Adjust sourcize.c to use _snprintf if using MSVC.
[SquirrelJME.git] / nanocoat / lib / 3rdparty / lua / lgc.c
bloba3094ff571268496911c6cf2a973bb5f5a9893c9
1 /*
2 ** $Id: lgc.c $
3 ** Garbage Collector
4 ** See Copyright Notice in lua.h
5 */
7 #define lgc_c
8 #define LUA_CORE
10 #include "lprefix.h"
12 #include <stdio.h>
13 #include <string.h>
16 #include "lua.h"
18 #include "ldebug.h"
19 #include "ldo.h"
20 #include "lfunc.h"
21 #include "lgc.h"
22 #include "lmem.h"
23 #include "lobject.h"
24 #include "lstate.h"
25 #include "lstring.h"
26 #include "ltable.h"
27 #include "ltm.h"
31 ** Maximum number of elements to sweep in each single step.
32 ** (Large enough to dissipate fixed overheads but small enough
33 ** to allow small steps for the collector.)
35 #define GCSWEEPMAX 100
38 ** Maximum number of finalizers to call in each single step.
40 #define GCFINMAX 10
44 ** Cost of calling one finalizer.
46 #define GCFINALIZECOST 50
50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51 ** sweeping an object, etc.)
53 #define WORK2MEM sizeof(TValue)
57 ** macro to adjust 'pause': 'pause' is actually used like
58 ** 'pause / PAUSEADJ' (value chosen by tests)
60 #define PAUSEADJ 100
63 /* mask with all color bits */
64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
66 /* mask with all GC bits */
67 #define maskgcbits (maskcolors | AGEBITS)
70 /* macro to erase all color bits then set only the current white bit */
71 #define makewhite(g,x) \
72 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
74 /* make an object gray (neither white nor black) */
75 #define set2gray(x) resetbits(x->marked, maskcolors)
78 /* make an object black (coming from any color) */
79 #define set2black(x) \
80 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
89 ** Protected access to objects in values
91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
95 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
102 ** mark an object that can be NULL (either because it is really optional,
103 ** or it was stripped as debug info, or inside an uncompleted structure)
105 #define markobjectN(g,t) { if (t) markobject(g,t); }
107 static void reallymarkobject (global_State *g, GCObject *o);
108 static lu_mem atomic (lua_State *L);
109 static void entersweep (lua_State *L);
113 ** {======================================================
114 ** Generic functions
115 ** =======================================================
120 ** one after last element in a hash array
122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
125 static GCObject **getgclist (GCObject *o) {
126 switch (o->tt) {
127 case LUA_VTABLE: return &gco2t(o)->gclist;
128 case LUA_VLCL: return &gco2lcl(o)->gclist;
129 case LUA_VCCL: return &gco2ccl(o)->gclist;
130 case LUA_VTHREAD: return &gco2th(o)->gclist;
131 case LUA_VPROTO: return &gco2p(o)->gclist;
132 case LUA_VUSERDATA: {
133 Udata *u = gco2u(o);
134 lua_assert(u->nuvalue > 0);
135 return &u->gclist;
137 default: lua_assert(0); return 0;
143 ** Link a collectable object 'o' with a known type into the list 'p'.
144 ** (Must be a macro to access the 'gclist' field in different types.)
146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149 lua_assert(!isgray(o)); /* cannot be in a gray list */
150 *pnext = *list;
151 *list = o;
152 set2gray(o); /* now it is */
157 ** Link a generic collectable object 'o' into the list 'p'.
159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
164 ** Clear keys for empty entries in tables. If entry is empty, mark its
165 ** entry as dead. This allows the collection of the key, but keeps its
166 ** entry in the table: its removal could break a chain and could break
167 ** a table traversal. Other places never manipulate dead keys, because
168 ** its associated empty value is enough to signal that the entry is
169 ** logically empty.
