Merge pull request #2616 from jmichelp/fix14b
[RRG-proxmark3.git] / armsrc / mifaresim.c
bloba10956d61128b1186d4da389506f1e95a97584f4
1 //-----------------------------------------------------------------------------
2 // Copyright (C) Gerhard de Koning Gans - May 2008
3 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
4 //
5 // This program is free software: you can redistribute it and/or modify
6 // it under the terms of the GNU General Public License as published by
7 // the Free Software Foundation, either version 3 of the License, or
8 // (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful,
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 // GNU General Public License for more details.
15 // See LICENSE.txt for the text of the license.
16 //-----------------------------------------------------------------------------
17 // Mifare Classic Card Simulation
18 //-----------------------------------------------------------------------------
20 // Verbose Mode:
21 // DBG_NONE 0
22 // DBG_ERROR 1
23 // DBG_INFO 2
24 // DBG_DEBUG 3
25 // DBG_EXTENDED 4
27 // /!\ Printing Debug message is disrupting emulation,
28 // Only use with caution during debugging
30 #include "mifaresim.h"
32 #include <inttypes.h>
34 #include "iso14443a.h"
35 #include "BigBuf.h"
36 #include "string.h"
37 #include "mifareutil.h"
38 #include "fpgaloader.h"
39 #include "proxmark3_arm.h"
40 #include "cmd.h"
41 #include "protocols.h"
42 #include "appmain.h"
43 #include "util.h"
44 #include "commonutil.h"
45 #include "crc16.h"
46 #include "dbprint.h"
47 #include "ticks.h"
48 #include "parity.h"
50 static bool IsKeyBReadable(uint8_t blockNo) {
51 uint8_t sector_trailer[16];
52 emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
53 uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
54 | ((sector_trailer[8] >> 2) & 0x02)
55 | ((sector_trailer[8] >> 7) & 0x01);
56 return (AC == 0x00 || AC == 0x01 || AC == 0x02);
59 static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
60 uint8_t sector_trailer[16];
61 emlGetMem(sector_trailer, blockNo, 1);
62 uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
63 | ((sector_trailer[8] >> 2) & 0x02)
64 | ((sector_trailer[8] >> 7) & 0x01);
65 switch (action) {
66 case AC_KEYA_READ: {
67 if (g_dbglevel >= DBG_EXTENDED)
68 Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ");
69 return false;
71 case AC_KEYA_WRITE: {
72 if (g_dbglevel >= DBG_EXTENDED)
73 Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE");
74 return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
75 || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
77 case AC_KEYB_READ: {
78 if (g_dbglevel >= DBG_EXTENDED)
79 Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ");
80 return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
82 case AC_KEYB_WRITE: {
83 if (g_dbglevel >= DBG_EXTENDED)
84 Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE");
85 return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
86 || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
88 case AC_AC_READ: {
89 if (g_dbglevel >= DBG_EXTENDED)
90 Dbprintf("IsTrailerAccessAllowed: AC_AC_READ");
91 return ((keytype == AUTHKEYA)
92 || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
94 case AC_AC_WRITE: {
95 if (g_dbglevel >= DBG_EXTENDED)
96 Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE");
97 return ((keytype == AUTHKEYA && (AC == 0x01))
98 || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
100 default:
101 return false;
105 static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
107 uint8_t sector_trailer[16];
108 emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
110 uint8_t sector_block;
111 if (blockNo <= MIFARE_2K_MAXBLOCK) {
112 sector_block = blockNo & 0x03;
113 } else {
114 sector_block = (blockNo & 0x0f) / 5;
117 uint8_t AC;
118 switch (sector_block) {
119 case 0x00: {
120 AC = ((sector_trailer[7] >> 2) & 0x04)
121 | ((sector_trailer[8] << 1) & 0x02)
122 | ((sector_trailer[8] >> 4) & 0x01);
123 if (g_dbglevel >= DBG_EXTENDED)
124 Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC);
125 break;
127 case 0x01: {
128 AC = ((sector_trailer[7] >> 3) & 0x04)
129 | ((sector_trailer[8] >> 0) & 0x02)
130 | ((sector_trailer[8] >> 5) & 0x01);
131 if (g_dbglevel >= DBG_EXTENDED)
132 Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC);
133 break;
135 case 0x02: {
136 AC = ((sector_trailer[7] >> 4) & 0x04)
137 | ((sector_trailer[8] >> 1) & 0x02)
138 | ((sector_trailer[8] >> 6) & 0x01);
139 if (g_dbglevel >= DBG_EXTENDED)
140 Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC);
141 break;
143 default:
144 if (g_dbglevel >= DBG_EXTENDED)
145 Dbprintf("IsDataAccessAllowed: Error");
146 return false;
149 switch (action) {
150 case AC_DATA_READ: {
151 if (g_dbglevel >= DBG_EXTENDED)
152 Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK");
153 return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
154 || (keytype == AUTHKEYB && !(AC == 0x07)));
156 case AC_DATA_WRITE: {
157 if (g_dbglevel >= DBG_EXTENDED)
158 Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK");
159 return ((keytype == AUTHKEYA && (AC == 0x00))
160 || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
162 case AC_DATA_INC: {
163 if (g_dbglevel >= DBG_EXTENDED)
164 Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK");
165 return ((keytype == AUTHKEYA && (AC == 0x00))
166 || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
168 case AC_DATA_DEC_TRANS_REST: {
169 if (g_dbglevel >= DBG_EXTENDED)
170 Dbprintf("AC_DATA_DEC_TRANS_REST: OK");
171 return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
172 || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
176 return false;
179 static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
180 if (IsSectorTrailer(blockNo)) {
181 return IsTrailerAccessAllowed(blockNo, keytype, action);
182 } else {
183 return IsDataAccessAllowed(blockNo, keytype, action);
187 static bool MifareSimInit(uint16_t flags, uint8_t *uid, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) {
