R&Y: Added DAY RTA Tapp Card and Additional BKK BEM Stored Value Card AIDs to `aid_de...
[RRG-proxmark3.git] / fpga / hi_iso14443a.v
blobbbc20bee759edb6204d7c6b089fed5d0f304ca4b
1 //-----------------------------------------------------------------------------
2 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
3 //
4 // This program is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU General Public License as published by
6 // the Free Software Foundation, either version 3 of the License, or
7 // (at your option) any later version.
8 //
9 // This program is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // See LICENSE.txt for the text of the license.
15 //-----------------------------------------------------------------------------
16 // ISO14443-A support for the Proxmark3
18 module hi_iso14443a(
19 input ck_1356meg,
20 input [7:0] adc_d,
21 input [3:0] mod_type,
22 input [10:0] edge_detect_threshold,
23 input [10:0] edge_detect_threshold_high,
24 input ssp_dout,
26 output ssp_din,
27 output reg ssp_frame,
28 output reg ssp_clk,
29 output adc_clk,
30 output pwr_lo,
31 output pwr_hi,
32 output pwr_oe1,
33 output pwr_oe2,
34 output pwr_oe3,
35 output pwr_oe4,
36 output debug
39 assign adc_clk = ck_1356meg;
41 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
42 // Reader -> PM3:
43 // detecting and shaping the reader's signal. Reader will modulate the carrier by 100% (signal is either on or off). Use a
44 // hysteresis (Schmitt Trigger) to avoid false triggers during slowly increasing or decreasing carrier amplitudes
45 reg after_hysteresis;
46 reg [11:0] has_been_low_for;
48 always @(negedge adc_clk)
49 begin
50 if(adc_d >= 16) after_hysteresis <= 1'b1; // U >= 1,14V -> after_hysteresis = 1
51 else if(adc_d < 8) after_hysteresis <= 1'b0; // U < 1,04V -> after_hysteresis = 0
52 // Note: was >= 3,53V and <= 1,19V. The new trigger values allow more reliable detection of the first bit
53 // (it might not reach 3,53V due to the high time constant of the high pass filter in the analogue RF part).
54 // In addition, the new values are more in line with ISO14443-2: "The PICC shall detect the ”End of Pause” after the field exceeds
55 // 5% of H_INITIAL and before it exceeds 60% of H_INITIAL." Depending on the signal strength, 60% might well be less than 3,53V.
58 // detecting a loss of reader's field (adc_d < 192 for 4096 clock cycles). If this is the case,
59 // set the detected reader signal (after_hysteresis) to '1' (unmodulated)
60 if(adc_d >= 192)
61 begin
62 has_been_low_for <= 12'd0;
63 end
64 else
65 begin
66 if(has_been_low_for == 12'd4095)
67 begin
68 has_been_low_for <= 12'd0;
69 after_hysteresis <= 1'b1;
70 end
71 else
72 begin
73 has_been_low_for <= has_been_low_for + 1;
74 end
75 end
77 end
79 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
80 // Reader -> PM3
81 // detect when a reader is active (modulating). We assume that the reader is active, if we see the carrier off for at least 8
82 // carrier cycles. We assume that the reader is inactive, if the carrier stayed high for at least 256 carrier cycles.
83 reg deep_modulation;
84 reg [2:0] deep_counter;
85 reg [8:0] saw_deep_modulation;
87 always @(negedge adc_clk)
88 begin
89 if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V)
90 begin
91 if(deep_counter == 3'd7) // adc_d == 0 for 8 adc_clk ticks -> deep_modulation (by reader)
92 begin
93 deep_modulation <= 1'b1;
94 saw_deep_modulation <= 8'd0;
95 end
96 else
97 deep_counter <= deep_counter + 1;
98 end
99 else
100 begin
101 deep_counter <= 3'd0;
102 if(saw_deep_modulation == 8'd255) // adc_d != 0 for 256 adc_clk ticks -> deep_modulation is over, probably waiting for tag's response
103 deep_modulation <= 1'b0;
104 else
105 saw_deep_modulation <= saw_deep_modulation + 1;
109 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
110 // Tag -> PM3
111 // filter the input for a tag's signal. The filter box needs the 4 previous input values and is a gaussian derivative filter
112 // for noise reduction and edge detection.
