1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // fiddled with 2016 Matrix ( sub testing of nonces while collecting )
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // Implements a card only attack based on crypto text (encrypted nonces
10 // received during a nested authentication) only. Unlike other card only
11 // attacks this doesn't rely on implementation errors but only on the
12 // inherent weaknesses of the crypto1 cypher. Described in
13 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15 // Computer and Communications Security, 2015
16 //-----------------------------------------------------------------------------
18 #include "cmdhfmfhard.h"
25 #include <time.h> // MingW
28 #include "commonutil.h" // ARRAYLEN
31 #include "proxmark3.h"
33 #include "util_posix.h"
34 #include "crapto1/crapto1.h"
36 #include "hardnested_bruteforce.h"
37 #include "hardnested_bf_core.h"
38 #include "hardnested_bitarray_core.h"
39 #include "fileutils.h"
41 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
42 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
44 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
46 #define STATE_FILES_DIRECTORY "hardnested_tables/"
47 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.bz2"
49 #define DEBUG_KEY_ELIMINATION
50 // #define DEBUG_REDUCTION
52 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
54 #define NUM_PART_SUMS 9 // number of possible partial sum property values
61 static uint32_t num_acquired_nonces
= 0;
62 static uint64_t start_time
= 0;
63 static uint16_t effective_bitflip
[2][0x400];
64 static uint16_t num_effective_bitflips
[2] = {0, 0};
65 static uint16_t all_effective_bitflip
[0x400];
66 static uint16_t num_all_effective_bitflips
= 0;
67 static uint16_t num_1st_byte_effective_bitflips
= 0;
68 #define CHECK_1ST_BYTES 0x01
69 #define CHECK_2ND_BYTES 0x02
70 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
71 static uint64_t known_target_key
;
72 static uint32_t test_state
[2] = {0, 0};
73 static float brute_force_per_second
;
76 static void get_SIMD_instruction_set(char *instruction_set
) {
77 switch (GetSIMDInstrAuto()) {
78 #if defined(COMPILER_HAS_SIMD_AVX512)
80 strcpy(instruction_set
, "AVX512F");
83 #if defined(COMPILER_HAS_SIMD)
85 strcpy(instruction_set
, "AVX2");
88 strcpy(instruction_set
, "AVX");
91 strcpy(instruction_set
, "SSE2");
94 strcpy(instruction_set
, "MMX");
99 strcpy(instruction_set
, "no");
105 static void print_progress_header(void) {
106 char progress_text
[80];
107 char instr_set
[12] = "";
108 get_SIMD_instruction_set(instr_set
);
109 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
110 PrintAndLogEx(NORMAL
, "\n\n");
111 PrintAndLogEx(NORMAL
, " time | #nonces | Activity | expected to brute force");
112 PrintAndLogEx(NORMAL
, " | | | #states | time ");
113 PrintAndLogEx(NORMAL
, "------------------------------------------------------------------------------------------------------");
114 PrintAndLogEx(NORMAL
, " 0 | 0 | %-55s | |", progress_text
);
118 void hardnested_print_progress(uint32_t nonces
, const char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
119 static uint64_t last_print_time
= 0;
120 if (msclock() - last_print_time
> min_diff_print_time
) {
121 last_print_time
= msclock();
122 uint64_t total_time
= msclock() - start_time
;
123 float brute_force_time
= brute_force
/ brute_force_per_second
;
124 char brute_force_time_string
[20];
125 if (brute_force_time
< 90) {
126 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
127 } else if (brute_force_time
< 60 * 90) {
128 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/ 60);
129 } else if (brute_force_time
< 60 * 60 * 36) {
130 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/ (60 * 60));
132 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/ (60 * 60 * 24));
134 PrintAndLogEx(NORMAL
, " %7.0f | %7u | %-55s | %15.0f | %5s", (float)total_time
/ 1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
139 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
140 // bitarray functions
142 static inline void clear_bitarray24(uint32_t *bitarray
) {
143 memset(bitarray
, 0x00, sizeof(uint32_t) * (1 << 19));
146 static inline void set_bitarray24(uint32_t *bitarray
) {
147 memset(bitarray
, 0xff, sizeof(uint32_t) * (1 << 19));
150 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
) {
151 bitarray
[index
>> 5] |= 0x80000000 >> (index
& 0x0000001f);
154 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
) {
155 return bitarray
[index
>> 5] & (0x80000000 >> (index
& 0x0000001f));
158 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
) {
159 if (++state
== (1 << 24)) {
163 uint32_t index
= state
>> 5;
164 uint_fast8_t bit
= state
& 0x1F;
165 uint32_t line
= bitarray
[index
] << bit
;
167 while (bit
<= 0x1F) {
168 if (line
& 0x80000000) {
176 while (state
< (1 << 24) && bitarray
[index
] == 0x00000000) {
181 if (state
>= (1 << 24)) {
185 return state
+ __builtin_clz(bitarray
[index
]);
188 line
= bitarray
[index
];
189 while (bit
<= 0x1F) {
190 if (line
& 0x80000000) {
202 #define BITFLIP_2ND_BYTE 0x0200
205 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
206 // bitflip property bitarrays
208 static uint32_t *bitflip_bitarrays
[2][0x400];
209 static uint32_t count_bitflip_bitarrays
[2][0x400];
211 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
) {
212 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
213 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
214 return (count1
> count2
) - (count2
> count1
);
218 #define OUTPUT_BUFFER_LEN 80
219 #define INPUT_BUFFER_LEN 80
221 //----------------------------------------------------------------------------
222 // Initialize decompression of the respective bitflip_bitarray stream
223 //----------------------------------------------------------------------------
224 static void init_bunzip2(bz_stream
*compressed_stream
, char *input_buffer
, uint32_t insize
, char *output_buffer
, uint32_t outsize
) {
226 // initialize bz_stream structure for bunzip2:
227 compressed_stream
->next_in
= input_buffer
;
228 compressed_stream
->avail_in
= insize
;
229 compressed_stream
->next_out
= output_buffer
;
230 compressed_stream
->avail_out
= outsize
;
231 compressed_stream
->bzalloc
= NULL
;
232 compressed_stream
->bzfree
= NULL
;
234 BZ2_bzDecompressInit(compressed_stream
, 0, 0);
239 static void init_bitflip_bitarrays(void) {
240 #if defined (DEBUG_REDUCTION)
244 bz_stream compressed_stream
;
246 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
247 char state_file_name
[strlen(STATE_FILE_TEMPLATE
) + 1];
249 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
250 num_effective_bitflips
[odd_even
] = 0;
251 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
252 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
253 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1 << 24;
255 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
256 strcpy(state_files_path
, STATE_FILES_DIRECTORY
);
257 strcat(state_files_path
, state_file_name
);
260 if (searchFile(&path
, RESOURCES_SUBDIR
, state_files_path
, "", true) != PM3_SUCCESS
) {
264 FILE *statesfile
= fopen(path
, "rb");
266 if (statesfile
== NULL
) {
269 fseek(statesfile
, 0, SEEK_END
);
270 int fsize
= ftell(statesfile
);
272 PrintAndLogEx(ERR
, "File read error with %s. Aborting...\n", state_file_name
);
276 uint32_t filesize
= (uint32_t)fsize
;
278 char input_buffer
[filesize
];
279 size_t bytesread
= fread(input_buffer
, 1, filesize
, statesfile
);
280 if (bytesread
!= filesize
) {
281 PrintAndLogEx(ERR
, "File read error with %s. Aborting...\n", state_file_name
);
283 //BZ2_bzDecompressEnd(&compressed_stream);
288 init_bunzip2(&compressed_stream
, input_buffer
, filesize
, (char *)&count
, sizeof(count
));
289 int res
= BZ2_bzDecompress(&compressed_stream
);
291 PrintAndLogEx(ERR
, "Bunzip2 error. Aborting...\n");
292 BZ2_bzDecompressEnd(&compressed_stream
);
295 if ((float)count
/ (1 << 24) < IGNORE_BITFLIP_THRESHOLD
) {
296 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
297 if (bitset
== NULL
) {
298 PrintAndLogEx(ERR
, "Out of memory error in init_bitflip_statelists(). Aborting...\n");
299 BZ2_bzDecompressEnd(&compressed_stream
);
302 compressed_stream
.next_out
= (char *)bitset
;
303 compressed_stream
