
, TValue
*value
) {
846 const TValue
*p
= luaH_getint(t
, key
);
850 luaH_newkey(L
, t
, &k
, value
);
852 setobj2t(L
, cast(TValue
*, p
), value
);
857 ** Try to find a boundary in the hash part of table 't'. From the
858 ** caller, we know that 'j' is zero or present and that 'j + 1' is
859 ** present. We want to find a larger key that is absent from the
860 ** table, so that we can do a binary search between the two keys to
861 ** find a boundary. We keep doubling 'j' until we get an absent index.
862 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
863 ** absent, we are ready for the binary search. ('j', being max integer,
864 ** is larger or equal to 'i', but it cannot be equal because it is
865 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
866 ** boundary. ('j + 1' cannot be a present integer key because it is
867 ** not a valid integer in Lua.)
869 static lua_Unsigned
hash_search(Table
*t
, lua_Unsigned j
) {
871 if (j
== 0) j
++; /* the caller ensures 'j + 1' is present */
873 i
= j
; /* 'i' is a present index */
874 if (j
<= l_castS2U(LUA_MAXINTEGER
) / 2)
878 if (isempty(luaH_getint(t
, j
))) /* t[j] not present? */
879 break; /* 'j' now is an absent index */
880 else /* weird case */
881 return j
; /* well, max integer is a boundary... */
883 } while (!isempty(luaH_getint(t
, j
))); /* repeat until an absent t[j] */
884 /* i < j && t[i] present && t[j] absent */
885 while (j
- i
> 1u) { /* do a binary search between them */
886 lua_Unsigned m
= (i
+ j
) / 2;
887 if (isempty(luaH_getint(t
, m
))) j
= m
;
894 static unsigned int binsearch(const TValue
*array
, unsigned int i
,
896 while (j
- i
> 1u) { /* binary search */
897 unsigned int m
= (i
+ j
) / 2;
898 if (isempty(&array
[m
- 1])) j
= m
;
906 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
907 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
908 ** and 'maxinteger' if t[maxinteger] is present.)
909 ** (In the next explanation, we use Lua indices, that is, with base 1.
910 ** The code itself uses base 0 when indexing the array part of the table.)
911 ** The code starts with 'limit = t->alimit', a position in the array
912 ** part that may be a boundary.
914 ** (1) If 't[limit]' is empty, there must be a boundary before it.
915 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
916 ** is present. If so, it is a boundary. Otherwise, do a binary search
917 ** between 0 and limit to find a boundary. In both cases, try to
918 ** use this boundary as the new 'alimit', as a hint for the next call.
920 ** (2) If 't[limit]' is not empty and the array has more elements
921 ** after 'limit', try to find a boundary there. Again, try first
922 ** the special case (which should be quite frequent) where 'limit+1'
923 ** is empty, so that 'limit' is a boundary. Otherwise, check the
924 ** last element of the array part. If it is empty, there must be a
925 ** boundary between the old limit (present) and the last element
926 ** (absent), which is found with a binary search. (This boundary always
927 ** can be a new limit.)
929 ** (3) The last case is when there are no elements in the array part
930 ** (limit == 0) or its last element (the new limit) is present.
931 ** In this case, must check the hash part. If there is no hash part
932 ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
933 ** 'hash_search' to find a boundary in the hash part of the table.
934 ** (In those cases, the boundary is not inside the array part, and
935 ** therefore cannot be used as a new limit.)
937 lua_Unsigned
luaH_getn(Table
*t
) {
938 unsigned int limit
= t
->alimit
;
939 if (limit
> 0 && isempty(&t
->array
[limit
- 1])) { /* (1)? */
940 /* there must be a boundary before 'limit' */
941 if (limit
>= 2 && !isempty(&t
->array
[limit
- 2])) {
942 /* 'limit - 1' is a boundary; can it be a new limit? */
943 if (ispow2realasize(t
) && !ispow2(limit
- 1)) {
944 t
->alimit
= limit
- 1;
945 setnorealasize(t
); /* now 'alimit' is not the real size */
948 } else { /* must search for a boundary in [0, limit] */
949 unsigned int boundary
= binsearch(t
->array
, 0, limit
);
950 /* can this boundary represent the real size of the array? */
951 if (ispow2realasize(t
) && boundary
> luaH_realasize(t
) / 2) {
952 t
->alimit
= boundary
; /* use it as the new limit */
958 /* 'limit' is zero or present in table */
959 if (!limitequalsasize(t
)) { /* (2)? */
960 /* 'limit' > 0 and array has more elements after 'limit' */
961 if (isempty(&t
->array
[limit
])) /* 'limit + 1' is empty? */
962 return limit
; /* this is the boundary */
963 /* else, try last element in the array */
964 limit
= luaH_realasize(t
);
965 if (isempty(&t
->array
[limit
- 1])) { /* empty? */
966 /* there must be a boundary in the array after old limit,
967 and it must be a valid new limit */
968 unsigned int boundary
= binsearch(t
->array
, t
->alimit
, limit
);
969 t
->alimit
= boundary
;
972 /* else, new limit is present in the table; check the hash part */
974 /* (3) 'limit' is the last element and either is zero or present in table */
975 lua_assert(limit
== luaH_realasize(t
) &&
976 (limit
== 0 || !isempty(&t
->array
[limit
- 1])));
977 if (isdummy(t
) || isempty(luaH_getint(t
, cast(lua_Integer
, limit
+ 1))))
978 return limit
; /* 'limit + 1' is absent */
979 else /* 'limit + 1' is also present */
980 return hash_search(t
, limit
);
985 #if defined(LUA_DEBUG)
987 /* export these functions for the test library */
989 Node
*luaH_mainposition(const Table
*t
, const TValue
*key
) {
990 return mainpositionTV(t
, key
);