R&Y: Added DAY RTA Tapp Card and Additional BKK BEM Stored Value Card AIDs to `aid_de...
[RRG-proxmark3.git] / common / commonutil.c
blob7ed34067f3519be3c119150ae8ae875712dbd80d
1 //-----------------------------------------------------------------------------
2 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU General Public License as published by
6 // the Free Software Foundation, either version 3 of the License, or
7 // (at your option) any later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // See LICENSE.txt for the text of the license.
15 //-----------------------------------------------------------------------------
16 // Utility functions used in many places, not specific to any piece of code.
17 //-----------------------------------------------------------------------------
18 #include "commonutil.h"
19 #include <string.h>
21 /* Similar to FpgaGatherVersion this formats stored version information
22 * into a string representation. It takes a pointer to the struct version_information_t,
23 * verifies the magic properties, then stores a formatted string, prefixed by
24 * prefix in dst.
26 void FormatVersionInformation(char *dst, int len, const char *prefix, const void *version_info) {
27 const struct version_information_t *v = (const struct version_information_t *)version_info;
28 dst[0] = 0;
29 strncat(dst, prefix, len - 1);
30 if (v->magic != VERSION_INFORMATION_MAGIC) {
31 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
32 return;
34 if (v->versionversion != 1) {
35 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
36 return;
38 if (!v->present) {
39 strncat(dst, "Version information not available", len - strlen(dst) - 1);
40 return;
43 strncat(dst, v->gitversion, len - strlen(dst) - 1);
44 if (v->clean == 0) {
45 strncat(dst, "-unclean", len - strlen(dst) - 1);
46 } else if (v->clean == 2) {
47 strncat(dst, "-suspect", len - strlen(dst) - 1);
50 strncat(dst, " ", len - strlen(dst) - 1);
51 strncat(dst, v->buildtime, len - strlen(dst) - 1);
52 strncat(dst, " ", len - strlen(dst) - 1);
53 strncat(dst, v->armsrc, len - strlen(dst) - 1);
56 void format_version_information_short(char *dst, int len, const void *version_info) {
57 const struct version_information_t *v = (const struct version_information_t *)version_info;
58 dst[0] = 0;
59 if (v->magic != VERSION_INFORMATION_MAGIC) {
60 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
61 return;
63 if (v->versionversion != 1) {
64 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
65 return;
67 if (!v->present) {
68 strncat(dst, "Version information not available", len - strlen(dst) - 1);
69 return;
72 strncat(dst, v->gitversion, len - strlen(dst) - 1);
73 strncat(dst, " ", len - strlen(dst) - 1);
74 strncat(dst, v->buildtime, len - strlen(dst) - 1);
78 ref http://www.csm.ornl.gov/~dunigan/crc.html
79 Returns the value v with the bottom b [0,32] bits reflected.
80 Example: reflect(0x3e23L,3) == 0x3e26
82 uint32_t reflect(uint32_t v, int b) {
83 uint32_t t = v;
84 for (int i = 0; i < b; ++i) {
85 if (t & 1)
86 v |= BITMASK((b - 1) - i);
87 else
88 v &= ~BITMASK((b - 1) - i);
89 t >>= 1;
91 return v;
94 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
96 // Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division):
97 uint8_t reflect8(uint8_t b) {
98 return (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
101 uint16_t reflect16(uint16_t v) {
102 v = (reflect8(v) << 8) | (reflect8(v >> 8) & 0xFF);
103 return v;
106 uint32_t reflect32(uint32_t v) {
107 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
108 // swap odd and even bits
109 v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1);
110 // swap consecutive pairs
111 v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2);
112 // swap nibbles ...
