1 //-----------------------------------------------------------------------------
2 // Copyright (C) Gerhard de Koning Gans - May 2008
3 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
5 // This program is free software: you can redistribute it and/or modify
6 // it under the terms of the GNU General Public License as published by
7 // the Free Software Foundation, either version 3 of the License, or
8 // (at your option) any later version.
10 // This program is distributed in the hope that it will be useful,
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 // GNU General Public License for more details.
15 // See LICENSE.txt for the text of the license.
16 //-----------------------------------------------------------------------------
17 // Mifare Classic Card Simulation
18 //-----------------------------------------------------------------------------
27 // /!\ Printing Debug message is disrupting emulation,
28 // Only use with caution during debugging
30 #include "mifaresim.h"
34 #include "iso14443a.h"
37 #include "mifareutil.h"
38 #include "fpgaloader.h"
39 #include "proxmark3_arm.h"
41 #include "protocols.h"
44 #include "commonutil.h"
49 static bool IsKeyBReadable(uint8_t blockNo
) {
50 uint8_t sector_trailer
[16];
51 emlGetMem(sector_trailer
, SectorTrailer(blockNo
), 1);
52 uint8_t AC
= ((sector_trailer
[7] >> 5) & 0x04)
53 | ((sector_trailer
[8] >> 2) & 0x02)
54 | ((sector_trailer
[8] >> 7) & 0x01);
55 return (AC
== 0x00 || AC
== 0x01 || AC
== 0x02);
58 static bool IsTrailerAccessAllowed(uint8_t blockNo
, uint8_t keytype
, uint8_t action
) {
59 uint8_t sector_trailer
[16];
60 emlGetMem(sector_trailer
, blockNo
, 1);
61 uint8_t AC
= ((sector_trailer
[7] >> 5) & 0x04)
62 | ((sector_trailer
[8] >> 2) & 0x02)
63 | ((sector_trailer
[8] >> 7) & 0x01);
66 if (g_dbglevel
>= DBG_EXTENDED
)
67 Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ");
71 if (g_dbglevel
>= DBG_EXTENDED
)
72 Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE");
73 return ((keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x01))
74 || (keytype
== AUTHKEYB
&& (AC
== 0x04 || AC
== 0x03)));
77 if (g_dbglevel
>= DBG_EXTENDED
)
78 Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ");
79 return (keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x02 || AC
== 0x01));
82 if (g_dbglevel
>= DBG_EXTENDED
)
83 Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE");
84 return ((keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x01))
85 || (keytype
== AUTHKEYB
&& (AC
== 0x04 || AC
== 0x03)));
88 if (g_dbglevel
>= DBG_EXTENDED
)
89 Dbprintf("IsTrailerAccessAllowed: AC_AC_READ");
90 return ((keytype
== AUTHKEYA
)
91 || (keytype
== AUTHKEYB
&& !(AC
== 0x00 || AC
== 0x02 || AC
== 0x01)));
94 if (g_dbglevel
>= DBG_EXTENDED
)
95 Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE");
96 return ((keytype
== AUTHKEYA
&& (AC
== 0x01))
97 || (keytype
== AUTHKEYB
&& (AC
== 0x03 || AC
== 0x05)));
104 static bool IsDataAccessAllowed(uint8_t blockNo
, uint8_t keytype
, uint8_t action
) {
106 uint8_t sector_trailer
[16];
107 emlGetMem(sector_trailer
, SectorTrailer(blockNo
), 1);
109 uint8_t sector_block
;
110 if (blockNo
<= MIFARE_2K_MAXBLOCK
) {
111 sector_block
= blockNo
& 0x03;
113 sector_block
= (blockNo
& 0x0f) / 5;
117 switch (sector_block
) {
119 AC
= ((sector_trailer
[7] >> 2) & 0x04)
120 | ((sector_trailer
[8] << 1) & 0x02)
121 | ((sector_trailer
[8] >> 4) & 0x01);
122 if (g_dbglevel
>= DBG_EXTENDED
)
123 Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC
);
127 AC
= ((sector_trailer
[7] >> 3) & 0x04)
128 | ((sector_trailer
[8] >> 0) & 0x02)
129 | ((sector_trailer
[8] >> 5) & 0x01);
130 if (g_dbglevel
>= DBG_EXTENDED
)
131 Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC
);
135 AC
= ((sector_trailer
[7] >> 4) & 0x04)
136 | ((sector_trailer
[8] >> 1) & 0x02)
137 | ((sector_trailer
[8] >> 6) & 0x01);
138 if (g_dbglevel
>= DBG_EXTENDED
)
139 Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC
);
143 if (g_dbglevel
>= DBG_EXTENDED
)
144 Dbprintf("IsDataAccessAllowed: Error");
150 if (g_dbglevel
>= DBG_EXTENDED
)
151 Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK");
152 return ((keytype
== AUTHKEYA
&& !(AC
== 0x03 || AC
== 0x05 || AC
== 0x07))
153 || (keytype
== AUTHKEYB
&& !(AC
== 0x07)));
155 case AC_DATA_WRITE
: {
156 if (g_dbglevel
>= DBG_EXTENDED
)
157 Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK");
158 return ((keytype
== AUTHKEYA
&& (AC
== 0x00))
159 || (keytype
== AUTHKEYB
&& (AC
== 0x00 || AC
== 0x04 || AC
== 0x06 || AC
== 0x03)));
162 if (g_dbglevel
>= DBG_EXTENDED
)
163 Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK");
164 return ((keytype
== AUTHKEYA
&& (AC
== 0x00))
165 || (keytype
== AUTHKEYB
&& (AC
== 0x00 || AC
== 0x06)));
167 case AC_DATA_DEC_TRANS_REST
: {
168 if (g_dbglevel
>= DBG_EXTENDED
)
169 Dbprintf("AC_DATA_DEC_TRANS_REST: OK");
170 return ((keytype
== AUTHKEYA
&& (AC
== 0x00 || AC
== 0x06 || AC
== 0x01))
171 || (keytype
== AUTHKEYB
&& (AC
== 0x00 || AC
== 0x06 || AC
== 0x01)));
178 static bool IsAccessAllowed(uint8_t blockNo