.avail_out
= sizeof(uint32_t) * (1 << 19);
304 res
= BZ2_bzDecompress(&compressed_stream
);
305 if (res
!= BZ_OK
&& res
!= BZ_STREAM_END
) {
306 PrintAndLogEx(ERR
, "Bunzip2 error. Aborting...\n");
307 BZ2_bzDecompressEnd(&compressed_stream
);
310 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
311 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
312 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
313 #if defined (DEBUG_REDUCTION)
314 PrintAndLogEx(NORMAL
, "(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
? "odd " : "even", (float)count
/ (1 << 24) * 100.0);
317 PrintAndLogEx(NORMAL
, "\n");
322 BZ2_bzDecompressEnd(&compressed_stream
);
325 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
330 num_all_effective_bitflips
= 0;
331 num_1st_byte_effective_bitflips
= 0;
332 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
333 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
334 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
336 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
337 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
340 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
344 if (!(all_effective_bitflip
[num_all_effective_bitflips
- 1] & BITFLIP_2ND_BYTE
)) {
345 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
348 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
349 #if defined (DEBUG_REDUCTION)
350 PrintAndLogEx(NORMAL
, "\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
351 for (uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
352 PrintAndLogEx(NORMAL
, "%03x ", all_effective_bitflip
[i
]);
355 qsort(all_effective_bitflip
+ num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
356 #if defined (DEBUG_REDUCTION)
357 PrintAndLogEx(NORMAL
, "\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
358 for (uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
359 PrintAndLogEx(NORMAL
, "%03x ", all_effective_bitflip
[i
]);
362 char progress_text
[80];
363 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
364 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
368 static void free_bitflip_bitarrays(void) {
369 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
370 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
372 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
373 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
378 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
379 // sum property bitarrays
381 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
382 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
383 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
385 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
) {
387 for (uint16_t j
= 0; j
< 16; j
++) {
389 uint16_t part_sum
= 0;
390 if (odd_even
== ODD_STATE
) {
391 part_sum
^= filter(st
);
392 for (uint16_t i
= 0; i
< 4; i
++) {
393 st
= (st
<< 1) | ((j
>> (3 - i
)) & 0x01) ;
394 part_sum
^= filter(st
);
396 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
398 for (uint16_t i
= 0; i
< 4; i
++) {
399 st
= (st
<< 1) | ((j
>> (3 - i
)) & 0x01) ;
400 part_sum
^= filter(st
);
409 static void init_part_sum_bitarrays(void) {
410 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
411 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
412 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
413 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
414 PrintAndLogEx(ERR
, "Out of memory error in init_part_suma0_statelists(). Aborting...\n");
417 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
420 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
421 //PrintAndLogEx(NORMAL, "(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
422 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
423 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
424 for (uint16_t low_bits
= 0; low_bits
< 1 << 4; low_bits
++) {
425 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<< 4 | low_bits
);
430 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
431 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
432 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
433 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
434 PrintAndLogEx(ERR
, "Out of memory error in init_part_suma8_statelists(). Aborting...\n");
437 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
440 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
441 //PrintAndLogEx(NORMAL, "(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
442 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
443 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
444 for (uint16_t high_bits
= 0; high_bits
< 1 << 4; high_bits
++) {
445 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<< 20);
452 static void free_part_sum_bitarrays(void) {
453 for (int16_t part_sum_a8
= (NUM_PART_SUMS
- 1); part_sum_a8
>= 0; part_sum_a8
--) {
454 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
456 for (int16_t part_sum_a8
= (NUM_PART_SUMS
- 1); part_sum_a8
>= 0; part_sum_a8
--) {
457 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
459 for (int16_t part_sum_a0
= (NUM_PART_SUMS
- 1); part_sum_a0
>= 0; part_sum_a0
--) {
460 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
462 for (int16_t part_sum_a0
= (NUM_PART_SUMS
- 1); part_sum_a0
>= 0; part_sum_a0
--) {
463 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
468 static void init_sum_bitarrays(void) {
469 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
470 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
471 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
472 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
473 PrintAndLogEx(ERR
, "Out of memory error in init_sum_bitarrays(). Aborting...\n");
476 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
479 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
480 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
481 uint16_t sum_a0
= 2 * p
* (16 - 2 * q
) + (16 - 2 * p
) * 2 * q
;
482 uint16_t sum_a0_idx
= 0;
483 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
484 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
485 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
492 static void free_sum_bitarrays(void) {
493 for (int8_t sum_a0
= NUM_SUMS
- 1; sum_a0
>= 0; sum_a0
--) {
494 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
495 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
500 #ifdef DEBUG_KEY_ELIMINATION
501 static char failstr
[250] = "";
504 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
505 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
508 static float my_p_K
[NUM_SUMS
];
510 static const float *p_K
;
512 static uint32_t cuid
;
513 static noncelist_t nonces
[256];
514 static uint8_t best_first_bytes
[256];
515 static uint64_t maximum_states
= 0;
516 static uint8_t best_first_byte_smallest_bitarray
= 0;
517 static uint16_t first_byte_Sum
= 0;
518 static uint16_t first_byte_num
= 0;
519 static bool write_stats
= false;
520 static FILE *fstats
= NULL
;
521 static uint32_t *all_bitflips_bitarray
[2];
522 static uint32_t num_all_bitflips_bitarray
[2];
523 static bool all_bitflips_bitarray_dirty
[2];
524 static uint64_t last_sample_clock
= 0;
525 static uint64_t sample_period
= 0;
526 static uint64_t num_keys_tested
= 0;
527 static statelist_t
*candidates
= NULL
;
530 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
) {
531 uint8_t first_byte
= nonce_enc
>> 24;
532 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
533 noncelistentry_t
*p2
= NULL
;
535 if (p1
== NULL
) { // first nonce with this 1st byte
537 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
540 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
545 if (p1
== NULL
) { // need to add at the end of the list
546 if (p2
== NULL
) { // list is empty yet. Add first entry.
547 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
548 } else { // add new entry at end of existing list.
549 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
551 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
552 if (p2
== NULL
) { // need to insert at start of list
553 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
555 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
557 } else { // we have seen this 2nd byte before. Nothing to add or insert.