189 uint8_t uid_tmp[10] = {0};
190 // SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf
191 // ATQA
192 static uint8_t rATQA_Mini[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID
193 static uint8_t rATQA_1k[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
194 static uint8_t rATQA_2k[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID
195 static uint8_t rATQA_4k[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID
197 // SAK
198 static uint8_t rSAK_Mini = 0x09; // mifare Mini
199 static uint8_t rSAK_1k = 0x08; // mifare 1k
200 static uint8_t rSAK_2k = 0x08; // mifare 2k with RATS support
201 static uint8_t rSAK_4k = 0x18; // mifare 4k
203 static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
204 static uint8_t rUIDBCC1b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes
205 static uint8_t rUIDBCC1b3[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes
206 static uint8_t rUIDBCC1b2[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes
207 static uint8_t rUIDBCC1b1[] = {0x00}; // UID 1st cascade level, last byte
208 static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
209 static uint8_t rUIDBCC2b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes
210 static uint8_t rUIDBCC2b3[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes
211 static uint8_t rUIDBCC2b2[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes
212 static uint8_t rUIDBCC2b1[] = {0x00}; // UID 2st cascade level, last byte
213 static uint8_t rUIDBCC3[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level
214 static uint8_t rUIDBCC3b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes
215 static uint8_t rUIDBCC3b3[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes
216 static uint8_t rUIDBCC3b2[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes
217 static uint8_t rUIDBCC3b1[] = {0x00}; // UID 3st cascade level, last byte
219 static uint8_t rATQA[] = {0x00, 0x00}; // Current ATQA
220 static uint8_t rSAK[] = {0x00, 0x00, 0x00}; // Current SAK, CRC
221 static uint8_t rSAKuid[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC
223 // RATS answer for 2K NXP mifare classic (with CRC)
224 static uint8_t rRATS[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3};
226 *uid_len = 0;
228 // By default use 1K tag
229 memcpy(rATQA, rATQA_1k, sizeof(rATQA));
230 rSAK[0] = rSAK_1k;
232 //by default RATS not supported
233 *rats_len = 0;
234 *rats = NULL;
236 // -- Determine the UID
237 // Can be set from emulator memory or incoming data
238 // Length: 4,7,or 10 bytes
240 if (IS_FLAG_UID_IN_EMUL(flags)) {
241 if (uid == NULL) {
242 uid = uid_tmp;
244 // Get UID, SAK, ATQA from EMUL
245 uint8_t block0[16];
246 emlGet(block0, 0, 16);
247 // Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA
248 if ((block0[0] ^ block0[1] ^ block0[2] ^ block0[3]) == block0[4] && (block0[6] & 0xc0) == 0) {
249 FLAG_SET_UID_IN_DATA(flags, 4);
250 memcpy(uid, block0, 4);
251 rSAK[0] = block0[5];
252 memcpy(rATQA, &block0[6], sizeof(rATQA));
254 // Check for 7 bytes UID: double size uid bits in ATQA
255 else if ((block0[8] & 0xc0) == 0x40) {
256 FLAG_SET_UID_IN_DATA(flags, 7);
257 memcpy(uid, block0, 7);
258 rSAK[0] = block0[7];
259 memcpy(rATQA, &block0[8], sizeof(rATQA));
260 } else {
261 Dbprintf("ERROR: " _RED_("Invalid dump. UID/SAK/ATQA not found"));
262 return false;
264 } else {
265 if (uid == NULL) {
266 Dbprintf("ERROR: " _RED_("Missing UID"));
267 return false;
271 // Tune tag type, if defined directly
272 // Otherwise use defined by default or extracted from EMUL
273 if (IS_FLAG_MF_SIZE(flags, MIFARE_MINI_MAX_BYTES)) {
274 memcpy(rATQA, rATQA_Mini, sizeof(rATQA));
275 rSAK[0] = rSAK_Mini;
276 if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare Mini ATQA/SAK");
277 } else if (IS_FLAG_MF_SIZE(flags, MIFARE_1K_MAX_BYTES)) {
278 memcpy(rATQA, rATQA_1k, sizeof(rATQA));
279 rSAK[0] = rSAK_1k;
280 if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 1K ATQA/SAK");
281 } else if (IS_FLAG_MF_SIZE(flags, MIFARE_2K_MAX_BYTES)) {
282 memcpy(rATQA, rATQA_2k, sizeof(rATQA));
283 rSAK[0] = rSAK_2k;
284 *rats = rRATS;
285 *rats_len = sizeof(rRATS);
286 if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 2K ATQA/SAK with RATS support");
287 } else if (IS_FLAG_MF_SIZE(flags, MIFARE_4K_MAX_BYTES)) {
288 memcpy(rATQA, rATQA_4k, sizeof(rATQA));
289 rSAK[0] = rSAK_4k;
290 if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 4K ATQA/SAK");
293 // Prepare UID arrays
294 if (IS_FLAG_UID_IN_DATA(flags, 4)) {
295 memcpy(rUIDBCC1, uid, 4);
296 *uid_len = 4;
297 // save CUID
298 *cuid = bytes_to_num(rUIDBCC1, 4);
299 // BCC
300 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
301 if (g_dbglevel >= DBG_EXTENDED)
302 Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X", flags, rUIDBCC1[4]);
303 if (g_dbglevel > DBG_NONE) {
304 Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
307 // Correct uid size bits in ATQA
308 rATQA[0] = (rATQA[0] & 0x3f); // single size uid
309 } else if (IS_FLAG_UID_IN_DATA(flags, 7)) {
310 memcpy(&rUIDBCC1[1], uid, 3);
311 memcpy(rUIDBCC2, uid + 3, 4);
312 *uid_len = 7;
313 // save CUID
314 *cuid = bytes_to_num(rUIDBCC2, 4);
315 // CascadeTag, CT
316 rUIDBCC1[0] = MIFARE_SELECT_CT;
317 // BCC
318 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
319 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
320 if (g_dbglevel >= DBG_EXTENDED)
321 Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X - BCC2: %02X", flags, rUIDBCC1[4], rUIDBCC2[4]);
322 if (g_dbglevel > DBG_NONE) {
323 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
324 rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]);
327 // Correct uid size bits in ATQA
328 rATQA[0] = (rATQA[0] & 0x3f) | 0x40; // double size uid
329 } else if (IS_FLAG_UID_IN_DATA(flags, 10)) {
330 memcpy(&rUIDBCC1[1], uid, 3);
331 memcpy(&rUIDBCC2[1], uid + 3, 3);
332 memcpy(rUIDBCC3, uid + 6, 4);
333 *uid_len = 10;