, uint8_t keytype
, uint8_t action
) {
179 if (IsSectorTrailer(blockNo
)) {
180 return IsTrailerAccessAllowed(blockNo
, keytype
, action
);
182 return IsDataAccessAllowed(blockNo
, keytype
, action
);
186 static bool MifareSimInit(uint16_t flags
, uint8_t *datain
, uint16_t atqa
, uint8_t sak
, tag_response_info_t
**responses
, uint32_t *cuid
, uint8_t *uid_len
, uint8_t **rats
, uint8_t *rats_len
) {
188 // SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf
190 static uint8_t rATQA_Mini
[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID
191 static uint8_t rATQA_1k
[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
192 static uint8_t rATQA_2k
[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID
193 static uint8_t rATQA_4k
[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID
196 static uint8_t rSAK_Mini
= 0x09; // mifare Mini
197 static uint8_t rSAK_1k
= 0x08; // mifare 1k
198 static uint8_t rSAK_2k
= 0x08; // mifare 2k with RATS support
199 static uint8_t rSAK_4k
= 0x18; // mifare 4k
201 static uint8_t rUIDBCC1
[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
202 static uint8_t rUIDBCC1b4
[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes
203 static uint8_t rUIDBCC1b3
[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes
204 static uint8_t rUIDBCC1b2
[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes
205 static uint8_t rUIDBCC1b1
[] = {0x00}; // UID 1st cascade level, last byte
206 static uint8_t rUIDBCC2
[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
207 static uint8_t rUIDBCC2b4
[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes
208 static uint8_t rUIDBCC2b3
[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes
209 static uint8_t rUIDBCC2b2
[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes
210 static uint8_t rUIDBCC2b1
[] = {0x00}; // UID 2st cascade level, last byte
211 static uint8_t rUIDBCC3
[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level
212 static uint8_t rUIDBCC3b4
[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes
213 static uint8_t rUIDBCC3b3
[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes
214 static uint8_t rUIDBCC3b2
[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes
215 static uint8_t rUIDBCC3b1
[] = {0x00}; // UID 3st cascade level, last byte
217 static uint8_t rATQA
[] = {0x00, 0x00}; // Current ATQA
218 static uint8_t rSAK
[] = {0x00, 0x00, 0x00}; // Current SAK, CRC
219 static uint8_t rSAKuid
[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC
221 // RATS answer for 2K NXP mifare classic (with CRC)
222 static uint8_t rRATS
[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3};
226 // By default use 1K tag
227 memcpy(rATQA
, rATQA_1k
, sizeof(rATQA
));
230 //by default RATS not supported
234 // -- Determine the UID
235 // Can be set from emulator memory or incoming data
236 // Length: 4,7,or 10 bytes
238 // Get UID, SAK, ATQA from EMUL
239 if ((flags
& FLAG_UID_IN_EMUL
) == FLAG_UID_IN_EMUL
) {
241 emlGet(block0
, 0, 16);
243 // If uid size defined, copy only uid from EMUL to use, backward compatibility for 'hf_colin.c', 'hf_mattyrun.c'
244 if ((flags
& (FLAG_4B_UID_IN_DATA
| FLAG_7B_UID_IN_DATA
| FLAG_10B_UID_IN_DATA
)) != 0) {
245 memcpy(datain
, block0
, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
247 // Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA
248 if ((block0
[0] ^ block0
[1] ^ block0
[2] ^ block0
[3]) == block0
[4] && (block0
[6] & 0xc0) == 0) {
249 flags
|= FLAG_4B_UID_IN_DATA
;
250 memcpy(datain
, block0
, 4);
252 memcpy(rATQA
, &block0
[6], sizeof(rATQA
));
254 // Check for 7 bytes UID: double size uid bits in ATQA
255 else if ((block0
[8] & 0xc0) == 0x40) {
256 flags
|= FLAG_7B_UID_IN_DATA
;
257 memcpy(datain
, block0
, 7);
259 memcpy(rATQA
, &block0
[8], sizeof(rATQA
));
261 Dbprintf("ERROR: " _RED_("Invalid dump. UID/SAK/ATQA not found"));
268 // Tune tag type, if defined directly
269 // Otherwise use defined by default or extracted from EMUL
270 if ((flags
& FLAG_MF_MINI
) == FLAG_MF_MINI
) {
271 memcpy(rATQA
, rATQA_Mini
, sizeof(rATQA
));
273 if (g_dbglevel
> DBG_NONE
) Dbprintf("Enforcing Mifare Mini ATQA/SAK");
274 } else if ((flags
& FLAG_MF_1K
) == FLAG_MF_1K
) {
275 memcpy(rATQA
, rATQA_1k
, sizeof(rATQA
));
277 if (g_dbglevel
> DBG_NONE
) Dbprintf("Enforcing Mifare 1K ATQA/SAK");
278 } else if ((flags
& FLAG_MF_2K
) == FLAG_MF_2K
) {
279 memcpy(rATQA
, rATQA_2k
, sizeof(rATQA
));
282 *rats_len
= sizeof(rRATS
);
283 if (g_dbglevel
> DBG_NONE
) Dbprintf("Enforcing Mifare 2K ATQA/SAK with RATS support");
284 } else if ((flags
& FLAG_MF_4K
) == FLAG_MF_4K
) {
285 memcpy(rATQA
, rATQA_4k
, sizeof(rATQA
));
287 if (g_dbglevel
> DBG_NONE
) Dbprintf("Enforcing Mifare 4K ATQA/SAK");
290 // Prepare UID arrays
291 if ((flags
& FLAG_4B_UID_IN_DATA
) == FLAG_4B_UID_IN_DATA
) { // get UID from datain
292 memcpy(rUIDBCC1
, datain
, 4);
294 if (g_dbglevel
>= DBG_EXTENDED
)
295 Dbprintf("MifareSimInit - FLAG_4B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_4B_UID_IN_DATA
, flags
, rUIDBCC1
);
299 *cuid
= bytes_to_num(rUIDBCC1