561 // add or insert new data
563 p2
->nonce_enc
= nonce_enc
;
564 p2
->par_enc
= par_enc
;
566 nonces
[first_byte
].num
++;
567 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
568 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
569 return (1); // new nonce added
573 static void init_nonce_memory(void) {
574 for (uint16_t i
= 0; i
< 256; i
++) {
577 nonces
[i
].first
= NULL
;
578 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
579 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
580 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
582 nonces
[i
].sum_a8_guess_dirty
= false;
583 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
584 nonces
[i
].BitFlips
[bitflip
] = 0;
586 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
587 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
588 PrintAndLogEx(ERR
, "Out of memory error in init_nonce_memory(). Aborting...\n");
591 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
592 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
593 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
594 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
595 PrintAndLogEx(ERR
, "Out of memory error in init_nonce_memory(). Aborting...\n");
598 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
599 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
600 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
601 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
608 static void free_nonce_list(noncelistentry_t
*p
) {
612 free_nonce_list(p
->next
);
618 static void free_nonces_memory(void) {
619 for (uint16_t i
= 0; i
< 256; i
++) {
620 free_nonce_list(nonces
[i
].first
);
622 for (int i
= 255; i
>= 0; i
--) {
623 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
624 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
632 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
) {
633 // for efficient computation we are using the recursive definition
635 // P(X=k) = P(X=k-1) * --------------------
638 // (N-K)*(N-K-1)*...*(N-K-n+1)
639 // P(X=0) = -----------------------------
640 // N*(N-1)*...*(N-n+1)
643 uint16_t const N
= 256;
644 uint16_t K
= sums
[i_K
];
648 if (n
- k
> N
- K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
650 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
651 double log_result
= 0.0;
652 for (int16_t i
= N
- K
; i
>= N
- K
- n
+ 1; i
--) {
653 log_result
+= log(i
);
655 for (int16_t i
= N
; i
>= N
- n
+ 1; i
--) {
656 log_result
-= log(i
);
658 return exp(log_result
);
660 if (n
- k
== N
- K
) { // special case. The published recursion below would fail with a divide by zero exception
661 double log_result
= 0.0;
662 for (int16_t i
= k
+ 1; i
<= n
; i
++) {
664 log_result
+= log(i
);
667 for (int16_t i
= K
+ 1; i
<= N
; i
++) {
669 log_result
-= log(i
);
672 return exp(log_result
);
673 } else { // recursion
674 return (p_hypergeometric(i_K
, n
, k
- 1) * (K
- k
+ 1) * (n
- k
+ 1) / (k
* (N
- K
- n
+ k
)));
680 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
) {
681 if (k
> sums
[i_K
]) return 0.0;
683 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
684 double p_S_is_K
= p_K
[i_K
];
686 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
687 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
689 return (p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
693 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
695 static void init_allbitflips_array(void) {
696 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
697 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
698 if (bitset
== NULL
) {
699 PrintAndLogEx(WARNING
, "Out of memory in init_allbitflips_array(). Aborting...");
702 set_bitarray24(bitset
);
703 all_bitflips_bitarray_dirty
[odd_even
] = false;
704 num_all_bitflips_bitarray
[odd_even
] = 1 << 24;
709 static void update_allbitflips_array(void) {
710 if (hardnested_stage
& CHECK_2ND_BYTES
) {
711 for (uint16_t i
= 0; i
< 256; i
++) {
712 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
713 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
714 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
715 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
716 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
717 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
718 all_bitflips_bitarray_dirty
[odd_even
] = true;
727 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
) {
728 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
732 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
) {
733 if (odd_even
== ODD_STATE
) {
734 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
735 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
736 nonces
[first_byte
].states_bitarray
[odd_even
]);
738 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
739 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
740 nonces
[first_byte
].states_bitarray
[odd_even
],
741 nonces
[first_byte
^ 0x80].states_bitarray
[odd_even
]);
744 // estimate reduction by all_bitflips_match()
746 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
747 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
754 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
) {
755 uint64_t num_states
= 0;
756 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
757 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
758 if (2 * p
* (16 - 2 * q
) + (16 - 2 * p
) * 2 * q
== sum_a0
) {
759 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
760 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
761 if (2 * r
* (16 - 2 * s
) + (16 - 2 * r
) * 2 * s
== sum_a8
) {
762 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
763 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
774 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
) {
775 uint64_t num_states
= 0;
776 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
777 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
778 if (2 * p
* (16 - 2 * q
) + (16 - 2 * p
) * 2 * q
== sum_a0
) {
779 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
780 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
781 if (2 * r
* (16 - 2 * s
) + (16 - 2 * r
) * 2 * s
== sum_a8
) {
782 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
783 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
794 static void update_p_K(void) {
795 if (hardnested_stage
& CHECK_2ND_BYTES
) {
796 uint64_t total_count
= 0;
797 uint16_t sum_a0
= sums
[first_byte_Sum
];
798 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
799 uint16_t sum_a8
= sums
[sum_a8_idx
];
800 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
802 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
803 uint16_t sum_a8
= sums
[sum_a8_idx
];
804 float f
= estimated_num_states_coarse(sum_a0
, sum_a8
);
805 my_p_K
[sum_a8_idx
] = f
/ total_count
;
807 // PrintAndLogEx(NORMAL, "my_p_K = [");
808 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
809 // PrintAndLogEx(NORMAL, "%7.4f ", my_p_K[sum_a8_idx]);
816 static void update_sum_bitarrays(odd_even_t odd_even
) {
817 if (all_bitflips_bitarray_dirty
[odd_even
]) {
818 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
819 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
820 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
822 for (uint16_t i
= 0; i
< 256; i
++) {
823 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
825 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
826 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
827 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
828 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
831 all_bitflips_bitarray_dirty
[odd_even
] = false;
836 static int compare_expected_num_brute_force(const void *b1
, const void *b2
) {
837 uint8_t index1
= *(uint8_t *)b1
;
838 uint8_t index2
= *(uint8_t *)b2
;
839 float score1
= nonces
[index1
].expected_num_brute_force
;
840 float score2
= nonces
[index2
].expected_num_brute_force
;
841 return (score1
> score2
) - (score1
< score2
);
845 static int compare_sum_a8_guess(const void *b1
, const void *b2
) {
846 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
847 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
848 return (prob1
< prob2
) - (prob1
> prob2
);
853 static float check_smallest_bitflip_bitarrays(void) {
854 uint64_t smallest
= 1LL << 48;
855 // initialize best_first_bytes, do a rough estimation on remaining states
856 for (uint16_t i
= 0; i
< 256; i
++) {
857 uint32_t num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
858 uint32_t num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
859 if ((uint64_t)num_odd
* num_even
< smallest
) {
860 smallest
= (uint64_t)num_odd
* num_even
;
861 best_first_byte_smallest_bitarray
= i
;
865 #if defined (DEBUG_REDUCTION)
866 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
867 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
868 PrintAndLogEx(NORMAL
, "0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
) / log(2.0));
870 return (float)smallest
/ 2.0;
874 static void update_expected_brute_force(uint8_t best_byte
) {
876 float total_prob
= 0.0;
877 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
878 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
880 // linear adjust probabilities to result in total_prob = 1.0;
881 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
882 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
884 float prob_all_failed
= 1.0;
885 nonces
[best_byte
].expected_num_brute_force
= 0.0;