334 // save CUID
335 *cuid = bytes_to_num(rUIDBCC3, 4);
336 // CascadeTag, CT
337 rUIDBCC1[0] = MIFARE_SELECT_CT;
338 rUIDBCC2[0] = MIFARE_SELECT_CT;
339 // BCC
340 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
341 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
342 rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
343 if (g_dbglevel >= DBG_EXTENDED)
344 Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X - BCC2: %02X - BCC3: %02X", flags, rUIDBCC1[4], rUIDBCC2[4], rUIDBCC3[4]);
345 if (g_dbglevel > DBG_NONE) {
346 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
347 rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
348 rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3],
349 rUIDBCC3[0], rUIDBCC3[1], rUIDBCC3[2], rUIDBCC3[3]
353 // Correct uid size bits in ATQA
354 rATQA[0] = (rATQA[0] & 0x3f) | 0x80; // triple size uid
355 } else {
356 Dbprintf("ERROR: " _RED_("UID size not defined"));
357 return false;
359 if (flags & FLAG_ATQA_IN_DATA) {
360 rATQA[0] = atqa >> 8;
361 rATQA[1] = atqa & 0xff;
363 if (flags & FLAG_SAK_IN_DATA) {
364 rSAK[0] = sak;
366 if (g_dbglevel > DBG_NONE) {
367 Dbprintf("ATQA : %02X %02X", rATQA[1], rATQA[0]);
368 Dbprintf("SAK : %02X", rSAK[0]);
371 // clone UIDs for byte-frame anti-collision multiple tag selection procedure
372 memcpy(rUIDBCC1b4, &rUIDBCC1[1], 4);
373 memcpy(rUIDBCC1b3, &rUIDBCC1[2], 3);
374 memcpy(rUIDBCC1b2, &rUIDBCC1[3], 2);
375 memcpy(rUIDBCC1b1, &rUIDBCC1[4], 1);
376 if (*uid_len >= 7) {
377 memcpy(rUIDBCC2b4, &rUIDBCC2[1], 4);
378 memcpy(rUIDBCC2b3, &rUIDBCC2[2], 3);
379 memcpy(rUIDBCC2b2, &rUIDBCC2[3], 2);
380 memcpy(rUIDBCC2b1, &rUIDBCC2[4], 1);
382 if (*uid_len == 10) {
383 memcpy(rUIDBCC3b4, &rUIDBCC3[1], 4);
384 memcpy(rUIDBCC3b3, &rUIDBCC3[2], 3);
385 memcpy(rUIDBCC3b2, &rUIDBCC3[3], 2);
386 memcpy(rUIDBCC3b1, &rUIDBCC3[4], 1);
389 // Calculate actual CRC
390 AddCrc14A(rSAK, sizeof(rSAK) - 2);
392 #define TAG_RESPONSE_COUNT 18
393 static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
394 { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
395 { .response = rSAK, .response_n = sizeof(rSAK) }, //
396 { .response = rSAKuid, .response_n = sizeof(rSAKuid) }, //
397 // Do not reorder. Block used via relative index of rUIDBCC1
398 { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
399 { .response = rUIDBCC1b4, .response_n = sizeof(rUIDBCC1b4)},
400 { .response = rUIDBCC1b3, .response_n = sizeof(rUIDBCC1b3)},
401 { .response = rUIDBCC1b2, .response_n = sizeof(rUIDBCC1b2)},
402 { .response = rUIDBCC1b1, .response_n = sizeof(rUIDBCC1b1)},
403 // Do not reorder. Block used via relative index of rUIDBCC2
404 { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
405 { .response = rUIDBCC2b4, .response_n = sizeof(rUIDBCC2b4)},
406 { .response = rUIDBCC2b3, .response_n = sizeof(rUIDBCC2b3)},
407 { .response = rUIDBCC2b2, .response_n = sizeof(rUIDBCC2b2)},
408 { .response = rUIDBCC2b1, .response_n = sizeof(rUIDBCC2b1)},
409 // Do not reorder. Block used via relative index of rUIDBCC3
410 { .response = rUIDBCC3, .response_n = sizeof(rUIDBCC3) }, // Anticollision cascade3 - respond with 3th part of uid
411 { .response = rUIDBCC3b4, .response_n = sizeof(rUIDBCC3b4)},
412 { .response = rUIDBCC3b3, .response_n = sizeof(rUIDBCC3b3)},
413 { .response = rUIDBCC3b2, .response_n = sizeof(rUIDBCC3b2)},
414 { .response = rUIDBCC3b1, .response_n = sizeof(rUIDBCC3b1)}
417 // Prepare ("precompile") the responses of the anticollision phase.
418 // There will be not enough time to do this at the moment the reader sends its REQA or SELECT
419 // There are 18 predefined responses with a total of 53 bytes data to transmit.
420 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
421 // 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer
422 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571
424 uint8_t *free_buffer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
425 // modulation buffer pointer and current buffer free space size
426 uint8_t *free_buffer_pointer = free_buffer;
427 size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
429 for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) {
430 if (prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size) == false) {
431 Dbprintf("Not enough modulation buffer size, exit after %d elements", i);
432 return false;
436 *responses = responses_init;
438 // indices into responses array:
439 #define ATQA 0
440 #define SAK 1
441 #define SAKuid 2
442 #define UIDBCC1 3
443 #define UIDBCC2 8
444 #define UIDBCC3 13
446 return true;
450 *MIFARE 1K simulate.
452 *@param flags: See pm3_cmd.h for the full definitions
453 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
454 * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attempted)
456 void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *uid, uint16_t atqa, uint8_t sak) {
457 tag_response_info_t *responses;
458 uint8_t cardSTATE = MFEMUL_NOFIELD;
459 uint8_t uid_len = 0; // 4, 7, 10
460 uint32_t cuid = 0, selTimer = 0, authTimer = 0;
461 uint32_t nr, ar;
462 uint8_t blockNo;
463 bool encrypted_data;
465 uint8_t cardWRBL = 0;
466 uint8_t cardAUTHSC = 0;
467 uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication
468 uint32_t cardRr = 0;
469 uint32_t ans = 0;
470 uint32_t cardINTREG = 0;
471 uint8_t cardINTBLOCK = 0;
473 struct Crypto1State mpcs = {0, 0};
474 struct Crypto1State *pcs;
475 pcs = &mpcs;
477 uint32_t numReads = 0; //Counts numer of times reader reads a block
478 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
479 uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE] = {0x00};
480 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
481 uint16_t receivedCmd_len;
483 uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
484 uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
486 uint8_t *rats = NULL;
487 uint8_t rats_len = 0;
490 //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
491 // This will be used in the reader-only attack.