, 4);
301 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
302 if (g_dbglevel
> DBG_NONE
) {
303 Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
306 // Correct uid size bits in ATQA
307 rATQA
[0] = (rATQA
[0] & 0x3f); // single size uid
309 } else if ((flags
& FLAG_7B_UID_IN_DATA
) == FLAG_7B_UID_IN_DATA
) {
310 memcpy(&rUIDBCC1
[1], datain
, 3);
311 memcpy(rUIDBCC2
, datain
+ 3, 4);
313 if (g_dbglevel
>= DBG_EXTENDED
)
314 Dbprintf("MifareSimInit - FLAG_7B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_7B_UID_IN_DATA
, flags
, rUIDBCC1
);
317 *cuid
= bytes_to_num(rUIDBCC2
, 4);
319 rUIDBCC1
[0] = MIFARE_SELECT_CT
;
321 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
322 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
323 if (g_dbglevel
> DBG_NONE
) {
324 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
325 rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3], rUIDBCC2
[0], rUIDBCC2
[1], rUIDBCC2
[2], rUIDBCC2
[3]);
328 // Correct uid size bits in ATQA
329 rATQA
[0] = (rATQA
[0] & 0x3f) | 0x40; // double size uid
331 } else if ((flags
& FLAG_10B_UID_IN_DATA
) == FLAG_10B_UID_IN_DATA
) {
332 memcpy(&rUIDBCC1
[1], datain
, 3);
333 memcpy(&rUIDBCC2
[1], datain
+ 3, 3);
334 memcpy(rUIDBCC3
, datain
+ 6, 4);
336 if (g_dbglevel
>= DBG_EXTENDED
)
337 Dbprintf("MifareSimInit - FLAG_10B_UID_IN_DATA => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_10B_UID_IN_DATA
, flags
, rUIDBCC1
);
340 *cuid
= bytes_to_num(rUIDBCC3
, 4);
342 rUIDBCC1
[0] = MIFARE_SELECT_CT
;
343 rUIDBCC2
[0] = MIFARE_SELECT_CT
;
345 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
346 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
347 rUIDBCC3
[4] = rUIDBCC3
[0] ^ rUIDBCC3
[1] ^ rUIDBCC3
[2] ^ rUIDBCC3
[3];
349 if (g_dbglevel
> DBG_NONE
) {
350 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
351 rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
352 rUIDBCC2
[1], rUIDBCC2
[2], rUIDBCC2
[3],
353 rUIDBCC3
[0], rUIDBCC3
[1], rUIDBCC3
[2], rUIDBCC3
[3]
357 // Correct uid size bits in ATQA
358 rATQA
[0] = (rATQA
[0] & 0x3f) | 0x80; // triple size uid
360 Dbprintf("ERROR: " _RED_("UID size not defined"));
363 if (flags
& FLAG_FORCED_ATQA
) {
364 rATQA
[0] = atqa
>> 8;
365 rATQA
[1] = atqa
& 0xff;
367 if (flags
& FLAG_FORCED_SAK
) {
370 if (g_dbglevel
> DBG_NONE
) {
371 Dbprintf("ATQA : %02X %02X", rATQA
[1], rATQA
[0]);
372 Dbprintf("SAK : %02X", rSAK
[0]);
375 // clone UIDs for byte-frame anti-collision multiple tag selection procedure
376 memcpy(rUIDBCC1b4
, &rUIDBCC1
[1], 4);
377 memcpy(rUIDBCC1b3
, &rUIDBCC1
[2], 3);
378 memcpy(rUIDBCC1b2
, &rUIDBCC1
[3], 2);
379 memcpy(rUIDBCC1b1
, &rUIDBCC1
[4], 1);
381 memcpy(rUIDBCC2b4
, &rUIDBCC2
[1], 4);
382 memcpy(rUIDBCC2b3
, &rUIDBCC2
[2], 3);
383 memcpy(rUIDBCC2b2
, &rUIDBCC2
[3], 2);
384 memcpy(rUIDBCC2b1
, &rUIDBCC2
[4], 1);
386 if (*uid_len
== 10) {
387 memcpy(rUIDBCC3b4
, &rUIDBCC3
[1], 4);
388 memcpy(rUIDBCC3b3
, &rUIDBCC3
[2], 3);
389 memcpy(rUIDBCC3b2
, &rUIDBCC3
[3], 2);
390 memcpy(rUIDBCC3b1
, &rUIDBCC3
[4], 1);
393 // Calculate actual CRC
394 AddCrc14A(rSAK
, sizeof(rSAK
) - 2);
396 #define TAG_RESPONSE_COUNT 18
397 static tag_response_info_t responses_init
[TAG_RESPONSE_COUNT
] = {
398 { .response
= rATQA
, .response_n
= sizeof(rATQA
) }, // Answer to request - respond with card type
399 { .response
= rSAK
, .response_n
= sizeof(rSAK
) }, //
400 { .response
= rSAKuid
, .response_n
= sizeof(rSAKuid
) }, //
401 // Do not reorder. Block used via relative index of rUIDBCC1
402 { .response
= rUIDBCC1
, .response_n
= sizeof(rUIDBCC1
) }, // Anticollision cascade1 - respond with first part of uid
403 { .response
= rUIDBCC1b4
, .response_n
= sizeof(rUIDBCC1b4
)},
404 { .response
= rUIDBCC1b3
, .response_n
= sizeof(rUIDBCC1b3
)},
405 { .response
= rUIDBCC1b2
, .response_n
= sizeof(rUIDBCC1b2
)},
406 { .response
= rUIDBCC1b1
, .response_n
= sizeof(rUIDBCC1b1
)},
407 // Do not reorder. Block used via relative index of rUIDBCC2
408 { .response
= rUIDBCC2
, .response_n
= sizeof(rUIDBCC2
) }, // Anticollision cascade2 - respond with 2nd part of uid
409 { .response
= rUIDBCC2b4
, .response_n
= sizeof(rUIDBCC2b4
)},
410 { .response
= rUIDBCC2b3
, .response_n
= sizeof(rUIDBCC2b3
)},
411 { .response
= rUIDBCC2b2
, .response_n
= sizeof(rUIDBCC2b2
)},
412 { .response
= rUIDBCC2b1
, .response_n
= sizeof(rUIDBCC2b1
)},
413 // Do not reorder. Block used via relative index of rUIDBCC3
414 { .response
= rUIDBCC3
, .response_n
= sizeof(rUIDBCC3
) }, // Anticollision cascade3 - respond with 3th part of uid
415 { .response
= rUIDBCC3b4
, .response_n
= sizeof(rUIDBCC3b4
)},
416 { .response
= rUIDBCC3b3
, .response_n
= sizeof(rUIDBCC3b3
)},
417 { .response
= rUIDBCC3b2
, .response_n
= sizeof(rUIDBCC3b2
)},
418 { .response
= rUIDBCC3b1
, .response_n
= sizeof(rUIDBCC3b1
)}
421 // Prepare ("precompile") the responses of the anticollision phase.
422 // There will be not enough time to do this at the moment the reader sends its REQA or SELECT
423 // There are 18 predefined responses with a total of 53 bytes data to transmit.