886 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
887 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
888 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
889 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
895 static float sort_best_first_bytes(void) {
897 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
898 // and the expected number of states to brute force
899 for (uint16_t i
= 0; i
< 256; i
++) {
900 best_first_bytes
[i
] = i
;
901 float prob_all_failed
= 1.0;
902 nonces
[i
].expected_num_brute_force
= 0.0;
903 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
904 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
905 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
906 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
907 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
911 // sort based on expected number of states to brute force
912 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
914 // PrintAndLogEx(NORMAL, "refine estimations: ");
915 #define NUM_REFINES 1
916 // refine scores for the best:
917 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
918 // PrintAndLogEx(NORMAL, "%d...", i);
919 uint16_t first_byte
= best_first_bytes
[i
];
920 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
921 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
923 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
924 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
925 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
926 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
927 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
928 // PrintAndLogEx(NORMAL, "(0x%02x,%d)", first_byte, 0);
930 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
931 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
932 // PrintAndLogEx(NORMAL, "(0x%02x,%d)", first_byte, 1);
934 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
935 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
936 // PrintAndLogEx(NORMAL, "(0x%02x,%d)", first_byte, 2);
938 // PrintAndLogEx(NORMAL, "|");
939 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
940 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
941 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
944 // float fix_probs = 0.0;
945 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
946 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
948 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
949 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
951 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
952 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
954 float prob_all_failed
= 1.0;
955 nonces
[first_byte
].expected_num_brute_force
= 0.0;
956 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
957 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
958 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
959 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
963 // copy best byte to front:
964 float least_expected_brute_force
= (1LL << 48);
965 uint8_t best_byte
= 0;
966 for (uint16_t i
= 0; i
< 10; i
++) {
967 uint16_t first_byte
= best_first_bytes
[i
];
968 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
969 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
973 if (best_byte
!= 0) {
974 // PrintAndLogEx(NORMAL, "0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
975 uint8_t tmp
= best_first_bytes
[0];
976 best_first_bytes
[0] = best_first_bytes
[best_byte
];
977 best_first_bytes
[best_byte
] = tmp
;
980 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
984 static float update_reduction_rate(float last
, bool init
) {
986 static float queue
[QUEUE_LEN
];
988 for (uint16_t i
= 0; i
< QUEUE_LEN
- 1; i
++) {
990 queue
[i
] = (float)(1LL << 48);
992 queue
[i
] = queue
[i
+ 1];
996 queue
[QUEUE_LEN
- 1] = (float)(1LL << 48);
998 queue
[QUEUE_LEN
- 1] = last
;
1001 // linear regression
1004 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1013 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1014 dev_xy
+= (i
- avg_x
) * (queue
[i
] - avg_y
);
1015 dev_x2
+= (i
- avg_x
) * (i
- avg_x
);
1018 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1020 #if defined (DEBUG_REDUCTION)
1021 PrintAndLogEx(NORMAL
, "update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1023 return reduction_rate
;
1027 static bool shrink_key_space(float *brute_forces
) {
1028 #if defined(DEBUG_REDUCTION)
1029 PrintAndLogEx(NORMAL
, "shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1031 float brute_forces1
= check_smallest_bitflip_bitarrays();
1032 float brute_forces2
= (float)(1LL << 47);
1033 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1034 brute_forces2
= sort_best_first_bytes();
1036 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1037 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1040 return ((hardnested_stage
& CHECK_2ND_BYTES
) &&
1041 reduction_rate
>= 0.0 &&
1042 (reduction_rate
< brute_force_per_second
* (float)sample_period
/ 1000.0 || *brute_forces
< 0xF00000));
1047 static void estimate_sum_a8(void) {
1048 if (first_byte_num
== 256) {
1049 for (uint16_t i
= 0; i
< 256; i
++) {
1050 if (nonces
[i
].sum_a8_guess_dirty
) {
1051 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
1052 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1053 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1055 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1056 nonces
[i
].sum_a8_guess_dirty
= false;
1063 static int read_nonce_file(char *filename
) {
1065 if (filename
== NULL
) {
1066 PrintAndLogEx(WARNING
, "Filename is NULL");
1069 FILE *fnonces
= NULL
;
1070 char progress_text
[80] = "";
1071 uint8_t read_buf
[9];
1073 num_acquired_nonces
= 0;
1074 if ((fnonces
= fopen(filename
, "rb")) == NULL
) {
1075 PrintAndLogEx(WARNING
, "Could not open file %s", filename
);
1079 snprintf(progress_text
, 80, "Reading nonces from file %s...", filename
);
1080 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
1081 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1082 if (bytes_read
!= 6) {
1083 PrintAndLogEx(ERR
, "File reading error.");
1087 cuid
= bytes_to_num(read_buf
, 4);
1088 uint8_t trgBlockNo
= bytes_to_num(read_buf
+ 4, 1);
1089 uint8_t trgKeyType
= bytes_to_num(read_buf
+ 5, 1);
1091 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1092 while (bytes_read
== 9) {
1093 uint32_t nt_enc1
= bytes_to_num(read_buf
, 4);
1094 uint32_t nt_enc2
= bytes_to_num(read_buf
+ 4, 4);
1095 uint8_t par_enc
= bytes_to_num(read_buf
+ 8, 1);
1096 add_nonce(nt_enc1
, par_enc
>> 4);
1097 add_nonce(nt_enc2
, par_enc
& 0x0f);
1098 num_acquired_nonces
+= 2;
1099 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1103 char progress_string
[80];
1104 sprintf(progress_string
, "Read %u nonces from file. cuid = %08x", num_acquired_nonces
, cuid
);
1105 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL << 47), 0);
1106 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
== 0 ? 'A' : 'B');
1107 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL << 47), 0);
1109 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
1110 if (first_byte_Sum
== sums
[i
]) {
1120 static noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
) {
1121 noncelistentry_t
*p
= nonces
[b1
].first
;
1123 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1132 static bool timeout(void) {
1133 return (msclock() > last_sample_clock
+ sample_period
);
1138 #ifdef __has_attribute
1139 #if __has_attribute(force_align_arg_pointer)
1140 __attribute__((force_align_arg_pointer
))
1143 *check_for_BitFlipProperties_thread(void *args
) {
1144 uint8_t first_byte
= ((uint8_t *)args
)[0];
1145 uint8_t last_byte
= ((uint8_t *)args
)[1];
1146 uint8_t time_budget
= ((uint8_t *)args
)[2];
1148 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1149 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1150 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1151 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1152 if (time_budget
&& timeout()) {
1153 #if defined (DEBUG_REDUCTION)
1154 PrintAndLogEx(NORMAL
, "break at bitflip_idx %d...", bitflip_idx
);
1158 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1160 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1161 && nonces
[i
].first
!= NULL
&& nonces
[i
^ (bitflip
& 0xff)].first
!= NULL
) {
1163 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1164 uint8_t parity2
= (nonces
[i
^ (bitflip
& 0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1166 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1167 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1169 nonces
[i
].BitFlips
[bitflip
] = 1;
1171 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1173 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1174 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1175 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1176 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1177 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1179 // PrintAndLogEx(NORMAL, "bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1185 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1189 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1191 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1192 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1193 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1194 if (time_budget
&& timeout()) {
1195 #if defined (DEBUG_REDUCTION)
1196 PrintAndLogEx(NORMAL
, "break at bitflip_idx %d...", bitflip_idx