113 v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4);
114 // swap bytes
115 v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8);
116 // swap 2-byte long pairs
117 v = (v >> 16) | (v << 16);
118 return v;
121 uint64_t reflect48(uint64_t v) {
122 uint64_t vhi = reflect16(v >> 32);
123 uint64_t vlo = reflect32(v);
124 v = (vlo << 32) | (vhi & 0xFFFF);
125 return v;
128 uint64_t reflect64(uint64_t v) {
129 // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
130 // swap 4-byte long pairs
131 uint64_t v1 = reflect32(v >> 32);
132 uint64_t v2 = reflect32(v);
133 v = (v2 << 32) | (v1 & 0xFFFFFFFF);
134 return v;
137 void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) {
138 while (len--) {
139 dest[len] = (uint8_t) n;
140 n >>= 8;
144 uint64_t bytes_to_num(const uint8_t *src, size_t len) {
145 uint64_t num = 0;
146 while (len--) {
147 num = (num << 8) | (*src);
148 src++;
150 return num;
153 uint16_t MemLeToUint2byte(const uint8_t *data) {
154 return (uint16_t)(
155 (((uint16_t)(data[1])) << 8) +
156 (((uint16_t)(data[0])) << 0)
160 uint32_t MemLeToUint3byte(const uint8_t *data) {
161 return (uint32_t)(
162 (((uint32_t)(data[2])) << 16) +
163 (((uint32_t)(data[1])) << 8) +
164 (((uint32_t)(data[0])) << 0)
168 uint32_t MemLeToUint4byte(const uint8_t *data) {
169 return (uint32_t)(
170 (((uint32_t)(data[3])) << 24) +
171 (((uint32_t)(data[2])) << 16) +
172 (((uint32_t)(data[1])) << 8) +
173 (((uint32_t)(data[0])) << 0)
177 uint64_t MemLeToUint5byte(const uint8_t *data) {
178 return (uint64_t)(
179 (((uint64_t)(data[4])) << 32) +
180 (((uint64_t)(data[3])) << 24) +
181 (((uint64_t)(data[2])) << 16) +
182 (((uint64_t)(data[1])) << 8) +
183 (((uint64_t)(data[0])) << 0)
187 uint64_t MemLeToUint6byte(const uint8_t *data) {
188 return (uint64_t)(
189 (((uint64_t)(data[5])) << 40) +
190 (((uint64_t)(data[4])) << 32) +
191 (((uint64_t)(data[3])) << 24) +
192 (((uint64_t)(data[2])) << 16) +
193 (((uint64_t)(data[1])) << 8) +
194 (((uint64_t)(data[0])) << 0)
198 uint64_t MemLeToUint7byte(const uint8_t *data) {
199 return (uint64_t)(
200 (((uint64_t)(data[6])) << 48) +
201 (((uint64_t)(data[5])) << 40) +
202 (((uint64_t)(data[4])) << 32) +
203 (((uint64_t)(data[3])) << 24) +
204 (((uint64_t)(data[2])) << 16) +
205 (((uint64_t)(data[1])) << 8) +
206 (((uint64_t)(data[0])) << 0)
210 uint64_t MemLeToUint8byte(const uint8_t *data) {
211 return (uint64_t)(
212 (((uint64_t)(data[7])) << 56) +
213 (((uint64_t)(data[6])) << 48) +
214 (((uint64_t)(data[5])) << 40) +
215 (((uint64_t)(data[4])) << 32) +
216 (((uint64_t)(data[3])) << 24) +
217 (((uint64_t)(data[2])) << 16) +
218 (((uint64_t)(data[1])) << 8) +
219 (((uint64_t)(data[0])) << 0)
223 uint16_t MemBeToUint2byte(const uint8_t *data) {
224 return (uint16_t)(
225 (((uint16_t)(data[0])) << 8) +
226 (((uint16_t)(data[1])) << 0)
230 uint32_t MemBeToUint3byte(const uint8_t *data) {
231 return (uint32_t)(
232 (((uint32_t)(data[0])) << 16) +
233 (((uint32_t)(data[1])) << 8) +
234 (((uint32_t)(data[2])) << 0)
238 uint32_t MemBeToUint4byte(const uint8_t *data) {
239 return (uint32_t)(
240 (((uint32_t)(data[0])) << 24) +
241 (((uint32_t)(data[1])) << 16) +
242 (((uint32_t)(data[2])) << 8) +
243 (((uint32_t)(data[3])) << 0)