113 // store 4 previous samples:
114 reg [7:0] input_prev_4, input_prev_3, input_prev_2, input_prev_1;
116 always @(negedge adc_clk)
117 begin
118 input_prev_4 <= input_prev_3;
119 input_prev_3 <= input_prev_2;
120 input_prev_2 <= input_prev_1;
121 input_prev_1 <= adc_d;
124 // adc_d_filtered = 2*input_prev4 + 1*input_prev3 + 0*input_prev2 - 1*input_prev1 - 2*input
125 // = (2*input_prev4 + input_prev3) - (2*input + input_prev1)
126 wire [8:0] input_prev_4_times_2 = input_prev_4 << 1;
127 wire [8:0] adc_d_times_2 = adc_d << 1;
129 wire [9:0] tmp1 = input_prev_4_times_2 + input_prev_3;
130 wire [9:0] tmp2 = adc_d_times_2 + input_prev_1;
132 // convert intermediate signals to signed and calculate the filter output
133 wire signed [10:0] adc_d_filtered = {1'b0, tmp1} - {1'b0, tmp2};
135 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
136 // internal FPGA timing. Maximum required period is 128 carrier clock cycles for a full 8 Bit transfer to ARM. (i.e. we need a
137 // 7 bit counter). Adjust its frequency to external reader's clock when simulating a tag or sniffing.
138 reg pre_after_hysteresis;
139 reg [3:0] reader_falling_edge_time;
140 reg [6:0] negedge_cnt;
142 always @(negedge adc_clk)
143 begin
144 // detect a reader signal's falling edge and remember its timing:
145 pre_after_hysteresis <= after_hysteresis;
146 if (pre_after_hysteresis && ~after_hysteresis)
147 begin
148 reader_falling_edge_time[3:0] <= negedge_cnt[3:0];
151 // adjust internal timer counter if necessary:
152 if (negedge_cnt[3:0] == 4'd13 && (mod_type == `FPGA_HF_ISO14443A_SNIFFER || mod_type == `FPGA_HF_ISO14443A_TAGSIM_LISTEN) && deep_modulation)
153 begin
154 if (reader_falling_edge_time == 4'd1) // reader signal changes right after sampling. Better sample earlier next time.
155 begin
156 negedge_cnt <= negedge_cnt + 2; // time warp
158 else if (reader_falling_edge_time == 4'd0) // reader signal changes right before sampling. Better sample later next time.
159 begin
160 negedge_cnt <= negedge_cnt; // freeze time
162 else
163 begin
164 negedge_cnt <= negedge_cnt + 1; // Continue as usual
166 reader_falling_edge_time[3:0] <= 4'd8; // adjust only once per detected edge
168 else if (negedge_cnt == 7'd127) // normal operation: count from 0 to 127
169 begin
170 negedge_cnt <= 0;
172 else
173 begin
174 negedge_cnt <= negedge_cnt + 1;
178 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
179 // Tag -> PM3:
180 // determine best possible time for starting/resetting the modulation detector.
181 reg [3:0] mod_detect_reset_time;
183 always @(negedge adc_clk)
184 begin
185 if (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)
186 // (our) reader signal changes at negedge_cnt[3:0]=9, tag response expected to start n*16+4 ticks later, further delayed by
187 // 3 ticks ADC conversion. The maximum filter output (edge detected) will be detected after subcarrier zero crossing (+7 ticks).
188 // To allow some timing variances, we want to have the maximum filter outputs well within the detection window, i.e.
189 // at mod_detect_reset_time+4 and mod_detect_reset_time+12 (-4 ticks).
190 // 9 + 4 + 3 + 7 - 4 = 19. 19 mod 16 = 3
191 begin
192 mod_detect_reset_time <= 4'd4;
194 else
195 if (mod_type == `FPGA_HF_ISO14443A_SNIFFER)
196 begin
197 // detect a rising edge of reader's signal and sync modulation detector to the tag's answer:
198 if (~pre_after_hysteresis && after_hysteresis && deep_modulation)
199 // reader signal rising edge detected at negedge_cnt[3:0]. This signal had been delayed
200 // 9 ticks by the RF part + 3 ticks by the A/D converter + 1 tick to assign to after_hysteresis.
201 // Then the same as above.
202 // - 9 - 3 - 1 + 4 + 3 + 7 - 4 = -3
203 begin
204 mod_detect_reset_time <= negedge_cnt[3:0] - 4'd3;
209 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
210 // Tag -> PM3:
211 // modulation detector. Looks for the steepest falling and rising edges within a 16 clock period. If there is both a significant
212 // falling and rising edge (in any order), a modulation is detected.