424 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
425 // 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer
426 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571
428 uint8_t *free_buffer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
429 // modulation buffer pointer and current buffer free space size
430 uint8_t *free_buffer_pointer
= free_buffer
;
431 size_t free_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
433 for (size_t i
= 0; i
< TAG_RESPONSE_COUNT
; i
++) {
434 if (prepare_allocated_tag_modulation(&responses_init
[i
], &free_buffer_pointer
, &free_buffer_size
) == false) {
435 Dbprintf("Not enough modulation buffer size, exit after %d elements", i
);
440 *responses
= responses_init
;
442 // indices into responses array:
457 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
458 * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
459 * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
460 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
461 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
462 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
463 * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
465 void Mifare1ksim(uint16_t flags
, uint8_t exitAfterNReads
, uint8_t *datain
, uint16_t atqa
, uint8_t sak
) {
466 tag_response_info_t
*responses
;
467 uint8_t cardSTATE
= MFEMUL_NOFIELD
;
468 uint8_t uid_len
= 0; // 4, 7, 10
469 uint32_t cuid
= 0, selTimer
= 0, authTimer
= 0;
474 uint8_t cardWRBL
= 0;
475 uint8_t cardAUTHSC
= 0;
476 uint8_t cardAUTHKEY
= AUTHKEYNONE
; // no authentication
479 uint32_t cardINTREG
= 0;
480 uint8_t cardINTBLOCK
= 0;
482 struct Crypto1State mpcs
= {0, 0};
483 struct Crypto1State
*pcs
;
486 uint32_t numReads
= 0; //Counts numer of times reader reads a block
487 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
488 uint8_t receivedCmd_dec
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
489 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
490 uint16_t receivedCmd_len
;
492 uint8_t response
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
493 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
495 uint8_t *rats
= NULL
;
496 uint8_t rats_len
= 0;
499 // if fct is called with NULL we need to assign some memory since this pointer is passaed around
500 uint8_t datain_tmp
[10] = {0};
501 if (datain
== NULL
) {
505 //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
506 // This will be used in the reader-only attack.
508 //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
509 #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
510 nonces_t ar_nr_resp
[ATTACK_KEY_COUNT
* 2]; // *2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
511 memset(ar_nr_resp
, 0x00, sizeof(ar_nr_resp
));
513 uint8_t ar_nr_collected
[ATTACK_KEY_COUNT
* 2]; // *2 for 2nd attack type (moebius)
514 memset(ar_nr_collected
, 0x00, sizeof(ar_nr_collected
));
515 uint8_t nonce1_count
= 0;
516 uint8_t nonce2_count
= 0;
517 uint8_t moebius_n_count
= 0;
518 bool gettingMoebius
= false;
519 uint8_t mM
= 0; //moebius_modifier for collection storage
521 // Authenticate response - nonce
522 uint8_t rAUTH_NT
[4] = {0, 0, 0, 1};
523 uint8_t rAUTH_NT_keystream
[4];
526 const tUart14a
*uart
= GetUart14a();
528 // free eventually allocated BigBuf memory but keep Emulator Memory
529 BigBuf_free_keep_EM();
531 if (MifareSimInit(flags
, datain
, atqa
, sak
, &responses
, &cuid
, &uid_len
, &rats
, &rats_len
) == false) {
532 BigBuf_free_keep_EM();
536 // We need to listen to the high-frequency, peak-detected path.
537 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
545 uint8_t *p_em
= BigBuf_get_EM_addr();
546 uint8_t cve_flipper
= 0;
549 bool finished
= false;
550 bool button_pushed
= BUTTON_PRESS();
551 while ((button_pushed
== false) && (finished
== false)) {
555 if (counter
== 3000) {
556 if (data_available()) {
557 Dbprintf("----------- " _GREEN_("BREAKING") " ----------");
567 if (cardSTATE == MFEMUL_NOFIELD) {
569 vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
571 if (vHf > MF_MINFIELDV) {
575 button_pushed = BUTTON_PRESS();
582 int res
= EmGetCmd(receivedCmd
, sizeof(receivedCmd
), &receivedCmd_len
, receivedCmd_par
);
584 if (res
== 2) { //Field is off!
585 //FpgaDisableTracing();
586 if ((flags
& FLAG_CVE21_0430
) == FLAG_CVE21_0430
) {
591 cardSTATE
= MFEMUL_NOFIELD
;
592 if (g_dbglevel
>= DBG_EXTENDED
)
593 Dbprintf("cardSTATE = MFEMUL_NOFIELD");
595 } else if (res
== 1) { // button pressed
596 FpgaDisableTracing();
597 button_pushed
= true;
598 if (g_dbglevel
>= DBG_EXTENDED
)
599 Dbprintf("Button pressed");
603 // WUPA in HALTED state or REQA or WUPA in any other state
604 if (receivedCmd_len
== 1 && ((receivedCmd
[0] == ISO14443A_CMD_REQA
&& cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == ISO14443A_CMD_WUPA
)) {
605 selTimer
= GetTickCount();
606 if (g_dbglevel
>= DBG_EXTENDED
) {
607 //Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);");
609 EmSendPrecompiledCmd(&responses
[ATQA
]);
611 FpgaDisableTracing();
615 cardAUTHKEY
= AUTHKEYNONE
;
616 nonce
= prng_successor(selTimer
, 32);
617 // prepare NT for nested authentication
618 num_to_bytes(nonce
, 4, rAUTH_NT
);
619 num_to_bytes(cuid
^ nonce
, 4, rAUTH_NT_keystream
);
623 cardSTATE
= MFEMUL_SELECT
;
625 if ((flags
& FLAG_CVE21_0430
) == FLAG_CVE21_0430
) {
633 case MFEMUL_NOFIELD
: {
634 if (g_dbglevel
>= DBG_EXTENDED
)
635 Dbprintf("MFEMUL_NOFIELD");
638 case MFEMUL_HALTED
: {
639 if (g_dbglevel
>= DBG_EXTENDED
)
640 Dbprintf("MFEMUL_HALTED");
644 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
645 if (g_dbglevel
>= DBG_EXTENDED
)
646 Dbprintf("MFEMUL_IDLE");
650 // The anti-collision sequence, which is a mandatory part of the card activation sequence.
651 // It auto with 4-byte UID (= Single Size UID),
652 // 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID).