493 //allow collecting up to 16 sets of nonces to allow recovery of up to 16 keys
494 #define ATTACK_KEY_COUNT 16
495 nonces_t ar_nr_resp[ATTACK_KEY_COUNT]; // for moebius attack type
496 memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
498 // Authenticate response - nonce
499 uint8_t rAUTH_NT[4] = {0, 0, 0, 1};
500 uint8_t rAUTH_NT_keystream[4];
501 uint32_t nonce = 0;
503 const tUart14a *uart = GetUart14a();
505 // free eventually allocated BigBuf memory but keep Emulator Memory
506 BigBuf_free_keep_EM();
508 if (MifareSimInit(flags, uid, atqa, sak, &responses, &cuid, &uid_len, &rats, &rats_len) == false) {
509 BigBuf_free_keep_EM();
510 return;
513 // We need to listen to the high-frequency, peak-detected path.
514 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
516 // clear trace
517 clear_trace();
518 set_tracing(true);
519 LED_D_ON();
520 ResetSspClk();
522 uint8_t *p_em = BigBuf_get_EM_addr();
523 uint8_t cve_flipper = 0;
525 int counter = 0;
526 bool finished = false;
527 bool running_nested_auth_attack = false;
528 bool button_pushed = BUTTON_PRESS();
529 while ((button_pushed == false) && (finished == false)) {
531 WDT_HIT();
533 if (counter == 1000) {
534 if (data_available()) {
535 Dbprintf("----------- " _GREEN_("BREAKING") " ----------");
536 break;
538 counter = 0;
539 } else {
540 counter++;
544 // find reader field
545 if (cardSTATE == MFEMUL_NOFIELD) {
547 vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
549 if (vHf > MF_MINFIELDV) {
550 cardSTATE_TO_IDLE();
551 LED_A_ON();
553 button_pushed = BUTTON_PRESS();
554 continue;
558 FpgaEnableTracing();
559 //Now, get data
560 int res = EmGetCmd(receivedCmd, sizeof(receivedCmd), &receivedCmd_len, receivedCmd_par);
562 if (res == 2) { //Field is off!
563 //FpgaDisableTracing();
564 if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
565 p_em[1] = 0x21;
566 cve_flipper = 0;
568 LEDsoff();
569 cardSTATE = MFEMUL_NOFIELD;
570 if (g_dbglevel >= DBG_EXTENDED)
571 Dbprintf("cardSTATE = MFEMUL_NOFIELD");
572 continue;
573 } else if (res == 1) { // button pressed
574 FpgaDisableTracing();
575 button_pushed = true;
576 if (g_dbglevel >= DBG_EXTENDED)
577 Dbprintf("Button pressed");
578 break;
581 // WUPA in HALTED state or REQA or WUPA in any other state
582 if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
583 selTimer = GetTickCount();
584 if (g_dbglevel >= DBG_EXTENDED) {
585 //Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);");
587 EmSendPrecompiledCmd(&responses[ATQA]);
589 FpgaDisableTracing();
591 // init crypto block
592 crypto1_deinit(pcs);
593 cardAUTHKEY = AUTHKEYNONE;
594 nonce = prng_successor(selTimer, 32);
595 // prepare NT for nested authentication
596 num_to_bytes(nonce, 4, rAUTH_NT);
597 num_to_bytes(cuid ^ nonce, 4, rAUTH_NT_keystream);
599 LED_B_OFF();
600 LED_C_OFF();
601 cardSTATE = MFEMUL_SELECT;
603 if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
604 p_em[1] = 0x21;
605 cve_flipper = 0;
607 continue;
610 switch (cardSTATE) {
611 case MFEMUL_NOFIELD: {
612 if (g_dbglevel >= DBG_EXTENDED)
613 Dbprintf("MFEMUL_NOFIELD");
614 break;
616 case MFEMUL_HALTED: {
617 if (g_dbglevel >= DBG_EXTENDED)
618 Dbprintf("MFEMUL_HALTED");
619 break;
621 case MFEMUL_IDLE: {
622 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
623 if (g_dbglevel >= DBG_EXTENDED)
624 Dbprintf("MFEMUL_IDLE");
625 break;
628 // The anti-collision sequence, which is a mandatory part of the card activation sequence.
629 // It auto with 4-byte UID (= Single Size UID),
630 // 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID).
631 // For details see chapter 2 of AN10927.pdf
633 // This case is used for all Cascade Levels, because:
634 // 1) Any devices (under Android for example) after full select procedure completed,
635 // when UID is known, uses "fast-selection" method. In this case reader ignores
636 // first cascades and tries to select tag by last bytes of UID of last cascade
637 // 2) Any readers (like ACR122U) uses bit oriented anti-collision frames during selectin,
638 // same as multiple tags. For details see chapter 6.1.5.3 of ISO/IEC 14443-3
639 case MFEMUL_SELECT: {
640 int uid_index = -1;
641 // Extract cascade level
642 if (receivedCmd_len >= 2) {
643 switch (receivedCmd[0]) {
644 case ISO14443A_CMD_ANTICOLL_OR_SELECT:
645 uid_index = UIDBCC1;
646 break;
647 case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:
648 uid_index = UIDBCC2;
649 break;
650 case ISO14443A_CMD_ANTICOLL_OR_SELECT_3:
651 uid_index = UIDBCC3;
652 break;
655 if (uid_index < 0) {
656 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
657 cardSTATE_TO_IDLE();
658 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Incorrect cascade level received");
659 break;
662 // Incoming SELECT ALL for any cascade level
663 if (receivedCmd_len == 2 && receivedCmd[1] == 0x20) {
664 EmSendPrecompiledCmd(&responses[uid_index]);
665 FpgaDisableTracing();
667 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT ALL - EmSendPrecompiledCmd(%02x)", &responses[uid_index]);
668 break;
671 // Incoming SELECT CLx for any cascade level
672 if (receivedCmd_len == 9 && receivedCmd[1] == 0x70) {
673 if (memcmp(&receivedCmd[2], responses[uid_index].response, 4) == 0) {
674 bool cl_finished = (uid_len == 4 && uid_index == UIDBCC1) ||
675 (uid_len == 7 && uid_index == UIDBCC2) ||
676 (uid_len == 10 && uid_index == UIDBCC3);
677 EmSendPrecompiledCmd(&responses[cl_finished ? SAK : SAKuid]);
678 FpgaDisableTracing();
680 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT CLx %02x%02x%02x%02x received", receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5]);
681 if (cl_finished) {
682 LED_B_ON();
683 cardSTATE = MFEMUL_WORK;
684 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_WORK");
686 } else {
687 // IDLE, not our UID
688 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
689 cardSTATE_TO_IDLE();
690 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
692 break;
695 // Incoming anti-collision frame
696 // receivedCmd[1] indicates number of byte and bit collision, supports only for bit collision is zero
697 if (receivedCmd_len >= 3 && receivedCmd_len <= 6 && (receivedCmd[1] & 0x0f) == 0) {
698 // we can process only full-byte frame anti-collision procedure
699 if (memcmp(&receivedCmd[2], responses[uid_index].response, receivedCmd_len - 2) == 0) {
700 // response missing part of UID via relative array index
701 EmSendPrecompiledCmd(&responses[uid_index + receivedCmd_len - 2]);
702 FpgaDisableTracing();
704 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT ANTICOLLISION - EmSendPrecompiledCmd(%02x)", &responses[uid_index]);
705 } else {
706 // IDLE, not our UID or split-byte frame anti-collision (not supports)