247 uint64_t MemBeToUint5byte(const uint8_t *data) {
248 return (uint64_t)(
249 (((uint64_t)(data[0])) << 32) +
250 (((uint64_t)(data[1])) << 24) +
251 (((uint64_t)(data[2])) << 16) +
252 (((uint64_t)(data[3])) << 8) +
253 (((uint64_t)(data[4])) << 0)
257 uint64_t MemBeToUint6byte(const uint8_t *data) {
258 return (uint64_t)(
259 (((uint64_t)(data[0])) << 40) +
260 (((uint64_t)(data[1])) << 32) +
261 (((uint64_t)(data[2])) << 24) +
262 (((uint64_t)(data[3])) << 16) +
263 (((uint64_t)(data[4])) << 8) +
264 (((uint64_t)(data[5])) << 0)
268 uint64_t MemBeToUint7byte(const uint8_t *data) {
269 return (uint64_t)(
270 (((uint64_t)(data[0])) << 48) +
271 (((uint64_t)(data[1])) << 40) +
272 (((uint64_t)(data[2])) << 32) +
273 (((uint64_t)(data[3])) << 24) +
274 (((uint64_t)(data[4])) << 16) +
275 (((uint64_t)(data[5])) << 8) +
276 (((uint64_t)(data[6])) << 0)
280 uint64_t MemBeToUint8byte(const uint8_t *data) {
281 return (uint64_t)(
282 (((uint64_t)(data[0])) << 56) +
283 (((uint64_t)(data[1])) << 48) +
284 (((uint64_t)(data[2])) << 40) +
285 (((uint64_t)(data[3])) << 32) +
286 (((uint64_t)(data[4])) << 24) +
287 (((uint64_t)(data[5])) << 16) +
288 (((uint64_t)(data[6])) << 8) +
289 (((uint64_t)(data[7])) << 0)
293 void Uint2byteToMemLe(uint8_t *data, uint16_t value) {
294 data[0] = (uint8_t)((value >> 0) & 0xffu);
295 data[1] = (uint8_t)((value >> 8) & 0xffu);
298 void Uint3byteToMemLe(uint8_t *data, uint32_t value) {
299 data[0] = (uint8_t)((value >> 0) & 0xffu);
300 data[1] = (uint8_t)((value >> 8) & 0xffu);
301 data[2] = (uint8_t)((value >> 16) & 0xffu);
304 void Uint4byteToMemLe(uint8_t *data, uint32_t value) {
305 data[0] = (uint8_t)((value >> 0) & 0xffu);
306 data[1] = (uint8_t)((value >> 8) & 0xffu);
307 data[2] = (uint8_t)((value >> 16) & 0xffu);
308 data[3] = (uint8_t)((value >> 24) & 0xffu);
311 void Uint5byteToMemLe(uint8_t *data, uint64_t value) {
312 data[0] = (uint8_t)((value >> 0) & 0xffu);
313 data[1] = (uint8_t)((value >> 8) & 0xffu);
314 data[2] = (uint8_t)((value >> 16) & 0xffu);
315 data[3] = (uint8_t)((value >> 24) & 0xffu);
316 data[4] = (uint8_t)((value >> 32) & 0xffu);
319 void Uint6byteToMemLe(uint8_t *data, uint64_t value) {
320 data[0] = (uint8_t)((value >> 0) & 0xffu);
321 data[1] = (uint8_t)((value >> 8) & 0xffu);
322 data[2] = (uint8_t)((value >> 16) & 0xffu);
323 data[3] = (uint8_t)((value >> 24) & 0xffu);
324 data[4] = (uint8_t)((value >> 32) & 0xffu);
325 data[5] = (uint8_t)((value >> 40) & 0xffu);
328 void Uint7byteToMemLe(uint8_t *data, uint64_t value) {
329 data[0] = (uint8_t)((value >> 0) & 0xffu);
330 data[1] = (uint8_t)((value >> 8) & 0xffu);
331 data[2] = (uint8_t)((value >> 16) & 0xffu);
332 data[3] = (uint8_t)((value >> 24) & 0xffu);
333 data[4] = (uint8_t)((value >> 32) & 0xffu);
334 data[5] = (uint8_t)((value >> 40) & 0xffu);
335 data[6] = (uint8_t)((value >> 48) & 0xffu);
338 void Uint8byteToMemLe(uint8_t *data, uint64_t value) {
339 data[0] = (uint8_t)((value >> 0) & 0xffu);
340 data[1] = (uint8_t)((value >> 8) & 0xffu);
341 data[2] = (uint8_t)((value >> 16) & 0xffu);
342 data[3] = (uint8_t)((value >> 24) & 0xffu);
343 data[4] = (uint8_t)((value >> 32) & 0xffu);
344 data[5] = (uint8_t)((value >> 40) & 0xffu);