);
1200 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1201 // Check for Bit Flip Property of 2nd bytes
1202 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1203 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1204 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1205 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^ (bitflip
& 0xff));
1206 if (byte1
!= NULL
&& byte2
!= NULL
) {
1207 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1208 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1209 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1210 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1211 nonces
[i
].BitFlips
[bitflip
] = 1;
1212 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1213 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1214 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1215 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1216 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1217 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1226 // PrintAndLogEx(NORMAL, "states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1227 // PrintAndLogEx(NORMAL, "states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1236 static void check_for_BitFlipProperties(bool time_budget
) {
1237 // create and run worker threads
1238 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1240 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1241 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/ 2)) / NUM_CHECK_BITFLIPS_THREADS
;
1242 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1243 args
[i
][0] = i
* bytes_per_thread
;
1244 args
[i
][1] = MIN(args
[i
][0] + bytes_per_thread
- 1, 255);
1245 args
[i
][2] = time_budget
;
1247 // args[][] is uint8_t so max 255, no need to check it
1248 // args[NUM_CHECK_BITFLIPS_THREADS - 1][1] = MAX(args[NUM_CHECK_BITFLIPS_THREADS - 1][1], 255);
1251 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1252 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1255 // wait for threads to terminate:
1256 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1257 pthread_join(thread_id
[i
], NULL
);
1260 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1261 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1262 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1263 if (args
[i
][1] != 0) {
1264 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1269 #if defined (DEBUG_REDUCTION)
1270 if (hardnested_stage
& CHECK_1ST_BYTES
) PrintAndLogEx(NORMAL
, "stage 1 not completed yet\n");
1275 static void update_nonce_data(bool time_budget
) {
1276 check_for_BitFlipProperties(time_budget
);
1277 update_allbitflips_array();
1278 update_sum_bitarrays(EVEN_STATE
);
1279 update_sum_bitarrays(ODD_STATE
);
1285 static void apply_sum_a0(void) {
1286 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1287 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1288 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1289 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1291 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1292 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1293 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1294 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1299 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
) {
1300 struct Crypto1State sim_cs
= {0, 0};
1302 // init cryptostate with key:
1303 for (int8_t i
= 47; i
> 0; i
-= 2) {
1304 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1305 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1309 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1310 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1311 uint8_t nt_byte_dec
= (nt
>> (8 * byte_pos
)) & 0xff;
1312 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8 * byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1313 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1314 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1315 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1316 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1321 static void simulate_acquire_nonces(void) {
1322 time_t time1
= time(NULL
);
1323 last_sample_clock
= 0;
1324 sample_period
= 1000; // for simulation
1325 hardnested_stage
= CHECK_1ST_BYTES
;
1326 bool acquisition_completed
= false;
1327 uint32_t total_num_nonces
= 0;
1328 float brute_force_depth
;
1329 bool reported_suma8
= false;
1331 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1332 if (known_target_key
== -1) {
1333 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1336 char progress_text
[80];
1337 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1338 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
1339 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1341 num_acquired_nonces
= 0;
1344 uint32_t nt_enc
= 0;
1345 uint8_t par_enc
= 0;
1347 for (uint16_t i
= 0; i
< 113; i
++) {
1348 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1349 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1353 last_sample_clock
= msclock();
1355 if (first_byte_num
== 256) {
1356 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1357 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
1358 if (first_byte_Sum
== sums
[i
]) {
1363 hardnested_stage
|= CHECK_2ND_BYTES
;
1366 update_nonce_data(true);
1367 acquisition_completed
= shrink_key_space(&brute_force_depth
);
1368 if (!reported_suma8
) {
1369 char progress_string
[80];
1370 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1371 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force_depth
, 0);
1372 reported_suma8
= true;
1374 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force_depth
, 0);
1377 update_nonce_data(true);
1378 acquisition_completed
= shrink_key_space(&brute_force_depth
);
1379 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force_depth
, 0);
1381 } while (!acquisition_completed
);
1383 time_t end_time
= time(NULL
);
1384 // PrintAndLogEx(NORMAL, "Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1385 // num_acquired_nonces,
1386 // difftime(end_time, time1),
1387 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1390 fprintf(fstats
, "%" PRIu32
";%" PRIu32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
, time1
));
1395 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
, char *filename
) {
1396 last_sample_clock
= msclock();
1397 sample_period
= 2000; // initial rough estimate. Will be refined.
1398 bool initialize
= true;
1399 bool field_off
= false;
1400 hardnested_stage
= CHECK_1ST_BYTES
;
1401 bool acquisition_completed
= false;
1402 uint8_t write_buf
[9];
1403 //uint32_t total_num_nonces = 0;
1404 float brute_force_depth
;
1405 bool reported_suma8
= false;
1406 char progress_text
[80];
1407 FILE *fnonces
= NULL
;
1408 PacketResponseNG resp
;
1409 num_acquired_nonces
= 0;
1411 clearCommandBuffer();
1415 flags
|= initialize
? 0x0001 : 0;
1416 flags
|= slow
? 0x0002 : 0;
1417 flags
|= field_off
? 0x0004 : 0;
1419 clearCommandBuffer();
1422 SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF
, NULL
, 0);
1425 SendCommandMIX(CMD_HF_MIFARE_ACQ_ENCRYPTED_NONCES
, blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
, key
, 6);
1430 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1431 clearCommandBuffer();
1432 SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF
, NULL
, 0);
1436 // error during nested_hard
1437 if (resp
.oldarg
[0]) {
1438 clearCommandBuffer();
1439 SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF
, NULL
, 0);
1440 return resp
.oldarg
[0];
1443 cuid
= resp
.oldarg
[1];
1444 if (nonce_file_write
&& fnonces
== NULL
) {
1445 if ((fnonces
= fopen(filename
, "wb")) == NULL
) {
1446 PrintAndLogEx(WARNING
, "Could not create file %s", filename
);
1447 clearCommandBuffer();
1448 SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF
, NULL
, 0);
1451 snprintf(progress_text
, 80, "Writing acquired nonces to binary file %s", filename
);
1452 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
1453 num_to_bytes(cuid
, 4, write_buf
);
1454 fwrite(write_buf
, 1, 4, fnonces
);
1455 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1456 fwrite(&trgKeyType
, 1, 1, fnonces
);
1462 uint16_t num_sampled_nonces
= resp
.oldarg
[2];
1463 uint8_t *bufp
= resp
.data
.asBytes
;
1464 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+= 2) {
1465 uint32_t nt_enc1
= bytes_to_num(bufp
, 4);
1466 uint32_t nt_enc2
= bytes_to_num(bufp
+ 4, 4);
1467 uint8_t par_enc
= bytes_to_num(bufp
+ 8, 1);
1469 //PrintAndLogEx(NORMAL, "Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1470 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1471 //PrintAndLogEx(NORMAL, "Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1472 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1474 if (nonce_file_write
) {
1475 fwrite(bufp
, 1, 9, fnonces
);
1480 //total_num_nonces += num_sampled_nonces;
1482 if (first_byte_num
== 256) {
1483 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1484 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
1485 if (first_byte_Sum
== sums
[i
]) {
1490 hardnested_stage
|= CHECK_2ND_BYTES
;
1493 update_nonce_data(true);
1494 acquisition_completed
= shrink_key_space(&brute_force_depth
);
1495 if (!reported_suma8
) {
1496 char progress_string
[80];
1497 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1498 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force_depth
, 0);
1499 reported_suma8
= true;
1501 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force_depth