707 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
708 cardSTATE_TO_IDLE();
709 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
711 break;
714 // Unknown selection procedure
715 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
716 cardSTATE_TO_IDLE();
717 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Unknown selection procedure");
718 break;
721 // WORK
722 case MFEMUL_WORK: {
724 if (g_dbglevel >= DBG_EXTENDED) {
725 // Dbprintf("[MFEMUL_WORK] Enter in case");
728 if (receivedCmd_len == 0) {
729 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] NO CMD received");
730 break;
733 encrypted_data = (cardAUTHKEY != AUTHKEYNONE);
734 if (encrypted_data) {
735 // decrypt seqence
736 mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
737 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Decrypt sequence");
738 } else {
739 // Data in clear
740 memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
743 // all commands must have a valid CRC
744 if (CheckCrc14A(receivedCmd_dec, receivedCmd_len) == false) {
745 EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
746 FpgaDisableTracing();
748 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec, receivedCmd_len);
749 break;
752 if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB)) {
754 // Reader asks for AUTH: 6X XX
755 // RCV: 60 XX => Using KEY A
756 // RCV: 61 XX => Using KEY B
757 // XX: Block number
759 authTimer = GetTickCount();
761 // received block num -> sector
762 // Example: 6X [00]
763 // 4K tags have 16 blocks per sector 32..39
764 cardAUTHSC = MifareBlockToSector(receivedCmd_dec[1]);
766 // cardAUTHKEY: 60 => Auth use Key A
767 // cardAUTHKEY: 61 => Auth use Key B
768 cardAUTHKEY = receivedCmd_dec[0] & 0x01;
770 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] KEY %c: %012" PRIx64, (cardAUTHKEY == 0) ? 'A' : 'B', emlGetKey(cardAUTHSC, cardAUTHKEY));
772 // first authentication
773 crypto1_deinit(pcs);
775 // Load key into crypto
776 crypto1_init(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
777 running_nested_auth_attack = false;
778 if (!encrypted_data) {
779 // Receive Cmd in clear txt
780 // Update crypto state (UID ^ NONCE)
781 crypto1_word(pcs, cuid ^ nonce, 0);
782 // rAUTH_NT contains prepared nonce for authenticate
783 EmSendCmd(rAUTH_NT, sizeof(rAUTH_NT));
784 FpgaDisableTracing();
786 if (g_dbglevel >= DBG_EXTENDED) {
787 Dbprintf("[MFEMUL_WORK] Reader authenticating for block %d (0x%02x) with key %c - nonce: %08X - cuid: %08X",
788 receivedCmd_dec[1],
789 receivedCmd_dec[1],
790 (cardAUTHKEY == 0) ? 'A' : 'B',
791 nonce,
792 cuid
795 } else {
796 // nested authentication
798 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
799 num_to_bytes(ans, 4, rAUTH_AT);
802 // if key not known and FLAG_NESTED_AUTH_ATTACK and we have nt/nt_enc/parity, send recorded nt_enc and parity
803 if ((flags & FLAG_NESTED_AUTH_ATTACK) == FLAG_NESTED_AUTH_ATTACK) {
804 if (emlGetKey(cardAUTHSC, cardAUTHKEY) == 0) {
805 uint8_t buf[16] = {0};
806 emlGetMem(buf, (CARD_MEMORY_RF08S_OFFSET / MIFARE_BLOCK_SIZE) + cardAUTHSC, 1);
807 if (buf[(cardAUTHKEY * 8) + 3] == 0xAA) { // extra check to tell we have nt/nt_enc/par_err
808 running_nested_auth_attack = true;
809 // nt
810 nonce = bytes_to_num(buf + (cardAUTHKEY * 8), 2);
811 nonce = nonce << 16 | prng_successor(nonce, 16);
812 // nt_enc
813 memcpy(response, buf + (cardAUTHKEY * 8) + 4, 4);
814 uint8_t nt_par_err = buf[(cardAUTHKEY * 8) + 2];
815 uint32_t nt_enc = bytes_to_num(response, 4);
816 response_par[0] = ((((nt_par_err >> 3) & 1) ^ oddparity8((nt_enc >> 24) & 0xFF)) << 7 |
817 (((nt_par_err >> 2) & 1) ^ oddparity8((nt_enc >> 16) & 0xFF)) << 6 |
818 (((nt_par_err >> 1) & 1) ^ oddparity8((nt_enc >> 8) & 0xFF)) << 5 |
819 (((nt_par_err >> 0) & 1) ^ oddparity8((nt_enc >> 0) & 0xFF)) << 4);
820 ar_nr_resp[0].cuid = cuid;
821 ar_nr_resp[0].sector = cardAUTHSC;
822 ar_nr_resp[0].keytype = cardAUTHKEY;
823 ar_nr_resp[0].nonce = nonce;
824 ar_nr_resp[0].nonce2 = nt_enc;
828 if (running_nested_auth_attack == false) {
829 // rAUTH_NT, rAUTH_NT_keystream contains prepared nonce and keystream for nested authentication
830 // we need calculate parity bits for non-encrypted sequence
831 mf_crypto1_encryptEx(pcs, rAUTH_NT, rAUTH_NT_keystream, response, 4, response_par);
833 EmSendCmdPar(response, 4, response_par);
834 FpgaDisableTracing();
836 if (g_dbglevel >= DBG_EXTENDED) {
837 Dbprintf("[MFEMUL_WORK] Reader doing nested authentication for block %d (0x%02x) with key %c",
838 receivedCmd_dec[1],
839 receivedCmd_dec[1],
840 (cardAUTHKEY == 0) ? 'A' : 'B'
845 cardSTATE = MFEMUL_AUTH1;
846 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_AUTH1 - rAUTH_NT: %02X", rAUTH_NT);
847 break;
850 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
851 // BUT... ACK --> NACK
852 if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_ACK) {
853 EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
854 FpgaDisableTracing();
855 break;
858 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
859 if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_NACK_NA) {
860 EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_ACK) : CARD_ACK);
861 FpgaDisableTracing();
862 break;
865 // case MFEMUL_WORK => if Cmd is Read, Write, Inc, Dec, Restore, Transfer
866 if (receivedCmd_len == 4 && (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
867 || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
868 || receivedCmd_dec[0] == MIFARE_CMD_INC
869 || receivedCmd_dec[0] == MIFARE_CMD_DEC
870 || receivedCmd_dec[0] == MIFARE_CMD_RESTORE
871 || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER)) {
872 // all other commands must be encrypted (authenticated)
873 if (!encrypted_data) {
874 EmSend4bit(CARD_NACK_NA);
875 FpgaDisableTracing();
877 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Commands must be encrypted (authenticated)");
878 break;
881 // iceman, u8 can never be larger the MIFARE_4K_MAXBLOCK (256)
882 // Check if Block num is not too far
884 if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) {
885 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
886 FpgaDisableTracing();
887 if (g_dbglevel >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
888 break;
891 blockNo = receivedCmd_dec[1];
892 if (MifareBlockToSector(blockNo) != cardAUTHSC) {
893 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
894 FpgaDisableTracing();
896 if (g_dbglevel >= DBG_ERROR)
897 Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], cardAUTHSC);
898 break;
901 // Compliance of MIFARE Classic EV1 1K Datasheet footnote of Table 8
902 // If access bits show that key B is Readable, any subsequent memory access will be refused.