345 data[6] = (uint8_t)((value >> 48) & 0xffu);
346 data[7] = (uint8_t)((value >> 56) & 0xffu);
349 void Uint2byteToMemBe(uint8_t *data, uint16_t value) {
350 data[0] = (uint8_t)((value >> 8) & 0xffu);
351 data[1] = (uint8_t)((value >> 0) & 0xffu);
354 void Uint3byteToMemBe(uint8_t *data, uint32_t value) {
355 data[0] = (uint8_t)((value >> 16) & 0xffu);
356 data[1] = (uint8_t)((value >> 8) & 0xffu);
357 data[2] = (uint8_t)((value >> 0) & 0xffu);
360 void Uint4byteToMemBe(uint8_t *data, uint32_t value) {
361 data[0] = (uint8_t)((value >> 24) & 0xffu);
362 data[1] = (uint8_t)((value >> 16) & 0xffu);
363 data[2] = (uint8_t)((value >> 8) & 0xffu);
364 data[3] = (uint8_t)((value >> 0) & 0xffu);
367 void Uint5byteToMemBe(uint8_t *data, uint64_t value) {
368 data[0] = (uint8_t)((value >> 32) & 0xffu);
369 data[1] = (uint8_t)((value >> 24) & 0xffu);
370 data[2] = (uint8_t)((value >> 16) & 0xffu);
371 data[3] = (uint8_t)((value >> 8) & 0xffu);
372 data[4] = (uint8_t)((value >> 0) & 0xffu);
375 void Uint6byteToMemBe(uint8_t *data, uint64_t value) {
376 data[0] = (uint8_t)((value >> 40) & 0xffu);
377 data[1] = (uint8_t)((value >> 32) & 0xffu);
378 data[2] = (uint8_t)((value >> 24) & 0xffu);
379 data[3] = (uint8_t)((value >> 16) & 0xffu);
380 data[4] = (uint8_t)((value >> 8) & 0xffu);
381 data[5] = (uint8_t)((value >> 0) & 0xffu);
384 void Uint7byteToMemBe(uint8_t *data, uint64_t value) {
385 data[0] = (uint8_t)((value >> 48) & 0xffu);
386 data[1] = (uint8_t)((value >> 40) & 0xffu);
387 data[2] = (uint8_t)((value >> 32) & 0xffu);
388 data[3] = (uint8_t)((value >> 24) & 0xffu);
389 data[4] = (uint8_t)((value >> 16) & 0xffu);
390 data[5] = (uint8_t)((value >> 8) & 0xffu);
391 data[6] = (uint8_t)((value >> 0) & 0xffu);
394 void Uint8byteToMemBe(uint8_t *data, uint64_t value) {
395 data[0] = (uint8_t)((value >> 56) & 0xffu);
396 data[1] = (uint8_t)((value >> 48) & 0xffu);
397 data[2] = (uint8_t)((value >> 40) & 0xffu);
398 data[3] = (uint8_t)((value >> 32) & 0xffu);
399 data[4] = (uint8_t)((value >> 24) & 0xffu);
400 data[5] = (uint8_t)((value >> 16) & 0xffu);
401 data[6] = (uint8_t)((value >> 8) & 0xffu);
402 data[7] = (uint8_t)((value >> 0) & 0xffu);
405 // Rotate Left - Ultralight, Desfire
406 void rol(uint8_t *data, const size_t len) {
407 uint8_t first = data[0];
408 for (size_t i = 0; i < len - 1; i++) {
409 data[i] = data[i + 1];
411 data[len - 1] = first;
414 // Rotate Right - Ultralight, Desfire
415 void ror(uint8_t *data, const size_t len) {
416 uint8_t last = data[len - 1];
418 for (int i = len - 1; i > 0; i--) {
419 data[i] = data[i - 1];
422 data[0] = last;
426 void lsl(uint8_t *data, size_t len) {
427 for (size_t n = 0; n < len - 1; n++) {
428 data[n] = (data[n] << 1) | (data[n + 1] >> 7);
430 data[len - 1] <<= 1;
434 // BSWAP24 of array[3]
435 uint32_t le24toh(const uint8_t data[3]) {
436 return (data[2] << 16) | (data[1] << 8) | data[0];
439 // BSWAP24, take u32, output array
440 void htole24(uint32_t val, uint8_t data[3]) {
441 data[0] = (uint8_t) val;
442 data[1] = (uint8_t)(val >> 8);
443 data[2] = (uint8_t)(val >> 16);
447 // ROL on u32
448 uint32_t rotl(uint32_t a, uint8_t n) {
449 n &= 31;
450 return (a << n) | (a >> (32 - n));
453 // ROR on u32
