1 //-----------------------------------------------------------------------------
2 // Borrowed initially from https://github.com/holiman/loclass
3 // Copyright (C) 2014 Martin Holst Swende
4 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
6 // This program is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 // (at your option) any later version.
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // See LICENSE.txt for the text of the license.
17 //-----------------------------------------------------------------------------
20 // THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
22 // USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
23 // PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
24 // AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
26 // THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
27 //-----------------------------------------------------------------------------
28 // It is a reconstruction of the cipher engine used in iClass, and RFID techology.
30 // The implementation is based on the work performed by
31 // Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
32 // Milosch Meriac in the paper "Dismantling IClass".
33 //-----------------------------------------------------------------------------
34 #ifndef OPTIMIZED_CIPHER_H
35 #define OPTIMIZED_CIPHER_H
40 * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
41 * consisting of the following four components:
42 * 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
43 * 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
44 * 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
45 * 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
54 /** The reader MAC is MAC(key, CC * NR )
56 void opt_doReaderMAC(uint8_t *cc_nr_p
, uint8_t *div_key_p
, uint8_t mac
[4]);
58 void opt_doReaderMAC_2(State_t _init
, uint8_t *nr
, uint8_t mac
[4], const uint8_t *div_key_p
);
61 * The tag MAC is MAC(key, CC * NR * 32x0))
63 void opt_doTagMAC(uint8_t *cc_p
, const uint8_t *div_key_p
, uint8_t mac
[4]);
66 * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
67 * two functions, since the first 8 bytes are known, we can pre-calculate the state
68 * reached after feeding CC to the cipher.
71 * @return the cipher state
73 State_t
opt_doTagMAC_1(uint8_t *cc_p
, const uint8_t *div_key_p
);
75 * The second part of the tag MAC calculation, since the CC is already calculated into the state,
76 * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
78 * @param _init - precalculated cipher state
79 * @param nr - the reader challenge
80 * @param mac - where to store the MAC
81 * @param div_key_p - the key to use
83 void opt_doTagMAC_2(State_t _init
, uint8_t *nr
, uint8_t mac
[4], const uint8_t *div_key_p
);
85 void doMAC_N(uint8_t *in_p
, uint8_t in_size
, uint8_t *div_key_p
, uint8_t mac
[4]);
86 void iclass_calc_div_key(uint8_t *csn
, uint8_t *key
, uint8_t *div_key
, bool elite
);
87 #endif // OPTIMIZED_CIPHER_H