903 // Some cards don't respect it so we can also skip it with FLAG_MF_USE_READ_KEYB
904 if ((flags & FLAG_MF_USE_READ_KEYB) != FLAG_MF_USE_READ_KEYB) {
905 if (cardAUTHKEY == AUTHKEYB && IsKeyBReadable(blockNo)) {
906 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
907 FpgaDisableTracing();
909 if (g_dbglevel >= DBG_ERROR)
910 Dbprintf("[MFEMUL_WORK] Access denied: Reader tried to access memory on authentication with key B while key B is readable in sector (0x%02x)", cardAUTHSC);
911 break;
916 // case MFEMUL_WORK => CMD READ block
917 if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
918 blockNo = receivedCmd_dec[1];
919 if (g_dbglevel >= DBG_EXTENDED)
920 Dbprintf("[MFEMUL_WORK] Reader reading block %d (0x%02x)", blockNo, blockNo);
922 // android CVE 2021_0430
923 // Simulate a MFC 1K, with a NDEF message.
924 // these values uses the standard LIBNFC NDEF message
926 // In short, first a value read of block 4,
927 // update the length byte before second read of block 4.
928 // on iphone etc there might even be 3 reads of block 4.
929 // fiddling with when to flip the byte or not, has different effects
930 if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
932 // first block
933 if (blockNo == 4) {
935 p_em += blockNo * 16;
936 // TLV in NDEF, flip length between
937 // 4 | 03 21 D1 02 1C 53 70 91 01 09 54 02 65 6E 4C 69
938 // 0xFF means long length
939 // 0xFE mean max short length
941 // We could also have a go at message len byte at p_em[4]...
942 if (p_em[1] == 0x21 && cve_flipper == 1) {
943 p_em[1] = 0xFE;
944 } else {
945 cve_flipper++;
950 emlGetMem(response, blockNo, 1);
952 if (g_dbglevel >= DBG_EXTENDED) {
953 Dbprintf("[MFEMUL_WORK - ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo,
954 response[0], response[1], response[2], response[3], response[4], response[5], response[6],
955 response[7], response[8], response[9], response[10], response[11], response[12], response[13],
956 response[14], response[15]);
959 // Access permission management:
961 // Sector Trailer:
962 // - KEY A access
963 // - KEY B access
964 // - AC bits access
966 // Data block:
967 // - Data access
969 // If permission is not allowed, data is cleared (00) in emulator memory.
970 // ex: a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5
973 // Check if selected Block is a Sector Trailer
974 if (IsSectorTrailer(blockNo)) {
976 if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYA_READ) == false) {
977 memset(response, 0x00, 6); // keyA can never be read
978 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyA can never be read - block %d (0x%02x)", blockNo, blockNo);
980 if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ) == false) {
981 memset(response + 10, 0x00, 6); // keyB cannot be read
982 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyB cannot be read - block %d (0x%02x)", blockNo, blockNo);
984 if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ) == false) {
985 memset(response + 6, 0x00, 4); // AC bits cannot be read
986 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] AC bits cannot be read - block %d (0x%02x)", blockNo, blockNo);
988 } else {
989 if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ) == false) {
990 memset(response, 0x00, 16); // datablock cannot be read
991 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] Data block %d (0x%02x) cannot be read", blockNo, blockNo);
994 AddCrc14A(response, 16);
995 mf_crypto1_encrypt(pcs, response, MAX_MIFARE_FRAME_SIZE, response_par);
996 EmSendCmdPar(response, MAX_MIFARE_FRAME_SIZE, response_par);
997 FpgaDisableTracing();
999 if (g_dbglevel >= DBG_EXTENDED) {
1000 Dbprintf("[MFEMUL_WORK - EmSendCmdPar] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo,
1001 response[0], response[1], response[2], response[3], response[4], response[5], response[6],
1002 response[7], response[8], response[9], response[10], response[11], response[12], response[13],
1003 response[14], response[15]);
1005 numReads++;
1007 if (exitAfterNReads > 0 && numReads == exitAfterNReads) {
1008 Dbprintf("[MFEMUL_WORK] %d reads done, exiting", numReads);
1009 finished = true;
1011 break;
1013 } // End receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
1015 // case MFEMUL_WORK => CMD WRITEBLOCK
1016 if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
1017 blockNo = receivedCmd_dec[1];
1018 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
1019 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
1020 FpgaDisableTracing();
1022 cardWRBL = blockNo;
1023 cardSTATE = MFEMUL_WRITEBL2;
1024 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_WRITEBL2");
1025 break;
1028 // case MFEMUL_WORK => CMD INC/DEC/REST
1029 if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE)) {
1030 blockNo = receivedCmd_dec[1];
1031 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo);
1032 if (emlCheckValBl(blockNo) == false) {
1033 if (g_dbglevel >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate on block, but emlCheckValBl failed, nacking");
1034 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
1035 FpgaDisableTracing();
1036 break;
1038 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
1039 FpgaDisableTracing();
1040 cardWRBL = blockNo;
1042 // INC
1043 if (receivedCmd_dec[0] == MIFARE_CMD_INC) {
1044 cardSTATE = MFEMUL_INTREG_INC;
1045 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_INC");
1048 // DEC
1049 if (receivedCmd_dec[0] == MIFARE_CMD_DEC) {
1050 cardSTATE = MFEMUL_INTREG_DEC;