454 uint32_t rotr(uint32_t a, uint8_t n) {
455 n &= 31;
456 return (a >> n) | (a << (32 - n));
459 uint16_t get_sw(const uint8_t *d, uint16_t n) {
460 if (n < 2)
461 return 0;
463 n -= 2;
464 return (d[n] << 8 | d[n + 1]);
467 // reverse same array
468 void reverse_array(uint8_t *d, size_t n) {
469 if (d == NULL || n < 2) {
470 return;
473 for (int i = 0, j = n - 1; i < j; ++i, --j) {
474 d[i] ^= d[j];
475 d[j] ^= d[i];
476 d[i] ^= d[j];
480 // reverse src array into dest array
481 void reverse_array_copy(const uint8_t *src, int src_len, uint8_t *dest) {
482 if (src == NULL || src_len == 0 || dest == NULL) {
483 return;
486 for (int i = 0; i < src_len; i++) {
487 dest[i] = src[(src_len - 1) - i];
491 static int hexchar_to_dec(char ch) {
492 if (ch >= '0' && ch <= '9') {
493 return ch - '0';
495 if (ch >= 'a' && ch <= 'f') {
496 return ch - 'a' + 10;
498 if (ch >= 'A' && ch <= 'F') {
499 return ch - 'A' + 10;
501 return -1;
504 // no spaces allowed for input hex string
505 bool hexstr_to_byte_array(const char *hexstr, uint8_t *d, size_t *n) {
507 size_t hexstr_len = strlen(hexstr);
508 if (hexstr_len & 1) {
509 return false;
512 *n = (hexstr_len >> 1);
514 for (int i = 0; i < *n; i++) {
516 char c1 = *hexstr++;
517 char c2 = *hexstr++;
519 if (c1 == '\0' || c2 == '\0') {
520 return false;
523 int b = (hexchar_to_dec(c1) << 4) | hexchar_to_dec(c2);
524 if (b < 0) {
525 // Error: invalid hex character
526 return false;
528 d[i] = (uint8_t) b;
530 return true;
533 void reverse_arraybytes(uint8_t *arr, size_t len) {
534 size_t i;
535 for (i = 0; i < len ; i++) {
536 arr[i] = reflect8(arr[i]);
540 void reverse_arraybytes_copy(uint8_t *arr, uint8_t *dest, size_t len) {
541 size_t i;
542 for (i = 0; i < len ; i++) {
543 dest[i] = reflect8(arr[i]);
547 // TODO: Boost performance by copying in chunks of 1, 2, or 4 bytes when feasible.
548 size_t concatbits(uint8_t *dest, int dest_offset, const uint8_t *src, int src_offset, size_t nbits) {
549 int i, end, step;
551 // overlap
552 if ((src - dest) * 8 + src_offset - dest_offset > 0) {
553 i = 0;
554 end = nbits;
555 step = 1;
556 } else {
557 i = nbits - 1;
558 end = -1;
559 step = -1;
562 for (; i != end; i += step) {
563 // equiv of dest_bits[dest_offset + i] = src_bits[src_offset + i]
564 CLEAR_BIT(dest, dest_offset + i);
565 if (TEST_BIT(src, src_offset + i)) SET_BIT(dest, dest_offset + i);
568 return dest_offset + nbits;
571 int char2int(char c) {
572 if (c >= '0' && c <= '9') return c - '0';
573 if (c >= 'A' && c <= 'F') return c - 'A' + 10;
574 if (c >= 'a' && c <= 'f') return c - 'a' + 10;
575 return -1; // Invalid character for hex
578 // returns the number of bytes written
579 int hexstr2ByteArr(const char *hexstr, unsigned char *array, size_t asize) {
580 size_t n = 0;
581 while (hexstr[n] != '\0') {
582 n++;
585 // Check if the input is valid and fits in the output array
586 if (n % 2 != 0 || asize < n >> 1) {
587 return -1; // Error: invalid length or insufficient byte array size
590 for (size_t i = 0; i < n; i += 2) {
591 int high = char2int(hexstr[i]);
592 int low = char2int(hexstr[i + 1]);
594 if (high == -1 || low == -1) {
595 return -1; // Error: invalid hex character
598 array[i >> 1] = (high << 4) | low;
600 return n >> 1;