653 // For details see chapter 2 of AN10927.pdf
655 // This case is used for all Cascade Levels, because:
656 // 1) Any devices (under Android for example) after full select procedure completed,
657 // when UID is known, uses "fast-selection" method. In this case reader ignores
658 // first cascades and tries to select tag by last bytes of UID of last cascade
659 // 2) Any readers (like ACR122U) uses bit oriented anti-collision frames during selectin,
660 // same as multiple tags. For details see chapter 6.1.5.3 of ISO/IEC 14443-3
661 case MFEMUL_SELECT
: {
663 // Extract cascade level
664 if (receivedCmd_len
>= 2) {
665 switch (receivedCmd
[0]) {
666 case ISO14443A_CMD_ANTICOLL_OR_SELECT
:
669 case ISO14443A_CMD_ANTICOLL_OR_SELECT_2
:
672 case ISO14443A_CMD_ANTICOLL_OR_SELECT_3
:
678 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
680 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] Incorrect cascade level received");
684 // Incoming SELECT ALL for any cascade level
685 if (receivedCmd_len
== 2 && receivedCmd
[1] == 0x20) {
686 EmSendPrecompiledCmd(&responses
[uid_index
]);
687 FpgaDisableTracing();
689 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("SELECT ALL - EmSendPrecompiledCmd(%02x)", &responses
[uid_index
]);
693 // Incoming SELECT CLx for any cascade level
694 if (receivedCmd_len
== 9 && receivedCmd
[1] == 0x70) {
695 if (memcmp(&receivedCmd
[2], responses
[uid_index
].response
, 4) == 0) {
696 bool cl_finished
= (uid_len
== 4 && uid_index
== UIDBCC1
) ||
697 (uid_len
== 7 && uid_index
== UIDBCC2
) ||
698 (uid_len
== 10 && uid_index
== UIDBCC3
);
699 EmSendPrecompiledCmd(&responses
[cl_finished
? SAK
: SAKuid
]);
700 FpgaDisableTracing();
702 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("SELECT CLx %02x%02x%02x%02x received", receivedCmd
[2], receivedCmd
[3], receivedCmd
[4], receivedCmd
[5]);
705 cardSTATE
= MFEMUL_WORK
;
706 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_WORK");
710 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
712 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
717 // Incoming anti-collision frame
718 // receivedCmd[1] indicates number of byte and bit collision, supports only for bit collision is zero
719 if (receivedCmd_len
>= 3 && receivedCmd_len
<= 6 && (receivedCmd
[1] & 0x0f) == 0) {
720 // we can process only full-byte frame anti-collision procedure
721 if (memcmp(&receivedCmd
[2], responses
[uid_index
].response
, receivedCmd_len
- 2) == 0) {
722 // response missing part of UID via relative array index
723 EmSendPrecompiledCmd(&responses
[uid_index
+ receivedCmd_len
- 2]);
724 FpgaDisableTracing();
726 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("SELECT ANTICOLLISION - EmSendPrecompiledCmd(%02x)", &responses
[uid_index
]);
728 // IDLE, not our UID or split-byte frame anti-collision (not supports)
729 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
731 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
736 // Unknown selection procedure
737 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
739 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_SELECT] Unknown selection procedure");
746 if (g_dbglevel
>= DBG_EXTENDED
) {
747 // Dbprintf("[MFEMUL_WORK] Enter in case");
750 if (receivedCmd_len
== 0) {
751 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] NO CMD received");
755 encrypted_data
= (cardAUTHKEY
!= AUTHKEYNONE
);
756 if (encrypted_data
) {
758 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, receivedCmd_dec
);
759 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] Decrypt sequence");
762 memcpy(receivedCmd_dec
, receivedCmd
, receivedCmd_len
);
765 // all commands must have a valid CRC
766 if (CheckCrc14A(receivedCmd_dec
, receivedCmd_len
) == false) {
767 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
768 FpgaDisableTracing();
770 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec
, receivedCmd_len
);
774 if (receivedCmd_len
== 4 && (receivedCmd_dec
[0] == MIFARE_AUTH_KEYA
|| receivedCmd_dec
[0] == MIFARE_AUTH_KEYB
)) {
776 // Reader asks for AUTH: 6X XX
777 // RCV: 60 XX => Using KEY A
778 // RCV: 61 XX => Using KEY B
781 authTimer
= GetTickCount();
783 // received block num -> sector
785 // 4K tags have 16 blocks per sector 32..39
786 cardAUTHSC
= MifareBlockToSector(receivedCmd_dec
[1]);
788 // cardAUTHKEY: 60 => Auth use Key A
789 // cardAUTHKEY: 61 => Auth use Key B
790 cardAUTHKEY
= receivedCmd_dec
[0] & 0x01;
792 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] KEY %c: %012" PRIx64
, (cardAUTHKEY
== 0) ? 'A' : 'B', emlGetKey(cardAUTHSC
, cardAUTHKEY
));
794 // first authentication
797 // Load key into crypto
798 crypto1_init(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
800 if (!encrypted_data
) {
801 // Receive Cmd in clear txt
802 // Update crypto state (UID ^ NONCE)
803 crypto1_word(pcs
, cuid
^ nonce
, 0);
804 // rAUTH_NT contains prepared nonce for authenticate
805 EmSendCmd(rAUTH_NT
, sizeof(rAUTH_NT
));
806 FpgaDisableTracing();
808 if (g_dbglevel
>= DBG_EXTENDED
) {
809 Dbprintf("[MFEMUL_WORK] Reader authenticating for block %d (0x%02x) with key %c - nonce: %08X - cuid: %08X",
812 (cardAUTHKEY
== 0) ? 'A' : 'B',
818 // nested authentication
820 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
821 num_to_bytes(ans, 4, rAUTH_AT);
823 // rAUTH_NT, rAUTH_NT_keystream contains prepared nonce and keystream for nested authentication
824 // we need calculate parity bits for non-encrypted sequence
825 mf_crypto1_encryptEx(pcs
, rAUTH_NT
, rAUTH_NT_keystream
, response
, 4, response_par
);
826 EmSendCmdPar(response
, 4, response_par
);
827 FpgaDisableTracing();
829 if (g_dbglevel
>= DBG_EXTENDED
) {
830 Dbprintf("[MFEMUL_WORK] Reader doing nested authentication for block %d (0x%02x) with key %c",
833 (cardAUTHKEY
== 0) ? 'A' : 'B'
838 cardSTATE
= MFEMUL_AUTH1
;
839 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_AUTH1 - rAUTH_NT: %02X", rAUTH_NT
);
843 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
844 // BUT... ACK --> NACK
845 if (receivedCmd_len
== 1 && receivedCmd_dec
[0] == CARD_ACK
) {
846 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
847 FpgaDisableTracing();
851 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
852 if (receivedCmd_len
== 1 && receivedCmd_dec
[0] == CARD_NACK_NA
) {
853 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_ACK
) : CARD_ACK
);
854 FpgaDisableTracing();
858 // case MFEMUL_WORK => if Cmd is Read, Write, Inc, Dec, Restore, Transfer
859 if (receivedCmd_len
== 4 && (receivedCmd_dec
[0] == ISO14443A_CMD_READBLOCK
860 || receivedCmd_dec
[0] == ISO14443A_CMD_WRITEBLOCK
861 || receivedCmd_dec
[0] == MIFARE_CMD_INC
862 || receivedCmd_dec
[0] == MIFARE_CMD_DEC
863 || receivedCmd_dec
[0] == MIFARE_CMD_RESTORE
864 || receivedCmd_dec
[0] == MIFARE_CMD_TRANSFER
)) {
865 // all other commands must be encrypted (authenticated)
866 if (!encrypted_data
) {
867 EmSend4bit(CARD_NACK_NA
);
868 FpgaDisableTracing();
870 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] Commands must be encrypted (authenticated)");
874 // iceman, u8 can never be larger the MIFARE_4K_MAXBLOCK (256)
875 // Check if Block num is not too far
877 if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) {
878 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
879 FpgaDisableTracing();
880 if (g_dbglevel >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
884 blockNo
= receivedCmd_dec
[1];
885 if (MifareBlockToSector(blockNo
) != cardAUTHSC
) {
886 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
887 FpgaDisableTracing();
889 if (g_dbglevel
>= DBG_ERROR
)
890 Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec
[0], receivedCmd_dec
[1], cardAUTHSC
);
894 // Compliance of MIFARE Classic EV1 1K Datasheet footnote of Table 8
895 // If access bits show that key B is Readable, any subsequent memory access will be refused.