171 static void clearkey (Node *n) {
172 lua_assert(isempty(gval(n)));
173 if (keyiscollectable(n))
174 setdeadkey(n); /* unused key; remove it */
179 ** tells whether a key or value can be cleared from a weak
180 ** table. Non-collectable objects are never removed from weak
181 ** tables. Strings behave as 'values', so are never removed too. for
182 ** other objects: if really collected, cannot keep them; for objects
183 ** being finalized, keep them in keys, but not in values
185 static int iscleared (global_State *g, const GCObject *o) {
186 if (o == NULL) return 0; /* non-collectable value */
187 else if (novariant(o->tt) == LUA_TSTRING) {
188 markobject(g, o); /* strings are 'values', so are never weak */
189 return 0;
191 else return iswhite(o);
196 ** Barrier that moves collector forward, that is, marks the white object
197 ** 'v' being pointed by the black object 'o'. In the generational
198 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
199 ** be changed directly to OLD, because it may still point to non-old
200 ** objects. So, it is marked as OLD0. In the next cycle it will become
201 ** OLD1, and in the next it will finally become OLD (regular old). By
202 ** then, any object it points to will also be old. If called in the
203 ** incremental sweep phase, it clears the black object to white (sweep
204 ** it) to avoid other barrier calls for this same object. (That cannot
205 ** be done is generational mode, as its sweep does not distinguish
206 ** whites from deads.)
208 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
209 global_State *g = G(L);
210 lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
211 if (keepinvariant(g)) { /* must keep invariant? */
212 reallymarkobject(g, v); /* restore invariant */
213 if (isold(o)) {
214 lua_assert(!isold(v)); /* white object could not be old */
215 setage(v, G_OLD0); /* restore generational invariant */
218 else { /* sweep phase */
219 lua_assert(issweepphase(g));
220 if (g->gckind == KGC_INC) /* incremental mode? */
221 makewhite(g, o); /* mark 'o' as white to avoid other barriers */
227 ** barrier that moves collector backward, that is, mark the black object
228 ** pointing to a white object as gray again.
230 void luaC_barrierback_ (lua_State *L, GCObject *o) {
231 global_State *g = G(L);
232 lua_assert(isblack(o) && !isdead(g, o));
233 lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
234 if (getage(o) == G_TOUCHED2) /* already in gray list? */
235 set2gray(o); /* make it gray to become touched1 */
236 else /* link it in 'grayagain' and paint it gray */
237 linkobjgclist(o, g->grayagain);
238 if (isold(o)) /* generational mode? */
239 setage(o, G_TOUCHED1); /* touched in current cycle */
243 void luaC_fix (lua_State *L, GCObject *o) {
244 global_State *g = G(L);
245 lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
246 set2gray(o); /* they will be gray forever */
247 setage(o, G_OLD); /* and old forever */
248 g->allgc = o->next; /* remove object from 'allgc' list */
249 o->next = g->fixedgc; /* link it to 'fixedgc' list */
250 g->fixedgc = o;
255 ** create a new collectable object (with given type, size, and offset)
256 ** and link it to 'allgc' list.
258 GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
259 global_State *g = G(L);
260 char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
261 GCObject *o = cast(GCObject *, p + offset);
262 o->marked = luaC_white(g);
263 o->tt = tt;
264 o->next = g->allgc;
265 g->allgc = o;
266 return o;
270 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
271 return luaC_newobjdt(L, tt, sz, 0);
274 /* }====================================================== */
279 ** {======================================================
280 ** Mark functions
281 ** =======================================================
286 ** Mark an object. Userdata with no user values, strings, and closed
287 ** upvalues are visited and turned black here. Open upvalues are
288 ** already indirectly linked through their respective threads in the
289 ** 'twups' list, so they don't go to the gray list; nevertheless, they
290 ** are kept gray to avoid barriers, as their values will be revisited
291 ** by the thread or by 'remarkupvals'. Other objects are added to the
292 ** gray list to be visited (and turned black) later. Both userdata and
293 ** upvalues can call this function recursively, but this recursion goes
294 ** for at most two levels: An upvalue cannot refer to another upvalue
295 ** (only closures can), and a userdata's metatable must be a table.