1051 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_DEC");
1054 // REST
1055 if (receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
1056 cardSTATE = MFEMUL_INTREG_REST;
1057 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_REST");
1059 break;
1061 } // End case MFEMUL_WORK => CMD INC/DEC/REST
1064 // case MFEMUL_WORK => CMD TRANSFER
1065 if (receivedCmd_len == 4 && receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
1066 blockNo = receivedCmd_dec[1];
1067 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0x%02x transfer block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo);
1068 emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]);
1069 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
1070 FpgaDisableTracing();
1071 break;
1074 // case MFEMUL_WORK => CMD HALT
1075 if (receivedCmd_len > 1 && receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
1076 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1077 LED_B_OFF();
1078 LED_C_OFF();
1079 cardSTATE = MFEMUL_HALTED;
1080 cardAUTHKEY = AUTHKEYNONE;
1081 if (g_dbglevel >= DBG_EXTENDED) {
1082 Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_HALTED");
1084 break;
1087 // case MFEMUL_WORK => CMD RATS
1088 if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_RATS && (receivedCmd_dec[1] & 0xF0) <= 0x80 && (receivedCmd_dec[1] & 0x0F) <= 0x0e) {
1089 if (rats && rats_len) {
1090 if (encrypted_data) {
1091 memcpy(response, rats, rats_len);
1092 mf_crypto1_encrypt(pcs, response, rats_len, response_par);
1093 EmSendCmdPar(response, rats_len, response_par);
1094 } else {
1095 EmSendCmd(rats, rats_len);
1097 FpgaDisableTracing();
1098 if (g_dbglevel >= DBG_EXTENDED)
1099 Dbprintf("[MFEMUL_WORK] RCV RATS => ACK");
1100 } else {
1101 EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
1102 FpgaDisableTracing();
1103 cardSTATE_TO_IDLE();
1104 if (g_dbglevel >= DBG_EXTENDED)
1105 Dbprintf("[MFEMUL_WORK] RCV RATS => NACK");
1107 break;
1110 // case MFEMUL_WORK => ISO14443A_CMD_NXP_DESELECT
1111 if (receivedCmd_len == 3 && receivedCmd_dec[0] == ISO14443A_CMD_NXP_DESELECT) {
1112 if (rats && rats_len) {
1113 // response back NXP_DESELECT
1114 if (encrypted_data) {
1115 memcpy(response, receivedCmd_dec, receivedCmd_len);
1116 mf_crypto1_encrypt(pcs, response, receivedCmd_len, response_par);
1117 EmSendCmdPar(response, receivedCmd_len, response_par);
1118 } else
1119 EmSendCmd(receivedCmd_dec, receivedCmd_len);
1121 FpgaDisableTracing();
1122 if (g_dbglevel >= DBG_EXTENDED)
1123 Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => ACK");
1124 } else {
1125 EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
1126 FpgaDisableTracing();
1127 cardSTATE_TO_IDLE();
1128 if (g_dbglevel >= DBG_EXTENDED)
1129 Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => NACK");
1131 break;
1134 // case MFEMUL_WORK => command not allowed
1135 if (g_dbglevel >= DBG_EXTENDED)
1136 Dbprintf("Received command not allowed, nacking");
1137 EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
1138 FpgaDisableTracing();
1139 break;
1142 // AUTH1
1143 case MFEMUL_AUTH1: {
1144 if (g_dbglevel >= DBG_EXTENDED)
1145 Dbprintf("[MFEMUL_AUTH1] Enter case");
1147 if (receivedCmd_len != 8) {
1148 cardSTATE_TO_IDLE();
1149 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1150 if (g_dbglevel >= DBG_EXTENDED)
1151 Dbprintf("MFEMUL_AUTH1: receivedCmd_len != 8 (%d) => cardSTATE_TO_IDLE())", receivedCmd_len);
1152 break;
1155 nr = bytes_to_num(receivedCmd, 4);
1156 ar = bytes_to_num(&receivedCmd[4], 4);
1158 // --- crypto
1159 crypto1_word(pcs, nr, 1);
1160 cardRr = ar ^ crypto1_word(pcs, 0, 0);
1162 // test if auth KO
1163 if (cardRr != prng_successor(nonce, 64)) {
1164 // Collect AR/NR per keytype & sector
1165 if (running_nested_auth_attack) {
1166 ar_nr_resp[0].nr = nr;
1167 ar_nr_resp[0].ar = ar;
1168 ar_nr_resp[0].state = NESTED;
1169 finished = true;
1171 if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) {
1173 for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
1174 if (ar_nr_resp[i].state == EMPTY ||
1176 (ar_nr_resp[i].state != EMPTY) &&
1177 (cardAUTHSC == ar_nr_resp[i].sector) &&
1178 (cardAUTHKEY == ar_nr_resp[i].keytype)
1181 // if first auth for sector, or matches sector and keytype of previous auth
1182 if (ar_nr_resp[i].state != SECOND) {
1183 // if we haven't already collected 2 nonces for this sector
1184 if (ar_nr_resp[i].state == EMPTY) {
1185 // first nonce collect
1186 ar_nr_resp[i].cuid = cuid;
1187 ar_nr_resp[i].sector = cardAUTHSC;
1188 ar_nr_resp[i].keytype = cardAUTHKEY;
1189 ar_nr_resp[i].nonce = nonce;
1190 ar_nr_resp[i].nr = nr;
1191 ar_nr_resp[i].ar = ar;
1192 ar_nr_resp[i].state = FIRST;
1193 } else { // second nonce collect
1194 // make sure we have different nonces for moebius attack
1195 if (ar_nr_resp[i].nonce != nonce) {
1196 ar_nr_resp[i].nonce2 = nonce;
1197 ar_nr_resp[i].nr2 = nr;
1198 ar_nr_resp[i].ar2 = ar;
1199 ar_nr_resp[i].state = SECOND;
1200 finished = true;
1204 // we found right spot for this nonce stop looking
1205 break;
1209 if (g_dbglevel >= DBG_EXTENDED) {
1210 Dbprintf("[MFEMUL_AUTH1] AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]"
1211 , cardAUTHSC
1212 , (cardAUTHKEY == 0) ? 'A' : 'B'
1213 , nr
1214 , cardRr
1215 , nonce // nt
1216 , prng_successor(nonce, 64)
1219 cardAUTHKEY = AUTHKEYNONE; // not authenticated
1220 cardSTATE_TO_IDLE();
1221 // Really tags not respond NACK on invalid authentication
1222 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1223 break;