897 if (cardAUTHKEY
== AUTHKEYB
&& IsKeyBReadable(blockNo
)) {
898 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
899 FpgaDisableTracing();
901 if (g_dbglevel
>= DBG_ERROR
)
902 Dbprintf("[MFEMUL_WORK] Access denied: Reader tried to access memory on authentication with key B while key B is readable in sector (0x%02x)", cardAUTHSC
);
907 // case MFEMUL_WORK => CMD READ block
908 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == ISO14443A_CMD_READBLOCK
) {
909 blockNo
= receivedCmd_dec
[1];
910 if (g_dbglevel
>= DBG_EXTENDED
)
911 Dbprintf("[MFEMUL_WORK] Reader reading block %d (0x%02x)", blockNo
, blockNo
);
913 // android CVE 2021_0430
914 // Simulate a MFC 1K, with a NDEF message.
915 // these values uses the standard LIBNFC NDEF message
917 // In short, first a value read of block 4,
918 // update the length byte before second read of block 4.
919 // on iphone etc there might even be 3 reads of block 4.
920 // fiddling with when to flip the byte or not, has different effects
921 if ((flags
& FLAG_CVE21_0430
) == FLAG_CVE21_0430
) {
926 p_em
+= blockNo
* 16;
927 // TLV in NDEF, flip length between
928 // 4 | 03 21 D1 02 1C 53 70 91 01 09 54 02 65 6E 4C 69
929 // 0xFF means long length
930 // 0xFE mean max short length
932 // We could also have a go at message len byte at p_em[4]...
933 if (p_em
[1] == 0x21 && cve_flipper
== 1) {
941 emlGetMem(response
, blockNo
, 1);
943 if (g_dbglevel
>= DBG_EXTENDED
) {
944 Dbprintf("[MFEMUL_WORK - ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo
,
945 response
[0], response
[1], response
[2], response
[3], response
[4], response
[5], response
[6],
946 response
[7], response
[8], response
[9], response
[10], response
[11], response
[12], response
[13],
947 response
[14], response
[15]);
950 // Access permission management:
960 // If permission is not allowed, data is cleared (00) in emulator memory.
961 // ex: a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5
964 // Check if selected Block is a Sector Trailer
965 if (IsSectorTrailer(blockNo
)) {
967 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_KEYA_READ
) == false) {
968 memset(response
, 0x00, 6); // keyA can never be read
969 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyA can never be read - block %d (0x%02x)", blockNo
, blockNo
);
971 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_KEYB_READ
) == false) {
972 memset(response
+ 10, 0x00, 6); // keyB cannot be read
973 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyB cannot be read - block %d (0x%02x)", blockNo
, blockNo
);
975 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_AC_READ
) == false) {
976 memset(response
+ 6, 0x00, 4); // AC bits cannot be read
977 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] AC bits cannot be read - block %d (0x%02x)", blockNo
, blockNo
);
980 if (IsAccessAllowed(blockNo
, cardAUTHKEY
, AC_DATA_READ
) == false) {
981 memset(response
, 0x00, 16); // datablock cannot be read
982 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] Data block %d (0x%02x) cannot be read", blockNo
, blockNo
);
985 AddCrc14A(response
, 16);
986 mf_crypto1_encrypt(pcs
, response
, MAX_MIFARE_FRAME_SIZE
, response_par
);
987 EmSendCmdPar(response
, MAX_MIFARE_FRAME_SIZE
, response_par
);
988 FpgaDisableTracing();
990 if (g_dbglevel
>= DBG_EXTENDED
) {
991 Dbprintf("[MFEMUL_WORK - EmSendCmdPar] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo
,
992 response
[0], response
[1], response
[2], response
[3], response
[4], response
[5], response
[6],
993 response
[7], response
[8], response
[9], response
[10], response
[11], response
[12], response
[13],
994 response
[14], response
[15]);
998 if (exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
999 Dbprintf("[MFEMUL_WORK] %d reads done, exiting", numReads
);
1004 } // End receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
1006 // case MFEMUL_WORK => CMD WRITEBLOCK
1007 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == ISO14443A_CMD_WRITEBLOCK
) {
1008 blockNo
= receivedCmd_dec
[1];
1009 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] RECV 0xA0 write block %d (%02x)", blockNo
, blockNo
);
1010 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
1011 FpgaDisableTracing();
1014 cardSTATE
= MFEMUL_WRITEBL2
;
1015 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_WRITEBL2");
1019 // case MFEMUL_WORK => CMD INC/DEC/REST
1020 if (receivedCmd_len
== 4 && (receivedCmd_dec
[0] == MIFARE_CMD_INC
|| receivedCmd_dec
[0] == MIFARE_CMD_DEC
|| receivedCmd_dec
[0] == MIFARE_CMD_RESTORE
)) {
1021 blockNo
= receivedCmd_dec
[1];
1022 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)", receivedCmd_dec
[0], blockNo
, blockNo
);
1023 if (emlCheckValBl(blockNo
) == false) {
1024 if (g_dbglevel
>= DBG_ERROR
) Dbprintf("[MFEMUL_WORK] Reader tried to operate on block, but emlCheckValBl failed, nacking");
1025 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1026 FpgaDisableTracing();
1029 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
1030 FpgaDisableTracing();
1034 if (receivedCmd_dec
[0] == MIFARE_CMD_INC
) {
1035 cardSTATE
= MFEMUL_INTREG_INC
;
1036 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_INC");
1040 if (receivedCmd_dec
[0] == MIFARE_CMD_DEC
) {
1041 cardSTATE
= MFEMUL_INTREG_DEC
;
1042 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_DEC");
1046 if (receivedCmd_dec
[0] == MIFARE_CMD_RESTORE
) {
1047 cardSTATE
= MFEMUL_INTREG_REST