, 0);
1504 update_nonce_data(true);
1505 acquisition_completed
= shrink_key_space(&brute_force_depth
);
1506 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force_depth
, 0);
1510 if (acquisition_completed
) {
1511 field_off
= true; // switch off field with next SendCommandOLD and then finish
1516 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1517 if (nonce_file_write
) {
1520 clearCommandBuffer();
1521 SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF
, NULL
, 0);
1525 // error during nested_hard
1526 if (resp
.oldarg
[0]) {
1527 if (nonce_file_write
) {
1530 clearCommandBuffer();
1531 SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF
, NULL
, 0);
1532 return resp
.oldarg
[0];
1538 if (msclock() - last_sample_clock
< sample_period
) {
1539 sample_period
= msclock() - last_sample_clock
;
1541 last_sample_clock
= msclock();
1543 } while (!acquisition_completed
|| field_off
);
1545 if (nonce_file_write
) {
1553 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
) {
1554 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
- 1);
1555 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1556 uint_fast8_t filter_diff
= filter(state1
>> (4 - state_bit
)) ^ filter(state2
>> (4 - state_bit
)); // difference in filter function
1557 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1558 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1559 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1564 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
) {
1565 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1566 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1567 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1568 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1569 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1574 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
) {
1577 switch (num_common_bits
) {
1579 if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1581 if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1583 if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1585 if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1587 if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1589 if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1591 if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1593 if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1597 switch (num_common_bits
) {
1599 if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1601 if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1603 if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1605 if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1607 if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1609 if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1611 if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1615 return true; // valid state
1619 static pthread_mutex_t statelist_cache_mutex
= PTHREAD_MUTEX_INITIALIZER
;
1620 static pthread_mutex_t book_of_work_mutex
= PTHREAD_MUTEX_INITIALIZER
;
1629 static struct sl_cache_entry
{
1632 work_status_t cache_status
;
1633 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1636 static void init_statelist_cache(void) {
1637 pthread_mutex_lock(&statelist_cache_mutex
);
1638 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1639 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1640 for (uint16_t k
= 0; k
< 2; k
++) {
1641 sl_cache
[i
][j
][k
].sl
= NULL
;
1642 sl_cache
[i
][j
][k
].len
= 0;
1643 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1647 pthread_mutex_unlock(&statelist_cache_mutex
);
1651 static void free_statelist_cache(void) {
1652 pthread_mutex_lock(&statelist_cache_mutex
);
1653 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1654 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1655 for (uint16_t k
= 0; k
< 2; k
++) {
1656 free(sl_cache
[i
][j
][k
].sl
);
1660 pthread_mutex_unlock(&statelist_cache_mutex
);
1664 #ifdef DEBUG_KEY_ELIMINATION
1665 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1667 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1670 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1671 bool possible
= test_bit24(bitset
, state
);
1673 #ifdef DEBUG_KEY_ELIMINATION
1674 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1675 PrintAndLogEx(INFO
, "Initial state lists: %s test state eliminated by bitflip property.", odd_even
== EVEN_STATE
? "even" : "odd");
1676 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
== EVEN_STATE
? "even" : "odd");
1685 static uint_fast8_t reverse(uint_fast8_t b
) {
1686 return (b
* 0x0202020202ULL
& 0x010884422010ULL
) % 1023;
1689 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
) {
1690 uint32_t masks
[2][8] = {
1691 {0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1692 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe}
1695 for (uint16_t i
= 1; i
< 256; i
++) {
1696 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1697 uint_fast8_t byte2
= byte
^ bytes_diff
;
1698 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1699 uint32_t mask
= masks
[odd_even
][num_common
];
1700 bool found_match
= false;
1701 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1702 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1704 # ifdef DEBUG_KEY_ELIMINATION
1705 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true))
1707 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
))
1718 # ifdef DEBUG_KEY_ELIMINATION
1719 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1720 PrintAndLogEx(NORMAL
, "all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1721 odd_even
== ODD_STATE
? "odd" : "even",
1722 test_state
[odd_even
],
1726 if (failstr
[0] == '\0') {
1727 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
? "odd" : "even");
1737 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
) {
1738 uint32_t *p
= state_list
;
1739 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1 << 24); state
= next_state(bitarray
, state
)) {
1740 if (all_bitflips_match(byte
, state
, odd_even
)) {
1744 // add End Of List marker
1746 *len
= p
- state_list
;
1750 static void add_cached_states(statelist_t
*cands
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
) {
1751 cands
->states
[odd_even
] = sl_cache
[part_sum_a0
/ 2][part_sum_a8
/ 2][odd_even
].sl
;
1752 cands
->len
[odd_even
] = sl_cache
[part_sum_a0
/ 2][part_sum_a8
/ 2][odd_even
].len
;
1757 static void add_matching_states(statelist_t
*cands
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
) {
1758 const uint32_t worstcase_size
= 1 << 20;
1759 cands
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1760 if (cands
->states
[odd_even
] == NULL
) {
1761 PrintAndLogEx(ERR
, "Out of memory error in add_matching_states() - statelist.\n");
1764 uint32_t *cands_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * worstcase_size
);
1765 if (cands_bitarray
== NULL
) {
1766 PrintAndLogEx(ERR
, "Out of memory error in add_matching_states() - bitarray.\n");
1767 free(cands
->states
[odd_even
]);
1771 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/ 2];
1772 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/ 2];
1773 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1775 bitarray_AND4(cands_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1777 bitarray_to_list(best_first_bytes
[0], cands_bitarray
, cands
->states
[odd_even
], &(cands
->len
[odd_even
]), odd_even
);
1779 if (cands
->len
[odd_even
] == 0) {
1780 free(cands
->states
[odd_even
]);
1781 cands
->states
[odd_even
] = NULL
;
1782 } else if (cands
->len
[odd_even
] + 1 < worstcase_size
) {
1783 cands
->states
[odd_even
] = realloc(cands
->states
[odd_even
], sizeof(uint32_t) * (cands
->len
[odd_even
] + 1));
1785 free_bitarray(cands_bitarray
);
1787 pthread_mutex_lock(&statelist_cache_mutex
);
1788 sl_cache
[part_sum_a0
/ 2][part_sum_a8
/ 2][odd_even
].sl
= cands
->states
[odd_even
];
1789 sl_cache
[part_sum_a0
/ 2][part_sum_a8
/ 2][odd_even
].len
= cands
->len
[odd_even
];
1790 sl_cache
[part_sum_a0
/ 2][part_sum_a8
/ 2][odd_even
].cache_status
= COMPLETED
;
1791 pthread_mutex_unlock(&statelist_cache_mutex
);
1795 static statelist_t
*add_more_candidates(void) {
1796 statelist_t
*new_candidates
;
1797 if (candidates
== NULL
) {
1798 candidates
= (statelist_t
*)calloc(sizeof(statelist_t
), sizeof(uint8_t));
1799 new_candidates
= candidates
;
1801 new_candidates
= candidates
;
1802 while (new_candidates
->next
!= NULL
) {
1803 new_candidates
= new_candidates
->next
;
1805 new_candidates
= new_candidates
->next
= (statelist_t
*)calloc(sizeof(statelist_t
), sizeof(uint8_t));
1807 new_candidates
->next
= NULL
;
1808 new_candidates
->len
[ODD_STATE
] = 0;
1809 new_candidates
->len
[EVEN_STATE
] = 0;
1810 new_candidates
->states
[ODD_STATE
] = NULL
;
1811 new_candidates
->states
[EVEN_STATE
] = NULL
;
1812 return new_candidates
;
1815 static void add_bitflip_candidates(uint8_t byte
) {
1816 statelist_t
*candidates1
= add_more_candidates();
1818 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1819 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1820 candidates1
->states
[odd_even
] = (uint32_t *)calloc(worstcase_size
, sizeof(uint32_t));
1821 if (candidates1
->states
[odd_even
] == NULL
) {
1822 PrintAndLogEx(ERR
, "Out of memory error in add_bitflip_candidates()");
1826 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates1
->states
[odd_even
], &(candidates1
->len
[odd_even
]), odd_even
);
1828 // slim down the allocated memory.