213 reg signed [10:0] rx_mod_falling_edge_max;
214 reg signed [10:0] rx_mod_rising_edge_max;
215 reg curbit;
217 always @(negedge adc_clk)
218 begin
219 if(negedge_cnt[3:0] == mod_detect_reset_time)
220 begin
221 if (mod_type == `FPGA_HF_ISO14443A_SNIFFER)
222 begin
223 // detect modulation signal: if modulating, there must have been a falling AND a rising edge
224 if ((rx_mod_falling_edge_max > edge_detect_threshold_high) && (rx_mod_rising_edge_max < -edge_detect_threshold_high))
225 curbit <= 1'b1; // modulation
226 else
227 curbit <= 1'b0; // no modulation
229 else
230 begin
231 // detect modulation signal: if modulating, there must have been a falling AND a rising edge
232 if ((rx_mod_falling_edge_max > edge_detect_threshold) && (rx_mod_rising_edge_max < -edge_detect_threshold))
233 curbit <= 1'b1; // modulation
234 else
235 curbit <= 1'b0; // no modulation
237 // reset modulation detector
238 rx_mod_rising_edge_max <= 0;
239 rx_mod_falling_edge_max <= 0;
241 else // look for steepest edges (slopes)
242 begin
243 if (adc_d_filtered > 0)
244 begin
245 if (adc_d_filtered > rx_mod_falling_edge_max)
246 rx_mod_falling_edge_max <= adc_d_filtered;
248 else
249 begin
250 if (adc_d_filtered < rx_mod_rising_edge_max)
251 rx_mod_rising_edge_max <= adc_d_filtered;
257 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
258 // Tag+Reader -> PM3
259 // sample 4 bits reader data and 4 bits tag data for sniffing
260 reg [3:0] reader_data;
261 reg [3:0] tag_data;
263 always @(negedge adc_clk)
264 begin
265 if(negedge_cnt[3:0] == 4'd0)
266 begin
267 reader_data[3:0] <= {reader_data[2:0], after_hysteresis};
268 tag_data[3:0] <= {tag_data[2:0], curbit};
272 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
273 // PM3 -> Reader:
274 // a delay line to ensure that we send the (emulated) tag's answer at the correct time according to ISO14443-3
275 reg [31:0] mod_sig_buf;
276 reg [4:0] mod_sig_ptr;
277 reg mod_sig;
279 always @(negedge adc_clk)
280 begin
281 if(negedge_cnt[3:0] == 4'd0) // sample data at rising edge of ssp_clk - ssp_dout changes at the falling edge.
282 begin
283 mod_sig_buf[31:2] <= mod_sig_buf[30:1]; // shift
284 if (~ssp_dout && ~mod_sig_buf[1])
285 mod_sig_buf[1] <= 1'b0; // delete the correction bit (a single 1 preceded and succeeded by 0)
286 else
287 mod_sig_buf[1] <= mod_sig_buf[0];
288 mod_sig_buf[0] <= ssp_dout; // add new data to the delay line
290 mod_sig = mod_sig_buf[mod_sig_ptr]; // the delayed signal.
294 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
295 // PM3 -> Reader, internal timing:
296 // a timer for the 1172 cycles fdt (Frame Delay Time). Start the timer with a rising edge of the reader's signal.
297 // set fdt_elapsed when we no longer need to delay data. Set fdt_indicator when we can start sending data.
298 // Note: the FPGA only takes care for the 1172 delay. To achieve an additional 1236-1172=64 ticks delay, the ARM must send
299 // a correction bit (before the start bit). The correction bit will be coded as 00010000, i.e. it adds 4 bits to the
300 // transmission stream, causing the required additional delay.
301 reg [10:0] fdt_counter;
302 reg fdt_indicator, fdt_elapsed;
303 reg [3:0] mod_sig_flip;
304 reg [3:0] sub_carrier_cnt;
306 // we want to achieve a delay of 1172. The RF part already has delayed the reader signals's rising edge
307 // by 9 ticks, the ADC took 3 ticks and there is always a delay of 32 ticks by the mod_sig_buf. Therefore need to
308 // count to 1172 - 9 - 3 - 32 = 1128
309 `define FDT_COUNT 11'd1128
311 // The ARM must not send too early, otherwise the mod_sig_buf will overflow, therefore signal that we are ready
312 // with fdt_indicator. The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks.
313 // fdt_indicator is assigned to sendbit after at least 1 tick, the transfer to ARM needs minimum 8 ticks. Response from
314 // ARM could appear at ssp_dout 8 ticks later.