;
1048 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_REST");
1052 } // End case MFEMUL_WORK => CMD INC/DEC/REST
1055 // case MFEMUL_WORK => CMD TRANSFER
1056 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == MIFARE_CMD_TRANSFER
) {
1057 blockNo
= receivedCmd_dec
[1];
1058 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WORK] RECV 0x%02x transfer block %d (%02x)", receivedCmd_dec
[0], blockNo
, blockNo
);
1059 emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd_dec
[1]);
1060 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
1061 FpgaDisableTracing();
1065 // case MFEMUL_WORK => CMD HALT
1066 if (receivedCmd_len
> 1 && receivedCmd_dec
[0] == ISO14443A_CMD_HALT
&& receivedCmd_dec
[1] == 0x00) {
1067 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1070 cardSTATE
= MFEMUL_HALTED
;
1071 cardAUTHKEY
= AUTHKEYNONE
;
1072 if (g_dbglevel
>= DBG_EXTENDED
) {
1073 Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_HALTED");
1078 // case MFEMUL_WORK => CMD RATS
1079 if (receivedCmd_len
== 4 && receivedCmd_dec
[0] == ISO14443A_CMD_RATS
&& (receivedCmd_dec
[1] & 0xF0) <= 0x80 && (receivedCmd_dec
[1] & 0x0F) <= 0x0e) {
1080 if (rats
&& rats_len
) {
1081 if (encrypted_data
) {
1082 memcpy(response
, rats
, rats_len
);
1083 mf_crypto1_encrypt(pcs
, response
, rats_len
, response_par
);
1084 EmSendCmdPar(response
, rats_len
, response_par
);
1086 EmSendCmd(rats
, rats_len
);
1088 FpgaDisableTracing();
1089 if (g_dbglevel
>= DBG_EXTENDED
)
1090 Dbprintf("[MFEMUL_WORK] RCV RATS => ACK");
1092 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
1093 FpgaDisableTracing();
1094 cardSTATE_TO_IDLE();
1095 if (g_dbglevel
>= DBG_EXTENDED
)
1096 Dbprintf("[MFEMUL_WORK] RCV RATS => NACK");
1101 // case MFEMUL_WORK => ISO14443A_CMD_NXP_DESELECT
1102 if (receivedCmd_len
== 3 && receivedCmd_dec
[0] == ISO14443A_CMD_NXP_DESELECT
) {
1103 if (rats
&& rats_len
) {
1104 // response back NXP_DESELECT
1105 if (encrypted_data
) {
1106 memcpy(response
, receivedCmd_dec
, receivedCmd_len
);
1107 mf_crypto1_encrypt(pcs
, response
, receivedCmd_len
, response_par
);
1108 EmSendCmdPar(response
, receivedCmd_len
, response_par
);
1110 EmSendCmd(receivedCmd_dec
, receivedCmd_len
);
1112 FpgaDisableTracing();
1113 if (g_dbglevel
>= DBG_EXTENDED
)
1114 Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => ACK");
1116 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
1117 FpgaDisableTracing();
1118 cardSTATE_TO_IDLE();
1119 if (g_dbglevel
>= DBG_EXTENDED
)
1120 Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => NACK");
1125 // case MFEMUL_WORK => command not allowed
1126 if (g_dbglevel
>= DBG_EXTENDED
)
1127 Dbprintf("Received command not allowed, nacking");
1128 EmSend4bit(encrypted_data
? mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
) : CARD_NACK_NA
);
1129 FpgaDisableTracing();
1134 case MFEMUL_AUTH1
: {
1135 if (g_dbglevel
>= DBG_EXTENDED
)
1136 Dbprintf("[MFEMUL_AUTH1] Enter case");
1138 if (receivedCmd_len
!= 8) {
1139 cardSTATE_TO_IDLE();
1140 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1141 if (g_dbglevel
>= DBG_EXTENDED
)
1142 Dbprintf("MFEMUL_AUTH1: receivedCmd_len != 8 (%d) => cardSTATE_TO_IDLE())", receivedCmd_len
);
1146 nr
= bytes_to_num(receivedCmd
, 4);
1147 ar
= bytes_to_num(&receivedCmd
[4], 4);
1149 // Collect AR/NR per keytype & sector
1150 if ((flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) {
1152 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
1153 if (ar_nr_collected
[i
+ mM
] == 0 ||
1155 (cardAUTHSC
== ar_nr_resp
[i
+ mM
].sector
) &&
1156 (cardAUTHKEY
== ar_nr_resp
[i
+ mM
].keytype
) &&
1157 (ar_nr_collected
[i
+ mM
] > 0)
1160 // if first auth for sector, or matches sector and keytype of previous auth
1161 if (ar_nr_collected
[i
+ mM
] < 2) {
1162 // if we haven't already collected 2 nonces for this sector
1163 if (ar_nr_resp
[ar_nr_collected
[i
+ mM
]].ar
!= ar
) {
1164 // Avoid duplicates... probably not necessary, ar should vary.
1165 if (ar_nr_collected
[i
+ mM
] == 0) {
1166 // first nonce collect
1167 ar_nr_resp
[i
+ mM
].cuid
= cuid
;
1168 ar_nr_resp
[i
+ mM
].sector
= cardAUTHSC
;
1169 ar_nr_resp
[i
+ mM
].keytype
= cardAUTHKEY
;
1170 ar_nr_resp
[i
+ mM
].nonce
= nonce
;
1171 ar_nr_resp
[i
+ mM
].nr
= nr
;
1172 ar_nr_resp
[i
+ mM
].ar
= ar
;
1174 // add this nonce to first moebius nonce
1175 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].cuid
= cuid
;
1176 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].sector
= cardAUTHSC
;
1177 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].keytype
= cardAUTHKEY
;
1178 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].nonce
= nonce
;
1179 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].nr
= nr
;
1180 ar_nr_resp
[i
+ ATTACK_KEY_COUNT
].ar
= ar
;
1181 ar_nr_collected
[i
+ ATTACK_KEY_COUNT
]++;
1182 } else { // second nonce collect (std and moebius)
1183 ar_nr_resp
[i
+ mM
].nonce2
= nonce
;
1184 ar_nr_resp
[i
+ mM
].nr2
= nr
;
1185 ar_nr_resp
[i
+ mM
].ar2
= ar
;
1187 if (!gettingMoebius
) {
1189 // check if this was the last second nonce we need for std attack
1190 if (nonce2_count
== nonce1_count
) {
1191 // done collecting std test switch to moebius
1192 // first finish incrementing last sample
1193 ar_nr_collected
[i
+ mM
]++;
1194 // switch to moebius collection
1195 gettingMoebius
= true;
1196 mM
= ATTACK_KEY_COUNT
;
1202 // if we've collected all the nonces we need - finish.