1829 if (candidates1
->len
[odd_even
] + 1 < worstcase_size
) {
1830 candidates1
->states
[odd_even
] = realloc(candidates1
->states
[odd_even
], sizeof(uint32_t) * (candidates1
->len
[odd_even
] + 1));
1836 static bool TestIfKeyExists(uint64_t key
) {
1837 struct Crypto1State
*pcs
;
1838 pcs
= crypto1_create(key
);
1839 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1841 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1842 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1845 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1846 bool found_odd
= false;
1847 bool found_even
= false;
1848 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1849 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1850 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1851 while (*p_odd
!= 0xffffffff) {
1852 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1858 while (*p_even
!= 0xffffffff) {
1859 if ((*p_even
& 0x00ffffff) == state_even
) {
1864 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1866 if (found_odd
&& found_even
) {
1867 num_keys_tested
+= count
;
1868 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1869 crypto1_destroy(pcs
);
1874 num_keys_tested
+= count
;
1875 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1876 crypto1_destroy(pcs
);
1880 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1882 static void init_book_of_work(void) {
1883 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1884 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1885 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1886 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1887 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1895 #ifdef __has_attribute
1896 #if __has_attribute(force_align_arg_pointer)
1897 __attribute__((force_align_arg_pointer
))
1900 *generate_candidates_worker_thread(void *args
) {
1901 uint16_t *sum_args
= (uint16_t *)args
;
1902 uint16_t sum_a0
= sums
[sum_args
[0]];
1903 uint16_t sum_a8
= sums
[sum_args
[1]];
1904 // uint16_t my_thread_number = sums[2];
1906 bool there_might_be_more_work
= true;
1908 there_might_be_more_work
= false;
1909 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1910 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1911 if (2 * p
* (16 - 2 * q
) + (16 - 2 * p
) * 2 * q
== sum_a0
) {
1912 // PrintAndLogEx(NORMAL, "Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1913 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1914 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1915 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1916 if (2 * r
* (16 - 2 * s
) + (16 - 2 * r
) * 2 * s
== sum_a8
) {
1917 pthread_mutex_lock(&book_of_work_mutex
);
1918 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1919 pthread_mutex_unlock(&book_of_work_mutex
);
1923 pthread_mutex_lock(&statelist_cache_mutex
);
1924 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1925 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1926 pthread_mutex_unlock(&statelist_cache_mutex
);
1927 pthread_mutex_unlock(&book_of_work_mutex
);
1928 there_might_be_more_work
= true;
1932 // we finally can do some work.
1933 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1934 statelist_t
*current_candidates
= add_more_candidates();
1936 // Check for cached results and add them first
1937 bool odd_completed
= false;
1938 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1939 add_cached_states(current_candidates
, 2 * p
, 2 * r
, ODD_STATE
);
1940 odd_completed
= true;
1942 bool even_completed
= false;
1943 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1944 add_cached_states(current_candidates
, 2 * q
, 2 * s
, EVEN_STATE
);
1945 even_completed
= true;
1948 bool work_required
= true;
1950 // if there had been two cached results, there is no more work to do
1951 if (even_completed
&& odd_completed
) {
1952 work_required
= false;
1955 // if there had been one cached empty result, there is no need to calculate the other part:
1956 if (work_required
) {
1957 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
1958 current_candidates
->len
[ODD_STATE
] = 0;
1959 current_candidates
->states
[ODD_STATE
] = NULL
;
1960 work_required
= false;
1962 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
1963 current_candidates
->len
[EVEN_STATE
] = 0;
1964 current_candidates
->states
[EVEN_STATE
] = NULL
;
1965 work_required
= false;
1969 if (!work_required
) {
1970 pthread_mutex_unlock(&statelist_cache_mutex
);
1971 pthread_mutex_unlock(&book_of_work_mutex
);
1973 // we really need to calculate something
1974 if (even_completed
) { // we had one cache hit with non-zero even states
1975 // PrintAndLogEx(NORMAL, "Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
1976 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1977 pthread_mutex_unlock(&statelist_cache_mutex
);
1978 pthread_mutex_unlock(&book_of_work_mutex
);
1979 add_matching_states(current_candidates
, 2 * p
, 2 * r
, ODD_STATE
);
1980 work_required
= false;
1981 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
1982 // PrintAndLogEx(NORMAL, "Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1983 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1984 pthread_mutex_unlock(&statelist_cache_mutex
);
1985 pthread_mutex_unlock(&book_of_work_mutex
);
1986 add_matching_states(current_candidates
, 2 * q
, 2 * s
, EVEN_STATE
);
1987 work_required
= false;
1991 if (work_required
) { // we had no cached result. Need to calculate both odd and even
1992 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1993 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1994 pthread_mutex_unlock(&statelist_cache_mutex
);
1995 pthread_mutex_unlock(&book_of_work_mutex
);
1997 add_matching_states(current_candidates
, 2 * p
, 2 * r
, ODD_STATE
);
1998 if (current_candidates
->len
[ODD_STATE
]) {
1999 // PrintAndLogEx(NORMAL, "Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
2000 add_matching_states(current_candidates
, 2 * q
, 2 * s
, EVEN_STATE
);
2001 } else { // no need to calculate even states yet
2002 pthread_mutex_lock(&statelist_cache_mutex
);
2003 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
2004 pthread_mutex_unlock(&statelist_cache_mutex
);
2005 current_candidates
->len
[EVEN_STATE
] = 0;
2006 current_candidates
->states
[EVEN_STATE
] = NULL
;
2010 // update book of work
2011 pthread_mutex_lock(&book_of_work_mutex
);
2012 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2013 pthread_mutex_unlock(&book_of_work_mutex
);
2015 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2016 // PrintAndLogEx(NORMAL, "Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2017 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2018 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2019 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2020 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2021 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2022 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2023 // PrintAndLogEx(NORMAL, "Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2024 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2025 // PrintAndLogEx(NORMAL, "############################################################################ERROR! ESTIMATED < REAL !!!\n");
2035 } while (there_might_be_more_work
);
2041 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
) {
2043 // create mutexes for accessing the statelist cache and our "book of work"
2044 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2045 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2047 init_statelist_cache();
2048 init_book_of_work();
2050 // create and run worker threads
2051 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2053 uint16_t sums1
[NUM_REDUCTION_WORKING_THREADS
][3];
2054 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2055 sums1
[i
][0] = sum_a0_idx
;
2056 sums1
[i
][1] = sum_a8_idx
;
2057 sums1
[i
][2] = i
+ 1;
2058 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums1
[i
]);
2061 // wait for threads to terminate:
2062 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2063 pthread_join(thread_id
[i
], NULL
);
2067 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2068 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2071 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2072 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2073 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2077 update_expected_brute_force(best_first_bytes
[0]);
2079 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2082 static void free_candidates_memory(statelist_t
*sl
) {
2086 free_candidates_memory(sl
->next
);
2092 static void pre_XOR_nonces(void) {
2093 // prepare acquired nonces for faster brute forcing.