297 static void reallymarkobject (global_State *g, GCObject *o) {
298 switch (o->tt) {
299 case LUA_VSHRSTR:
300 case LUA_VLNGSTR: {
301 set2black(o); /* nothing to visit */
302 break;
304 case LUA_VUPVAL: {
305 UpVal *uv = gco2upv(o);
306 if (upisopen(uv))
307 set2gray(uv); /* open upvalues are kept gray */
308 else
309 set2black(uv); /* closed upvalues are visited here */
310 markvalue(g, uv->v.p); /* mark its content */
311 break;
313 case LUA_VUSERDATA: {
314 Udata *u = gco2u(o);
315 if (u->nuvalue == 0) { /* no user values? */
316 markobjectN(g, u->metatable); /* mark its metatable */
317 set2black(u); /* nothing else to mark */
318 break;
320 /* else... */
321 } /* FALLTHROUGH */
322 case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
323 case LUA_VTHREAD: case LUA_VPROTO: {
324 linkobjgclist(o, g->gray); /* to be visited later */
325 break;
327 default: lua_assert(0); break;
333 ** mark metamethods for basic types
335 static void markmt (global_State *g) {
336 int i;
337 for (i=0; i < LUA_NUMTAGS; i++)
338 markobjectN(g, g->mt[i]);
343 ** mark all objects in list of being-finalized
345 static lu_mem markbeingfnz (global_State *g) {
346 GCObject *o;
347 lu_mem count = 0;
348 for (o = g->tobefnz; o != NULL; o = o->next) {
349 count++;
350 markobject(g, o);
352 return count;
357 ** For each non-marked thread, simulates a barrier between each open
358 ** upvalue and its value. (If the thread is collected, the value will be
359 ** assigned to the upvalue, but then it can be too late for the barrier
360 ** to act. The "barrier" does not need to check colors: A non-marked
361 ** thread must be young; upvalues cannot be older than their threads; so
362 ** any visited upvalue must be young too.) Also removes the thread from
363 ** the list, as it was already visited. Removes also threads with no
364 ** upvalues, as they have nothing to be checked. (If the thread gets an
365 ** upvalue later, it will be linked in the list again.)
367 static int remarkupvals (global_State *g) {
368 lua_State *thread;
369 lua_State **p = &g->twups;
370 int work = 0; /* estimate of how much work was done here */
371 while ((thread = *p) != NULL) {
372 work++;
373 if (!iswhite(thread) && thread->openupval != NULL)
374 p = &thread->twups; /* keep marked thread with upvalues in the list */
375 else { /* thread is not marked or without upvalues */
376 UpVal *uv;
377 lua_assert(!isold(thread) || thread->openupval == NULL);
378 *p = thread->twups; /* remove thread from the list */
379 thread->twups = thread; /* mark that it is out of list */
380 for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
381 lua_assert(getage(uv) <= getage(thread));
382 work++;
383 if (!iswhite(uv)) { /* upvalue already visited? */
384 lua_assert(upisopen(uv) && isgray(uv));
385 markvalue(g, uv->v.p); /* mark its value */
390 return work;
394 static void cleargraylists (global_State *g) {
395 g->gray = g->grayagain = NULL;
396 g->weak = g->allweak = g->ephemeron = NULL;
401 ** mark root set and reset all gray lists, to start a new collection
403 static void restartcollection (global_State *g) {
404 cleargraylists(g);
405 markobject(g, g->mainthread);
406 markvalue(g, &g->l_registry);
407 markmt(g);
408 markbeingfnz(g); /* mark any finalizing object left from previous cycle */
411 /* }====================================================== */
415 ** {======================================================
416 ** Traverse functions
417 ** =======================================================
422 ** Check whether object 'o' should be kept in the 'grayagain' list for
423 ** post-processing by 'correctgraylist'. (It could put all old objects
424 ** in the list and leave all the work to 'correctgraylist', but it is
425 ** more efficient to avoid adding elements that will be removed.) Only
426 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
427 ** back to a gray list, but then it must become OLD. (That is what
428 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
430 static void genlink (global_State *g, GCObject *o) {
431 lua_assert(isblack(o));
432 if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */
433 linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */
434 } /* everything else do not need to be linked back */
435 else if (getage(o) == G_TOUCHED2)
436 changeage(o, G_TOUCHED2, G_OLD); /* advance age */
441 ** Traverse a table with weak values and link it to proper list. During
442 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
443 ** atomic phase. In the atomic phase, if table has any white value,
444 ** put it in 'weak' list, to be cleared.
