R&Y: Added DAY RTA Tapp Card and Additional BKK BEM Stored Value Card AIDs to `aid_de...
[RRG-proxmark3.git] / common / cryptorf / cryptolib.c
blobb4abbdd54ac97fd40c547a8692299dfc8a54c340
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010, Flavio D. Garcia, Peter van Rossum, Roel Verdult
3 // and Ronny Wichers Schreur. Radboud University Nijmegen
4 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
5 //
6 // This program is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 // (at your option) any later version.
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // See LICENSE.txt for the text of the license.
17 //-----------------------------------------------------------------------------
18 // SecureMemory, CryptoMemory and CryptoRF library
19 //-----------------------------------------------------------------------------
21 #include "cryptolib.h"
22 #include <stdbool.h>
23 #include <stdio.h>
24 #include <string.h>
25 #include <stdlib.h>
27 typedef enum {
28 CA_ENCRYPT = 0x01,
29 CA_DECRYPT = 0x02
30 } CryptoAction;
32 int counter = 0;
34 static uint8_t nibbles_to_byte(nibble b0, nibble b1) {
35 // Combine both nibbles
36 return ((b0 << 4) | b1);
39 static uint8_t funny_mod(uint8_t a, uint8_t m) {
40 // Just return the input when this is less or equal than the modular value
41 if (a < m) return a;
43 // Compute the modular value
44 a %= m;
46 // Return the funny value, when the output was now zero, return the modular value
47 return (a == 0) ? m : a;
50 static uint8_t bit_rotate_left(uint8_t a, uint8_t n_bits) {
51 // Rotate value a with the length of n_bits only 1 time
52 uint8_t mask = (1 << n_bits) - 1;
53 return ((a << 1) | (a >> (n_bits - 1))) & mask;
57 static void reconstruct_nibbles(crypto_state s)
59 uint8_t b1, b5, b8, b15, b18;
60 uint8_t b0, b4, b7, b14, b17;
62 // Extract the bytes that generated the "previous" nibble
63 b1 = (uint8_t)((s->l >> 25) & 0x1f);
64 b5 = (uint8_t)((s->l >> 5) & 0x1f);
65 b8 = (uint8_t)((s->m >> 35) & 0x1f);
66 b15 = (uint8_t)((s->r >> 15) & 0x1f);
67 b18 = (uint8_t)(s->r & 0x1f);
69 // Reconstruct the b0 nibble
70 s->b0 = ((b1 ^ b5) & 0x0f) & ~(b8);
71 s->b0 |= ((b15 ^ b18) & 0x0f) & b8;
73 // Extract the bytes for the current nibble
74 b0 = (uint8_t)((s->l >> 30) & 0x1f);
75 b4 = (uint8_t)((s->l >> 10) & 0x1f);
76 b7 = (uint8_t)((s->m >> 42) & 0x1f);
77 b14 = (uint8_t)((s->r >> 20) & 0x1f);
78 b17 = (uint8_t)((s->r >> 5) & 0x1f);
80 // Construct the values for b1 generation
81 s->b1l = ((b0 ^ b4) & 0x0f);
82 s->b1r = ((b14 ^ b17) & 0x0f);
83 s->b1s = b7;
85 // Reconstruct the b1 nibble
86 s->b1 = s->b1l & ~(s->b1s);
87 s->b1 |= s->b1r & s->b1s;
90 static void next_left(uint8_t in, crypto_state s) {
91 uint8_t b3, b6, bx;
93 // Update the left cipher state with the input byte
94 s->l ^= ((in & 0x1f) << 20);
96 // Extract the two (5 bits) values used for modular addtion
97 b3 = (uint8_t)((s->l >> 15) & 0x1f);
98 b6 = (uint8_t)(s->l & 0x1f);
100 // Compute the modular addition
101 bx = funny_mod(b3 + bit_rotate_left(b6, 5), 0x1f);
103 // Rotate the left cipher state 5 bits
104 s->l = ((s->l >> 5) | ((uint64_t)bx << 30));
106 // Save the 4 left output bits used for b1
107 s->b1l = ((bx ^ b3) & 0x0f);