315 // 1128 - 464 - 1 - 8 - 8 = 647
316 `define FDT_INDICATOR_COUNT 11'd647
317 // Note: worst case, assignment to sendbit takes 15 ticks more, and transfer to ARM needs 7*16 = 112 ticks more.
318 // When the ARM's response then appears, the fdt_count is already 647 + 15 + 112 = 774, which still allows the ARM a possible
319 // response window of 1128 - 774 = 354 ticks.
321 // reset on a pause in listen mode. I.e. the counter starts when the pause is over:
322 assign fdt_reset = ~after_hysteresis && mod_type == `FPGA_HF_ISO14443A_TAGSIM_LISTEN;
324 always @(negedge adc_clk)
325 begin
326 if (fdt_reset)
327 begin
328 fdt_counter <= 11'd0;
329 fdt_elapsed <= 1'b0;
330 fdt_indicator <= 1'b0;
332 else
333 begin
334 if(fdt_counter == `FDT_COUNT)
335 begin
336 if(~fdt_elapsed) // just reached fdt.
337 begin
338 mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time
339 sub_carrier_cnt <= 4'd0; // subcarrier phase in sync with start of modulation
340 fdt_elapsed <= 1'b1;
342 else
343 begin
344 sub_carrier_cnt <= sub_carrier_cnt + 1;
347 else
348 begin
349 fdt_counter <= fdt_counter + 1;
353 if(fdt_counter == `FDT_INDICATOR_COUNT) fdt_indicator <= 1'b1;
356 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
357 // PM3 -> Reader or Tag
358 // assign a modulation signal to the antenna. This signal is either a delayed signal (to achieve fdt when sending to a reader)
359 // or undelayed when sending to a tag
360 reg mod_sig_coil;
362 always @(negedge adc_clk)
363 begin
364 if (mod_type == `FPGA_HF_ISO14443A_TAGSIM_MOD) // need to take care of proper fdt timing
365 begin
366 if(fdt_counter == `FDT_COUNT)
367 begin
368 if(fdt_elapsed)
369 begin
370 if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig;
372 else
373 begin
374 mod_sig_coil <= mod_sig; // just reached fdt. Immediately assign signal to coil
378 else // other modes: don't delay
379 begin
380 mod_sig_coil <= ssp_dout;
384 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
385 // PM3 -> Reader
386 // determine the required delay in the mod_sig_buf (set mod_sig_ptr).
387 reg temp_buffer_reset;
389 always @(negedge adc_clk)
390 begin
391 if(fdt_reset)
392 begin
393 mod_sig_ptr <= 5'd0;
394 temp_buffer_reset = 1'b0;
396 else
397 begin
398 if(fdt_counter == `FDT_COUNT && ~fdt_elapsed) // if we just reached fdt
399 if(~(| mod_sig_ptr[4:0]))
400 mod_sig_ptr <= 5'd8; // ... but didn't buffer a 1 yet, delay next 1 by n*128 ticks.
401 else
402 temp_buffer_reset = 1'b1; // else no need for further delays.
404 if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge.
405 begin
406 if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt is reached.
407 if (mod_sig_ptr == 5'd31)
408 mod_sig_ptr <= 5'd0; // buffer overflow - data loss.
409 else
410 mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). mod_sig_ptr always points ahead of first 1.
411 else if(fdt_elapsed && ~temp_buffer_reset)
412 begin
413 // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
414 // at intervals of 8 * 16 = 128 adc_clk ticks (as defined in ISO14443-3)
415 if(ssp_dout)
416 temp_buffer_reset = 1'b1;
417 if(mod_sig_ptr == 5'd1)
418 mod_sig_ptr <= 5'd8; // still nothing received, need to go for the next interval
419 else
420 mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
426 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
427 // FPGA -> ARM communication:
428 // buffer 8 bits data to be sent to ARM. Shift them out bit by bit.
429 reg [7:0] to_arm;
431 always @(negedge adc_clk)
432 begin
433 if (negedge_cnt[5:0] == 6'd63) // fill the buffer
434 begin
435 if (mod_type == `FPGA_HF_ISO14443A_SNIFFER)
436 begin
437 if(deep_modulation) // a reader is sending (or there's no field at all)
438 begin
439 to_arm <= {reader_data[3:0], 4'b0000}; // don't send tag data
441 else
442 begin
443 to_arm <= {reader_data[3:0], tag_data[3:0]};
446 else
447 begin
448 to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; // feedback timing information
452 if(negedge_cnt[2:0] == 3'b000 && mod_type == `FPGA_HF_ISO14443A_SNIFFER) // shift at double speed
453 begin
454 // Don't shift if we just loaded new data, obviously.