446 static void traverseweakvalue (global_State *g, Table *h) {
447 Node *n, *limit = gnodelast(h);
448 /* if there is array part, assume it may have white values (it is not
449 worth traversing it now just to check) */
450 int hasclears = (h->alimit > 0);
451 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
452 if (isempty(gval(n))) /* entry is empty? */
453 clearkey(n); /* clear its key */
454 else {
455 lua_assert(!keyisnil(n));
456 markkey(g, n);
457 if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
458 hasclears = 1; /* table will have to be cleared */
461 if (g->gcstate == GCSatomic && hasclears)
462 linkgclist(h, g->weak); /* has to be cleared later */
463 else
464 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
469 ** Traverse an ephemeron table and link it to proper list. Returns true
470 ** iff any object was marked during this traversal (which implies that
471 ** convergence has to continue). During propagation phase, keep table
472 ** in 'grayagain' list, to be visited again in the atomic phase. In
473 ** the atomic phase, if table has any white->white entry, it has to
474 ** be revisited during ephemeron convergence (as that key may turn
475 ** black). Otherwise, if it has any white key, table has to be cleared
476 ** (in the atomic phase). In generational mode, some tables
477 ** must be kept in some gray list for post-processing; this is done
478 ** by 'genlink'.
480 static int traverseephemeron (global_State *g, Table *h, int inv) {
481 int marked = 0; /* true if an object is marked in this traversal */
482 int hasclears = 0; /* true if table has white keys */
483 int hasww = 0; /* true if table has entry "white-key -> white-value" */
484 unsigned int i;
485 unsigned int asize = luaH_realasize(h);
486 unsigned int nsize = sizenode(h);
487 /* traverse array part */
488 for (i = 0; i < asize; i++) {
489 if (valiswhite(&h->array[i])) {
490 marked = 1;
491 reallymarkobject(g, gcvalue(&h->array[i]));
494 /* traverse hash part; if 'inv', traverse descending
495 (see 'convergeephemerons') */
496 for (i = 0; i < nsize; i++) {
497 Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
498 if (isempty(gval(n))) /* entry is empty? */
499 clearkey(n); /* clear its key */
500 else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
501 hasclears = 1; /* table must be cleared */
502 if (valiswhite(gval(n))) /* value not marked yet? */
503 hasww = 1; /* white-white entry */
505 else if (valiswhite(gval(n))) { /* value not marked yet? */
506 marked = 1;
507 reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
510 /* link table into proper list */
511 if (g->gcstate == GCSpropagate)
512 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
513 else if (hasww) /* table has white->white entries? */
514 linkgclist(h, g->ephemeron); /* have to propagate again */
515 else if (hasclears) /* table has white keys? */
516 linkgclist(h, g->allweak); /* may have to clean white keys */
517 else
518 genlink(g, obj2gco(h)); /* check whether collector still needs to see it */
519 return marked;
523 static void traversestrongtable (global_State *g, Table *h) {
524 Node *n, *limit = gnodelast(h);
525 unsigned int i;
526 unsigned int asize = luaH_realasize(h);
527 for (i = 0; i < asize; i++) /* traverse array part */
528 markvalue(g, &h->array[i]);
529 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
530 if (isempty(gval(n))) /* entry is empty? */
531 clearkey(n); /* clear its key */
532 else {
533 lua_assert(!keyisnil(n));
534 markkey(g, n);
535 markvalue(g, gval(n));
538 genlink(g, obj2gco(h));
542 static lu_mem traversetable (global_State *g, Table *h) {
543 const char *weakkey, *weakvalue;
544 const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
545 markobjectN(g, h->metatable);
546 if (mode && ttisstring(mode) && /* is there a weak mode? */
547 (cast_void(weakkey = strchr(svalue(mode), 'k')),
548 cast_void(weakvalue = strchr(svalue(mode), 'v')),
549 (weakkey || weakvalue))) { /* is really weak? */
550 if (!weakkey) /* strong keys? */
551 traverseweakvalue(g, h);
552 else if (!weakvalue) /* strong values? */
553 traverseephemeron(g, h, 0);
554 else /* all weak */
555 linkgclist(h, g->allweak); /* nothing to traverse now */
557 else /* not weak */
558 traversestrongtable(g, h);
559 return 1 + h->alimit + 2 * allocsizenode(h);
563 static int traverseudata (global_State *g, Udata *u) {
564 int i;
565 markobjectN(g, u->metatable); /* mark its metatable */
566 for (i = 0; i < u->nuvalue; i++)
567 markvalue(g, &u->uv[i].uv);
568 genlink(g, obj2gco(u));
569 return 1 + u->nuvalue;
574 ** Traverse a prototype. (While a prototype is being build, its
575 ** arrays can be larger than needed; the extra slots are filled with
576 ** NULL, so the use of 'markobjectN')
578 static int traverseproto (global_State *g, Proto *f) {
579 int i;
580 markobjectN(g, f->source);
581 for (i = 0; i < f->sizek; i++) /* mark literals */
582 markvalue(g, &f->k[i]);
583 for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
584 markobjectN(g, f->upvalues[i].name);
585 for (i = 0; i < f->sizep; i++) /* mark nested protos */
586 markobjectN(g, f->p[i]);
587 for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
588 markobjectN(g, f->locvars[i].varname);
589 return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
593 static int traverseCclosure (global_State *g, CClosure *cl) {
594 int i;
595 for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
596 markvalue(g, &cl->upvalue[i]);
597 return 1 + cl->nupvalues;
601 ** Traverse a Lua closure, marking its prototype and its upvalues.