110 static void next_right(uint8_t in, crypto_state s) {
111 uint8_t b16, b18, bx;
113 // Update the right cipher state with the input byte
114 s->r ^= ((in & 0xf8) << 12);
116 // Extract the two (5 bits) values used for modular addtion
117 b16 = (uint8_t)((s->r >> 10) & 0x1f);
118 b18 = (uint8_t)(s->r & 0x1f);
120 // Compute the modular addition
121 bx = funny_mod(b18 + b16, 0x1f);
123 // Rotate the right cipher state 5 bits
124 s->r = ((s->r >> 5) | ((uint64_t)bx << 20));
126 // Save the 4 right output bits used for b1
127 s->b1r = ((bx ^ b16) & 0x0f);
130 static void next_middle(uint8_t in, crypto_state s) {
131 uint8_t b12, b13, bx;
133 // Update the middle cipher state with the input byte
134 s->m ^= (((((uint64_t)in << 3) & 0x7f) | (in >> 5)) << 14);
136 // Extract the two (7 bits) values used for modular addtion
137 b12 = (uint8_t)((s->m >> 7) & 0x7f);
138 b13 = (uint8_t)(s->m & 0x7f);
140 // Compute the modular addition
141 bx = (funny_mod(b12 + bit_rotate_left(b13, 7), 0x7f));
143 // Rotate the middle cipher state 7 bits
144 s->m = ((s->m >> 7) | ((uint64_t)bx << 42));
146 // Save the 4 middle selector bits used for b1
147 s->b1s = bx & 0x0f;
150 static void next(const bool feedback, uint8_t in, crypto_state s) {
151 // Initialize the (optional) input parameter
152 uint8_t a = in;
154 // Only Cryptomemory uses feedback
155 if (feedback) {
156 // Construct the cipher update 'a' from (input ^ feedback)
157 a = in ^ nibbles_to_byte(s->b0, s->b1);
160 // Shift the cipher state
161 next_left(a, s);
162 next_middle(a, s);
163 next_right(a, s);
165 // For active states we can use the available (previous) 'b1' nibble,
166 // otherwise use reconstruct_nibbles() to generate them
167 // reconstruct_nibbles(s)
169 // The nible from b1 shifts to b0
170 s->b0 = s->b1;
172 // Construct the new value of nible b1
173 s->b1 = s->b1l & ~(s->b1s);
174 s->b1 |= s->b1r & s->b1s;
177 static void next_n(const bool feedback, size_t n, uint8_t in, crypto_state s) {
178 // While n-rounds left, shift the cipher
179 while (n--) next(feedback, in, s);
182 static void initialize(const bool feedback, const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, const size_t n, crypto_state s) {
183 size_t pos;
185 // Reset the cipher state
186 memset(s, 0x00, sizeof(crypto_state_t));
188 // Load in the ci (tag-nonce), together with the first half of Q (reader-nonce)
189 for (pos = 0; pos < 4; pos++) {
190 next_n(feedback, n, Ci[2 * pos ], s);
191 next_n(feedback, n, Ci[2 * pos + 1], s);
192 next(feedback, Q[pos], s);
195 // Load in the diversified key (Gc), together with the second half of Q (reader-nonce)
196 for (pos = 0; pos < 4; pos++) {
197 next_n(feedback, n, Gc[2 * pos ], s);
198 next_n(feedback, n, Gc[2 * pos + 1], s);
199 next(feedback, Q[pos + 4], s);
203 static uint8_t cm_byte(crypto_state s) {
204 // Construct keystream byte by combining both nibbles
205 return nibbles_to_byte(s->b0, s->b1);
208 static uint8_t sm_byte(crypto_state s) {
209 uint8_t ks;
211 // Construct keystream byte by combining 2 parts from 4 nibbles
212 next_n(false, 2, 0, s);
213 ks = s->b1 << 4;
214 next_n(false, 2, 0, s);
215 ks |= s->b1;
217 return ks;
220 void print_crypto_state(const char *text, crypto_state s) {