1226 ans = prng_successor(nonce, 96);
1227 num_to_bytes(ans, 4, response);
1228 mf_crypto1_encrypt(pcs, response, 4, response_par);
1229 EmSendCmdPar(response, 4, response_par);
1230 FpgaDisableTracing();
1232 if (g_dbglevel >= DBG_EXTENDED) {
1233 Dbprintf("[MFEMUL_AUTH1] AUTH COMPLETED for sector %d with key %c. time=%d",
1234 cardAUTHSC,
1235 cardAUTHKEY == 0 ? 'A' : 'B',
1236 GetTickCountDelta(authTimer)
1239 LED_C_ON();
1240 cardSTATE = MFEMUL_WORK;
1241 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_AUTH1] cardSTATE = MFEMUL_WORK");
1242 break;
1245 // WRITE BL2
1246 case MFEMUL_WRITEBL2: {
1247 if (receivedCmd_len == MAX_MIFARE_FRAME_SIZE) {
1248 mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
1249 if (CheckCrc14A(receivedCmd_dec, receivedCmd_len)) {
1250 if (IsSectorTrailer(cardWRBL)) {
1251 emlGetMem(response, cardWRBL, 1);
1252 if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
1253 memcpy(receivedCmd_dec, response, 6); // don't change KeyA
1255 if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
1256 memcpy(receivedCmd_dec + 10, response + 10, 6); // don't change KeyA
1258 if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
1259 memcpy(receivedCmd_dec + 6, response + 6, 4); // don't change AC bits
1261 } else {
1262 if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
1263 memcpy(receivedCmd_dec, response, 16); // don't change anything
1266 emlSetMem_xt(receivedCmd_dec, cardWRBL, 1, 16);
1267 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK?
1268 FpgaDisableTracing();
1270 cardSTATE = MFEMUL_WORK;
1271 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_WORK");
1272 break;
1275 cardSTATE_TO_IDLE();
1276 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_IDLE");
1277 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1278 break;
1281 // INC
1282 case MFEMUL_INTREG_INC: {
1283 if (receivedCmd_len == 6) {
1284 mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans);
1285 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL) != PM3_SUCCESS) {
1286 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
1287 FpgaDisableTracing();
1289 cardSTATE_TO_IDLE();
1290 break;
1292 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1293 cardINTREG = cardINTREG + ans;
1295 cardSTATE = MFEMUL_WORK;
1296 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_INC] cardSTATE = MFEMUL_WORK");
1297 break;
1301 // DEC
1302 case MFEMUL_INTREG_DEC: {
1303 if (receivedCmd_len == 6) { // Data is encrypted
1304 // Decrypted cmd
1305 mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans);
1306 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL) != PM3_SUCCESS) {
1307 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
1308 FpgaDisableTracing();
1310 cardSTATE_TO_IDLE();
1311 break;
1314 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1315 cardINTREG = cardINTREG - ans;
1316 cardSTATE = MFEMUL_WORK;
1317 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_DEC] cardSTATE = MFEMUL_WORK");
1318 break;
1321 // REST
1322 case MFEMUL_INTREG_REST: {
1323 mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans);
1324 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL) != PM3_SUCCESS) {
1325 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
1326 FpgaDisableTracing();
1328 cardSTATE_TO_IDLE();
1329 break;
1331 LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
1332 cardSTATE = MFEMUL_WORK;
1333 if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_REST] cardSTATE = MFEMUL_WORK");
1334 break;
1337 } // End Switch Loop
1339 button_pushed = BUTTON_PRESS();
1341 } // End While Loop
1343 FpgaDisableTracing();
1345 uint8_t index = 0;
1346 if (running_nested_auth_attack) {
1347 if ((nonce_state)ar_nr_resp[0].state == NESTED) {
1348 running_nested_auth_attack = false;
1349 if (g_dbglevel >= DBG_INFO) {
1350 Dbprintf("Collected nested AR/NR which can be used to extract sector %d " _YELLOW_("%s")
1351 , ar_nr_resp[0].sector
1352 , (ar_nr_resp[0].keytype == AUTHKEYA) ? "key A" : "key B"
1354 Dbprintf("../tools/mfc/card_reader/mfkey32nested %08x %08x %08x %08x %08x",
1355 ar_nr_resp[0].cuid, //UID
1356 ar_nr_resp[0].nonce, //NT
1357 ar_nr_resp[0].nonce2,//NT_ENC
1358 ar_nr_resp[0].nr, //NR1
1359 ar_nr_resp[0].ar //AR1
1363 } else {
1364 // NR AR ATTACK
1365 if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) {
1366 for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
1367 if ((nonce_state)ar_nr_resp[i].state == SECOND) {
1368 index = i;
1369 if (g_dbglevel >= DBG_INFO) {
1370 Dbprintf("Collected two pairs of AR/NR which can be used to extract sector %d " _YELLOW_("%s")
1371 , ar_nr_resp[i].sector
1372 , (ar_nr_resp[i].keytype == AUTHKEYA) ? "key A" : "key B"
1374 Dbprintf("../tools/mfc/card_reader/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
1375 ar_nr_resp[i].cuid, //UID
1376 ar_nr_resp[i].nonce, //NT
1377 ar_nr_resp[i].nr, //NR1
1378 ar_nr_resp[i].ar, //AR1
1379 ar_nr_resp[i].nonce2,//NT2
1380 ar_nr_resp[i].nr2, //NR2
1381 ar_nr_resp[i].ar2 //AR2
1388 if (g_dbglevel >= DBG_ERROR) {
1389 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
1392 if ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
1393 //Send the collected ar_nr in the response
1394 reply_ng(CMD_HF_MIFARE_SIMULATE, button_pushed ? PM3_EOPABORTED : PM3_SUCCESS, (uint8_t *)&ar_nr_resp[index], sizeof(nonces_t));
1397 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1398 LEDsoff();
1399 set_tracing(false);
1400 BigBuf_free_keep_EM();