602 ** (Both can be NULL while closure is being created.)
604 static int traverseLclosure (global_State *g, LClosure *cl) {
605 int i;
606 markobjectN(g, cl->p); /* mark its prototype */
607 for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
608 UpVal *uv = cl->upvals[i];
609 markobjectN(g, uv); /* mark upvalue */
611 return 1 + cl->nupvalues;
616 ** Traverse a thread, marking the elements in the stack up to its top
617 ** and cleaning the rest of the stack in the final traversal. That
618 ** ensures that the entire stack have valid (non-dead) objects.
619 ** Threads have no barriers. In gen. mode, old threads must be visited
620 ** at every cycle, because they might point to young objects. In inc.
621 ** mode, the thread can still be modified before the end of the cycle,
622 ** and therefore it must be visited again in the atomic phase. To ensure
623 ** these visits, threads must return to a gray list if they are not new
624 ** (which can only happen in generational mode) or if the traverse is in
625 ** the propagate phase (which can only happen in incremental mode).
627 static int traversethread (global_State *g, lua_State *th) {
628 UpVal *uv;
629 StkId o = th->stack.p;
630 if (isold(th) || g->gcstate == GCSpropagate)
631 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
632 if (o == NULL)
633 return 1; /* stack not completely built yet */
634 lua_assert(g->gcstate == GCSatomic ||
635 th->openupval == NULL || isintwups(th));
636 for (; o < th->top.p; o++) /* mark live elements in the stack */
637 markvalue(g, s2v(o));
638 for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
639 markobject(g, uv); /* open upvalues cannot be collected */
640 if (g->gcstate == GCSatomic) { /* final traversal? */
641 for (; o < th->stack_last.p + EXTRA_STACK; o++)
642 setnilvalue(s2v(o)); /* clear dead stack slice */
643 /* 'remarkupvals' may have removed thread from 'twups' list */
644 if (!isintwups(th) && th->openupval != NULL) {
645 th->twups = g->twups; /* link it back to the list */
646 g->twups = th;
649 else if (!g->gcemergency)
650 luaD_shrinkstack(th); /* do not change stack in emergency cycle */
651 return 1 + stacksize(th);
656 ** traverse one gray object, turning it to black.
658 static lu_mem propagatemark (global_State *g) {
659 GCObject *o = g->gray;
660 nw2black(o);
661 g->gray = *getgclist(o); /* remove from 'gray' list */
662 switch (o->tt) {
663 case LUA_VTABLE: return traversetable(g, gco2t(o));
664 case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
665 case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
666 case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
667 case LUA_VPROTO: return traverseproto(g, gco2p(o));
668 case LUA_VTHREAD: return traversethread(g, gco2th(o));
669 default: lua_assert(0); return 0;
674 static lu_mem propagateall (global_State *g) {
675 lu_mem tot = 0;
676 while (g->gray)
677 tot += propagatemark(g);
678 return tot;
683 ** Traverse all ephemeron tables propagating marks from keys to values.
684 ** Repeat until it converges, that is, nothing new is marked. 'dir'
685 ** inverts the direction of the traversals, trying to speed up
686 ** convergence on chains in the same table.