455 if(negedge_cnt[5:0] != 6'd0)
456 begin
457 to_arm[7:1] <= to_arm[6:0];
461 if(negedge_cnt[3:0] == 4'b0000 && mod_type != `FPGA_HF_ISO14443A_SNIFFER)
462 begin
463 // Don't shift if we just loaded new data, obviously.
464 if(negedge_cnt[6:0] != 7'd0)
465 begin
466 to_arm[7:1] <= to_arm[6:0];
471 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
472 // FPGA <-> ARM communication:
473 // generate a ssp clock and ssp frame signal for the synchronous transfer from/to the ARM
475 always @(negedge adc_clk)
476 begin
477 if(mod_type == `FPGA_HF_ISO14443A_SNIFFER)
478 // FPGA_HF_ISO14443A_SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
479 begin
480 if(negedge_cnt[2:0] == 3'd0)
481 ssp_clk <= 1'b1;
482 if(negedge_cnt[2:0] == 3'd4)
483 ssp_clk <= 1'b0;
485 if(negedge_cnt[5:0] == 6'd0) // ssp_frame rising edge indicates start of frame
486 ssp_frame <= 1'b1;
487 if(negedge_cnt[5:0] == 6'd8)
488 ssp_frame <= 1'b0;
490 else
491 // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
492 begin
493 if(negedge_cnt[3:0] == 4'd0)
494 ssp_clk <= 1'b1;
495 if(negedge_cnt[3:0] == 4'd8)
496 ssp_clk <= 1'b0;
498 if(negedge_cnt[6:0] == 7'd7) // ssp_frame rising edge indicates start of frame, sampled on falling edge of ssp_clk
499 ssp_frame <= 1'b1;
500 if(negedge_cnt[6:0] == 7'd23)
501 ssp_frame <= 1'b0;
505 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
506 // FPGA -> ARM communication:
507 // select the data to be sent to ARM
508 reg bit_to_arm;
509 reg sendbit;
511 always @(negedge adc_clk)
512 begin
513 if(negedge_cnt[3:0] == 4'd0)
514 begin
515 // What do we communicate to the ARM
516 if(mod_type == `FPGA_HF_ISO14443A_TAGSIM_LISTEN)
517 sendbit = after_hysteresis;
518 else if(mod_type == `FPGA_HF_ISO14443A_TAGSIM_MOD)
519 /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh?
520 else */
521 sendbit = fdt_indicator;
522 else if (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)
523 sendbit = curbit;
524 else
525 sendbit = 1'b0;
528 if(mod_type == `FPGA_HF_ISO14443A_SNIFFER)
529 // send sampled reader and tag data:
530 bit_to_arm = to_arm[7];
531 else if (mod_type == `FPGA_HF_ISO14443A_TAGSIM_MOD && fdt_elapsed && temp_buffer_reset)
532 // send timing information:
533 bit_to_arm = to_arm[7];
534 else
535 // send data or fdt_indicator
536 bit_to_arm = sendbit;
539 assign ssp_din = bit_to_arm;
541 // Subcarrier (adc_clk/16, for FPGA_HF_ISO14443A_TAGSIM_MOD only).
542 wire sub_carrier;
543 assign sub_carrier = ~sub_carrier_cnt[3];
545 // in FPGA_HF_ISO14443A_READER_MOD: drop carrier for mod_sig_coil == 1 (pause);
546 // in FPGA_HF_ISO14443A_READER_LISTEN: carrier always on; in other modes: carrier always off
547 assign pwr_hi = (ck_1356meg & (((mod_type == `FPGA_HF_ISO14443A_READER_MOD) & ~mod_sig_coil) || (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)));
549 // Enable HF antenna drivers:
550 assign pwr_oe1 = 1'b0;
551 assign pwr_oe3 = 1'b0;
553 // FPGA_HF_ISO14443A_TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil)
554 // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
555 // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
556 assign pwr_oe4 = mod_sig_coil & sub_carrier & (mod_type == `FPGA_HF_ISO14443A_TAGSIM_MOD);
558 // This is all LF, so doesn't matter.
559 assign pwr_oe2 = 1'b0;
560 assign pwr_lo = 1'b0;
562 assign debug = negedge_cnt[3];
564 endmodule