2095 // XOR the cryptoUID and its parity
2096 for (uint16_t i
= 0; i
< 256; i
++) {
2097 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2098 while (test_nonce
!= NULL
) {
2099 test_nonce
->nonce_enc
^= cuid
;
2100 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2101 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2102 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2103 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2104 test_nonce
= test_nonce
->next
;
2109 static bool brute_force(uint64_t *found_key
) {
2110 if (known_target_key
!= -1) {
2111 TestIfKeyExists(known_target_key
);
2113 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
, found_key
);
2116 static uint16_t SumProperty(struct Crypto1State
*s
) {
2117 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2118 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2119 return (sum_odd
* (16 - sum_even
) + (16 - sum_odd
) * sum_even
);
2122 static void Tests(void) {
2124 if (known_target_key
== -1)
2127 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2128 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2129 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2130 PrintAndLogEx(NORMAL
, "\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2131 odd_even
== EVEN_STATE
? "even" : "odd ",
2132 best_first_bytes
[0]);
2135 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2136 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2137 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2138 PrintAndLogEx(NORMAL
, "\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2139 odd_even
== EVEN_STATE
? "even" : "odd ");
2144 static void Tests2(void) {
2146 if (known_target_key
== -1)
2149 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2150 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2151 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2152 PrintAndLogEx(NORMAL
, "\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2153 odd_even
== EVEN_STATE
? "even" : "odd ",
2154 best_first_byte_smallest_bitarray
);
2158 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2159 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2160 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2161 PrintAndLogEx(NORMAL
, "\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2162 odd_even
== EVEN_STATE
? "even" : "odd ");
2167 static uint16_t real_sum_a8
= 0;
2169 static void set_test_state(uint8_t byte
) {
2170 struct Crypto1State
*pcs
;
2171 pcs
= crypto1_create(known_target_key
);
2172 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2173 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2174 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2175 real_sum_a8
= SumProperty(pcs
);
2176 crypto1_destroy(pcs
);
2179 static void init_it_all(void) {
2180 memset(nonces
, 0, sizeof(nonces
));
2182 best_first_byte_smallest_bitarray
= 0;
2185 write_stats
= false;
2186 all_bitflips_bitarray
[0] = NULL
;
2187 all_bitflips_bitarray
[1] = NULL
;
2188 num_all_bitflips_bitarray
[0] = 0;
2189 num_all_bitflips_bitarray
[1] = 0;
2190 all_bitflips_bitarray_dirty
[0] = false;
2191 all_bitflips_bitarray_dirty
[1] = false;
2192 last_sample_clock
= 0;
2194 num_keys_tested
= 0;
2196 num_acquired_nonces
= 0;
2198 num_effective_bitflips
[0] = 0;
2199 num_effective_bitflips
[1] = 0;
2200 num_all_effective_bitflips
= 0;
2201 num_1st_byte_effective_bitflips
= 0;
2202 hardnested_stage
= CHECK_1ST_BYTES
;
2203 known_target_key
= 0;
2206 brute_force_per_second
= 0;
2207 init_book_of_work();
2210 memset(effective_bitflip
, 0, sizeof(effective_bitflip
));
2211 memset(all_effective_bitflip
, 0, sizeof(all_effective_bitflip
));
2212 memset(bitflip_bitarrays
, 0, sizeof(bitflip_bitarrays
));
2213 memset(count_bitflip_bitarrays
, 0, sizeof(count_bitflip_bitarrays
));
2214 memset(part_sum_a0_bitarrays
, 0, sizeof(part_sum_a0_bitarrays
));
2215 memset(part_sum_a8_bitarrays
, 0, sizeof(part_sum_a8_bitarrays
));
2216 memset(sum_a0_bitarrays
, 0, sizeof(sum_a0_bitarrays
));
2219 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
, uint64_t *foundkey
, char *filename
) {
2220 char progress_text
[80];
2221 char instr_set
[12] = {0};
2223 get_SIMD_instruction_set(instr_set
);
2224 PrintAndLogEx(SUCCESS
, "Using %s SIMD core.", instr_set
);
2226 // initialize static arrays
2227 memset(part_sum_count
, 0, sizeof(part_sum_count
));
2230 srand((unsigned) time(NULL
));
2231 brute_force_per_second
= brute_force_benchmark();
2232 write_stats
= false;
2235 // set the correct locale for the stats printing
2237 setlocale(LC_NUMERIC
, "");
2238 if ((fstats
= fopen("hardnested_stats.txt", "a")) == NULL
) {
2239 PrintAndLogEx(WARNING
, "Could not create/open file hardnested_stats.txt");
2243 for (uint32_t i
= 0; i
< tests
; i
++) {
2244 start_time
= msclock();
2245 print_progress_header();
2246 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/ 1000000, log(brute_force_per_second
) / log(2.0));
2247 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
2248 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+ 1);
2249 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
2251 if (trgkey
!= NULL
) {
2252 known_target_key
= bytes_to_num(trgkey
, 6);
2254 known_target_key
= -1;
2257 init_bitflip_bitarrays();
2258 init_part_sum_bitarrays();
2259 init_sum_bitarrays();
2260 init_allbitflips_array();
2261 init_nonce_memory();
2262 update_reduction_rate(0.0, true);
2264 simulate_acquire_nonces();
2266 set_test_state(best_first_bytes
[0]);
2269 free_bitflip_bitarrays();
2271 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
]) / log(2.0));
2272 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
]) / log(2.0));
2273 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2275 #ifdef DEBUG_KEY_ELIMINATION
2278 bool key_found
= false;
2279 num_keys_tested
= 0;
2280 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2281 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2282 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2283 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2284 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
) / log(2.0), log(expected_brute_force2
) / log(2.0));
2286 if (expected_brute_force1
< expected_brute_force2
) {
2287 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2288 set_test_state(best_first_byte_smallest_bitarray
);
2289 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2292 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2293 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2296 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2298 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2300 key_found
= brute_force(foundkey
);
2301 free(candidates
->states
[ODD_STATE
]);
2302 free(candidates
->states
[EVEN_STATE
]);
2303 free_candidates_memory(candidates
);
2307 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2308 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2309 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2310 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+ 1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2311 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2312 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2313 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2314 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2316 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2318 key_found
= brute_force(foundkey
);
2319 free_statelist_cache();
2320 free_candidates_memory(candidates
);
2323 // update the statistics
2324 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2325 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2326 // and calculate new expected number of brute forces
2327 update_expected_brute_force(best_first_bytes
[0]);
2331 #ifdef DEBUG_KEY_ELIMINATION
2332 fprintf(fstats
, "%1.1f;%1.0f;%c;%s\n",
2333 log(num_keys_tested
) / log(2.0),
2334 (float)num_keys_tested
/ brute_force_per_second
,
2335 key_found
? 'Y' : 'N',
2339 fprintf(fstats
, "%1.0f;%d\n",
2340 log(num_keys_tested
) / log(2.0),
2341 (float)num_keys_tested
/ brute_force_per_second
,
2346 free_nonces_memory();
2347 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2348 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2349 free_sum_bitarrays();
2350 free_part_sum_bitarrays();
2354 start_time
= msclock();
2355 print_progress_header();
2356 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/ 1000000, log(brute_force_per_second
) / log(2.0));
2357 hardnested_print_progress(0, progress_text
, (float)(1LL << 47), 0);
2358 init_bitflip_bitarrays();
2359 init_part_sum_bitarrays();
2360 init_sum_bitarrays();
2361 init_allbitflips_array();
2362 init_nonce_memory();
2363 update_reduction_rate(0.0, true);
2365 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2366 if (read_nonce_file(filename
) != 0) {
2367 free_bitflip_bitarrays();
2368 free_nonces_memory();
2369 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2370 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2371 free_sum_bitarrays();
2372 free_part_sum_bitarrays();
2375 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2376 update_nonce_data(false);
2377 float brute_force_depth
;
2378 shrink_key_space(&brute_force_depth
);
2379 } else { // acquire nonces.
2380 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
, filename
);
2382 free_bitflip_bitarrays();
2383 free_nonces_memory();
2384 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2385 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2386 free_sum_bitarrays();
2387 free_part_sum_bitarrays();
2392 if (trgkey
!= NULL
) {
2393 known_target_key
= bytes_to_num(trgkey
, 6);
2394 set_test_state(best_first_bytes
[0]);
2396 known_target_key
= -1;
2401 free_bitflip_bitarrays();
2402 bool key_found
= false;
2403 num_keys_tested
= 0;
2404 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2405 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2406 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2407 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2409 if (expected_brute_force1
< expected_brute_force2
) {
2410 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2411 set_test_state(best_first_byte_smallest_bitarray
);
2412 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2416 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2417 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2420 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2422 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2424 key_found
= brute_force(foundkey
);
2425 free(candidates
->states
[ODD_STATE
]);
2426 free(candidates
->states
[EVEN_STATE
]);
2427 free_candidates_memory(candidates
);
2432 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2434 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2435 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2436 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+ 1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2437 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2439 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2440 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2441 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2444 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2445 key_found
= brute_force(foundkey
);
2446 free_statelist_cache();
2447 free_candidates_memory(candidates
);
2450 // update the statistics
2451 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2452 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2453 // and calculate new expected number of brute forces
2454 update_expected_brute_force(best_first_bytes
[0]);
2459 free_nonces_memory();
2460 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2461 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2462 free_sum_bitarrays();
2463 free_part_sum_bitarrays();