221 int pos;
223 printf("%s", text);
224 for (pos = 6; pos >= 0; pos--)
225 printf(" %02x", (uint8_t)(s->l >> (pos * 5)) & 0x1f);
227 printf(" |");
228 for (pos = 6; pos >= 0; pos--)
229 printf(" %02x", (uint8_t)(s->m >> (pos * 7)) & 0x7f);
231 printf(" |");
232 for (pos = 4; pos >= 0; pos--)
233 printf(" %02x", (uint8_t)(s->r >> (pos * 5)) & 0x1f);
235 printf(" | %02x", cm_byte(s));
236 printf("\n");
239 void sm_auth(const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, uint8_t *Ch, uint8_t *Ci_1, crypto_state s) {
240 size_t pos;
242 initialize(false, Gc, Ci, Q, 1, s);
244 // Generate challenge answer for Tag and Reader
245 for (pos = 0; pos < 8; pos++) {
246 Ci_1[pos] = sm_byte(s);
247 Ch[pos] = sm_byte(s);
251 void cm_auth(const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, uint8_t *Ch, uint8_t *Ci_1, uint8_t *Ci_2, crypto_state s) {
252 size_t pos;
254 initialize(true, Gc, Ci, Q, 3, s);
256 // Construct the reader-answer (challenge)
257 next_n(true, 6, 0, s);
258 Ch[0] = cm_byte(s);
259 for (pos = 1; pos < 8; pos++) {
260 next_n(true, 7, 0, s);
261 Ch [pos] = cm_byte(s);
264 // Construct the tag-answer (Ci+1 = ff .. .. .. .. .. .. ..)
265 Ci_1[0] = 0xff;
266 for (pos = 1; pos < 8; pos++) {
267 next_n(true, 2, 0, s);
268 Ci_1[pos] = cm_byte(s);
271 // Construct the session key (Ci+2)
272 for (pos = 0; pos < 8; pos++) {
273 next_n(true, 2, 0, s);
274 Ci_2[pos] = cm_byte(s);
277 // Prepare the cipher for encryption by shifting 3 more times
278 next_n(true, 3, 0, s);
281 static void cm_crypt(const CryptoAction ca, const uint8_t offset, const uint8_t len, const uint8_t *in, uint8_t *out, crypto_state s) {
282 size_t pos;
284 next_n(true, 5, 0, s);
285 next(true, offset, s);
286 next_n(true, 5, 0, s);
287 next(true, len, s);
288 for (pos = 0; pos < len; pos++) {
289 // Perform the crypto operation
290 uint8_t bt = in[pos] ^ cm_byte(s);
292 // Generate output
293 if (out) out[pos] = bt;
295 // Detect where to find the plaintext for loading into cipher state
296 if (ca == CA_DECRYPT) {
297 next(true, bt, s);
298 } else {
299 next(true, in[pos], s);
302 // Shift the cipher state 5 times
303 next_n(true, 5, 0, s);
307 void cm_encrypt(const uint8_t offset, const uint8_t len, const uint8_t *pt, uint8_t *ct, crypto_state s) {
308 next_n(true, 5, 0, s);
309 next(true, 0, s);
310 cm_crypt(CA_ENCRYPT, offset, len, pt, ct, s);
313 void cm_decrypt(const uint8_t offset, const uint8_t len, const uint8_t *ct, uint8_t *pt, crypto_state s) {
314 next_n(true, 5, 0, s);
315 next(true, 0, s);
316 cm_crypt(CA_DECRYPT, offset, len, ct, pt, s);
319 void cm_grind_read_system_zone(const uint8_t offset, const uint8_t len, const uint8_t *pt, crypto_state s) {
320 cm_crypt(CA_ENCRYPT, offset, len, pt, NULL, s);
323 void cm_grind_set_user_zone(const uint8_t zone, crypto_state s) {
324 next(true, zone, s);
327 void cm_mac(uint8_t *mac, crypto_state s) {
328 next_n(true, 10, 0, s);
329 if (mac)
330 mac[0] = cm_byte(s);
332 next_n(true, 5, 0, s);
333 if (mac)
334 mac[1] = cm_byte(s);
337 void cm_password(const uint8_t *pt, uint8_t *ct, crypto_state s) {
338 for (size_t pos = 0; pos < 3; pos++) {
339 next_n(true, 5, pt[pos], s);
340 ct[pos] = cm_byte(s);