689 static void convergeephemerons (global_State *g) {
690 int changed;
691 int dir = 0;
692 do {
693 GCObject *w;
694 GCObject *next = g->ephemeron; /* get ephemeron list */
695 g->ephemeron = NULL; /* tables may return to this list when traversed */
696 changed = 0;
697 while ((w = next) != NULL) { /* for each ephemeron table */
698 Table *h = gco2t(w);
699 next = h->gclist; /* list is rebuilt during loop */
700 nw2black(h); /* out of the list (for now) */
701 if (traverseephemeron(g, h, dir)) { /* marked some value? */
702 propagateall(g); /* propagate changes */
703 changed = 1; /* will have to revisit all ephemeron tables */
706 dir = !dir; /* invert direction next time */
707 } while (changed); /* repeat until no more changes */
710 /* }====================================================== */
714 ** {======================================================
715 ** Sweep Functions
716 ** =======================================================
721 ** clear entries with unmarked keys from all weaktables in list 'l'
723 static void clearbykeys (global_State *g, GCObject *l) {
724 for (; l; l = gco2t(l)->gclist) {
725 Table *h = gco2t(l);
726 Node *limit = gnodelast(h);
727 Node *n;
728 for (n = gnode(h, 0); n < limit; n++) {
729 if (iscleared(g, gckeyN(n))) /* unmarked key? */
730 setempty(gval(n)); /* remove entry */
731 if (isempty(gval(n))) /* is entry empty? */
732 clearkey(n); /* clear its key */
739 ** clear entries with unmarked values from all weaktables in list 'l' up
740 ** to element 'f'
742 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
743 for (; l != f; l = gco2t(l)->gclist) {
744 Table *h = gco2t(l);
745 Node *n, *limit = gnodelast(h);
746 unsigned int i;
747 unsigned int asize = luaH_realasize(h);
748 for (i = 0; i < asize; i++) {
749 TValue *o = &h->array[i];
750 if (iscleared(g, gcvalueN(o))) /* value was collected? */
751 setempty(o); /* remove entry */
753 for (n = gnode(h, 0); n < limit; n++) {
754 if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
755 setempty(gval(n)); /* remove entry */
756 if (isempty(gval(n))) /* is entry empty? */
757 clearkey(n); /* clear its key */
763 static void freeupval (lua_State *L, UpVal *uv) {
764 if (upisopen(uv))
765 luaF_unlinkupval(uv);
766 luaM_free(L, uv);
770 static void freeobj (lua_State *L, GCObject *o) {
771 switch (o->tt) {
772 case LUA_VPROTO:
773 luaF_freeproto(L, gco2p(o));
774 break;
775 case LUA_VUPVAL:
776 freeupval(L, gco2upv(o));
777 break;
778 case LUA_VLCL: {
779 LClosure *cl = gco2lcl(o);
780 luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
781 break;
783 case LUA_VCCL: {
784 CClosure *cl = gco2ccl(o);
785 luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
786 break;
788 case LUA_VTABLE:
789 luaH_free(L, gco2t(o));
790 break;
791 case LUA_VTHREAD:
792 luaE_freethread(L, gco2th(o));
793 break;
794 case LUA_VUSERDATA: {
795 Udata *u = gco2u(o);
796 luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
797 break;
799 case LUA_VSHRSTR: {
800 TString *ts = gco2ts(o);
801 luaS_remove(L, ts); /* remove it from hash table */
802 luaM_freemem(L, ts, sizelstring(ts->shrlen));
803 break;
805 case LUA_VLNGSTR: {
806 TString *ts = gco2ts(o);
807 luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
808 break;
810 default: lua_assert(0);
816 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
817 ** objects, where a dead object is one marked with the old (non current)
818 ** white; change all non-dead objects back to white, preparing for next
819 ** collection cycle. Return where to continue the traversal or NULL if
820 ** list is finished. ('*countout' gets the number of elements traversed.)