1203 if (nonce1_count
== moebius_n_count
)
1207 ar_nr_collected
[i
+ mM
]++;
1210 // we found right spot for this nonce stop looking
1217 crypto1_word(pcs
, nr
, 1);
1218 cardRr
= ar
^ crypto1_word(pcs
, 0, 0);
1221 if (cardRr
!= prng_successor(nonce
, 64)) {
1222 if (g_dbglevel
>= DBG_EXTENDED
) {
1223 Dbprintf("[MFEMUL_AUTH1] AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]"
1225 , (cardAUTHKEY
== 0) ? 'A' : 'B'
1229 , prng_successor(nonce
, 64)
1232 cardAUTHKEY
= AUTHKEYNONE
; // not authenticated
1233 cardSTATE_TO_IDLE();
1234 // Really tags not respond NACK on invalid authentication
1235 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1239 ans
= prng_successor(nonce
, 96);
1240 num_to_bytes(ans
, 4, response
);
1241 mf_crypto1_encrypt(pcs
, response
, 4, response_par
);
1242 EmSendCmdPar(response
, 4, response_par
);
1243 FpgaDisableTracing();
1245 if (g_dbglevel
>= DBG_EXTENDED
) {
1246 Dbprintf("[MFEMUL_AUTH1] AUTH COMPLETED for sector %d with key %c. time=%d",
1248 cardAUTHKEY
== 0 ? 'A' : 'B',
1249 GetTickCountDelta(authTimer
)
1253 cardSTATE
= MFEMUL_WORK
;
1254 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_AUTH1] cardSTATE = MFEMUL_WORK");
1259 case MFEMUL_WRITEBL2
: {
1260 if (receivedCmd_len
== MAX_MIFARE_FRAME_SIZE
) {
1261 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, receivedCmd_dec
);
1262 if (CheckCrc14A(receivedCmd_dec
, receivedCmd_len
)) {
1263 if (IsSectorTrailer(cardWRBL
)) {
1264 emlGetMem(response
, cardWRBL
, 1);
1265 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_KEYA_WRITE
)) {
1266 memcpy(receivedCmd_dec
, response
, 6); // don't change KeyA
1268 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_KEYB_WRITE
)) {
1269 memcpy(receivedCmd_dec
+ 10, response
+ 10, 6); // don't change KeyA
1271 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_AC_WRITE
)) {
1272 memcpy(receivedCmd_dec
+ 6, response
+ 6, 4); // don't change AC bits
1275 if (!IsAccessAllowed(cardWRBL
, cardAUTHKEY
, AC_DATA_WRITE
)) {
1276 memcpy(receivedCmd_dec
, response
, 16); // don't change anything
1279 emlSetMem_xt(receivedCmd_dec
, cardWRBL
, 1, 16);
1280 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
)); // always ACK?
1281 FpgaDisableTracing();
1283 cardSTATE
= MFEMUL_WORK
;
1284 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_WORK");
1288 cardSTATE_TO_IDLE();
1289 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_IDLE");
1290 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1295 case MFEMUL_INTREG_INC
: {
1296 if (receivedCmd_len
== 6) {
1297 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, (uint8_t *)&ans
);
1298 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
) != PM3_SUCCESS
) {
1299 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1300 FpgaDisableTracing();
1302 cardSTATE_TO_IDLE();
1305 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1306 cardINTREG
= cardINTREG
+ ans
;
1308 cardSTATE
= MFEMUL_WORK
;
1309 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_INTREG_INC] cardSTATE = MFEMUL_WORK");
1315 case MFEMUL_INTREG_DEC
: {
1316 if (receivedCmd_len
== 6) { // Data is encrypted
1318 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, (uint8_t *)&ans
);
1319 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
) != PM3_SUCCESS
) {
1320 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1321 FpgaDisableTracing();
1323 cardSTATE_TO_IDLE();
1327 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1328 cardINTREG
= cardINTREG
- ans
;
1329 cardSTATE
= MFEMUL_WORK
;
1330 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_INTREG_DEC] cardSTATE = MFEMUL_WORK");
1335 case MFEMUL_INTREG_REST
: {
1336 mf_crypto1_decryptEx(pcs
, receivedCmd
, receivedCmd_len
, (uint8_t *)&ans
);
1337 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
) != PM3_SUCCESS
) {
1338 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
1339 FpgaDisableTracing();
1341 cardSTATE_TO_IDLE();
1344 LogTrace(uart
->output
, uart
->len
, uart
->startTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->endTime
* 16 - DELAY_AIR2ARM_AS_TAG
, uart
->parity
, true);
1345 cardSTATE
= MFEMUL_WORK
;
1346 if (g_dbglevel
>= DBG_EXTENDED
) Dbprintf("[MFEMUL_INTREG_REST] cardSTATE = MFEMUL_WORK");
1350 } // End Switch Loop
1352 button_pushed
= BUTTON_PRESS();
1356 FpgaDisableTracing();
1360 if (((flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) && (g_dbglevel
>= DBG_INFO
)) {
1361 for (uint8_t i
= 0; i
< ATTACK_KEY_COUNT
; i
++) {
1362 if (ar_nr_collected
[i
] == 2) {
1363 Dbprintf("Collected two pairs of AR/NR which can be used to extract sector %d " _YELLOW_("%s")
1364 , ar_nr_resp
[i
].sector
1365 , (ar_nr_resp
[i
].keytype
== AUTHKEYA
) ? "key A" : "key B"
1367 Dbprintf("../tools/mfc/card_reader/mfkey32 %08x %08x %08x %08x %08x %08x",
1368 ar_nr_resp
[i
].cuid
, //UID
1369 ar_nr_resp
[i
].nonce
, //NT
1370 ar_nr_resp
[i
].nr
, //NR1
1371 ar_nr_resp
[i
].ar
, //AR1
1372 ar_nr_resp
[i
].nr2
, //NR2
1373 ar_nr_resp
[i
].ar2
//AR2
1380 for (uint8_t i
= ATTACK_KEY_COUNT
; i
< ATTACK_KEY_COUNT
* 2; i
++) {
1381 if (ar_nr_collected
[i
] == 2) {
1382 Dbprintf("Collected two pairs of AR/NR which can be used to extract sector %d " _YELLOW_("%s")
1383 , ar_nr_resp
[i
].sector
1384 , (ar_nr_resp
[i
].keytype
== AUTHKEYB
) ? "key A" : "key B"
1386 Dbprintf("../tools/mfc/card_reader/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
1387 ar_nr_resp
[i
].cuid
, //UID
1388 ar_nr_resp
[i
].nonce
, //NT
1389 ar_nr_resp
[i
].nr
, //NR1
1390 ar_nr_resp
[i
].ar
, //AR1
1391 ar_nr_resp
[i
].nonce2
,//NT2
1392 ar_nr_resp
[i
].nr2
, //NR2
1393 ar_nr_resp
[i
].ar2
//AR2
1398 if (g_dbglevel
>= DBG_ERROR
) {
1399 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
1402 if ((flags
& FLAG_INTERACTIVE
) == FLAG_INTERACTIVE
) { // Interactive mode flag, means we need to send ACK
1403 //Send the collected ar_nr in the response
1404 reply_mix(CMD_ACK
, CMD_HF_MIFARE_SIMULATE
, button_pushed
, 0, &ar_nr_resp
, sizeof(ar_nr_resp
));
1407 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1410 BigBuf_free_keep_EM();