822 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
823 int *countout) {
824 global_State *g = G(L);
825 int ow = otherwhite(g);
826 int i;
827 int white = luaC_white(g); /* current white */
828 for (i = 0; *p != NULL && i < countin; i++) {
829 GCObject *curr = *p;
830 int marked = curr->marked;
831 if (isdeadm(ow, marked)) { /* is 'curr' dead? */
832 *p = curr->next; /* remove 'curr' from list */
833 freeobj(L, curr); /* erase 'curr' */
835 else { /* change mark to 'white' */
836 curr->marked = cast_byte((marked & ~maskgcbits) | white);
837 p = &curr->next; /* go to next element */
840 if (countout)
841 *countout = i; /* number of elements traversed */
842 return (*p == NULL) ? NULL : p;
847 ** sweep a list until a live object (or end of list)
849 static GCObject **sweeptolive (lua_State *L, GCObject **p) {
850 GCObject **old = p;
851 do {
852 p = sweeplist(L, p, 1, NULL);
853 } while (p == old);
854 return p;
857 /* }====================================================== */
861 ** {======================================================
862 ** Finalization
863 ** =======================================================
867 ** If possible, shrink string table.
869 static void checkSizes (lua_State *L, global_State *g) {
870 if (!g->gcemergency) {
871 if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */
872 l_mem olddebt = g->GCdebt;
873 luaS_resize(L, g->strt.size / 2);
874 g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
881 ** Get the next udata to be finalized from the 'tobefnz' list, and
882 ** link it back into the 'allgc' list.
884 static GCObject *udata2finalize (global_State *g) {
885 GCObject *o = g->tobefnz; /* get first element */
886 lua_assert(tofinalize(o));
887 g->tobefnz = o->next; /* remove it from 'tobefnz' list */
888 o->next = g->allgc; /* return it to 'allgc' list */
889 g->allgc = o;
890 resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
891 if (issweepphase(g))
892 makewhite(g, o); /* "sweep" object */
893 else if (getage(o) == G_OLD1)
894 g->firstold1 = o; /* it is the first OLD1 object in the list */
895 return o;
899 static void dothecall (lua_State *L, void *ud) {
900 UNUSED(ud);
901 luaD_callnoyield(L, L->top.p - 2, 0);
905 static void GCTM (lua_State *L) {
906 global_State *g = G(L);
907 const TValue *tm;
908 TValue v;
909 lua_assert(!g->gcemergency);
910 setgcovalue(L, &v, udata2finalize(g));
911 tm = luaT_gettmbyobj(L, &v, TM_GC);
912 if (!notm(tm)) { /* is there a finalizer? */
913 int status;
914 lu_byte oldah = L->allowhook;
915 int oldgcstp = g->gcstp;
916 g->gcstp |= GCSTPGC; /* avoid GC steps */
917 L->allowhook = 0; /* stop debug hooks during GC metamethod */
918 setobj2s(L, L->top.p++, tm); /* push finalizer... */
919 setobj2s(L, L->top.p++, &v); /* ... and its argument */
920 L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
921 status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
922 L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
923 L->allowhook = oldah; /* restore hooks */
924 g->gcstp = oldgcstp; /* restore state */
925 if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */
926 luaE_warnerror(L, "__gc");
927 L->top.p--; /* pops error object */
934 ** Call a few finalizers
936 static int runafewfinalizers (lua_State *L, int n) {
937 global_State *g = G(L);
938 int i;
939 for (i = 0; i < n && g->tobefnz; i++)
940 GCTM(L); /* call one finalizer */
941 return i;
946 ** call all pending finalizers
948 static void callallpendingfinalizers (lua_State *L) {
949 global_State *g = G(L);
950 while (g->tobefnz)
951 GCTM(L);
956 ** find last 'next' field in list 'p' list (to add elements in its end)
958 static GCObject **findlast (GCObject **p) {
959 while (*p != NULL)
960 p = &(*p)->next;
961 return p;
966 ** Move all unreachable objects (or 'all' objects) that need
967 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
968 ** (Note that objects after 'finobjold1' cannot be white, so they
969 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
970 ** so the whole list is traversed.)
972 static void separatetobefnz (global_State *g, int all) {
973 GCObject *curr;
974 GCObject **p = &g->finobj;
975 GCObject **lastnext = findlast(&g->tobefnz);
976 while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */
977 lua_assert(tofinalize(curr));
978 if (!(iswhite(curr) || all)) /* not being collected? */
979 p = &curr->next; /* don't bother with it */
980 else {
981 if (curr == g->finobjsur) /* removing 'finobjsur'? */
982 g->finobjsur = curr->next; /* correct it */
983 *p = curr->next; /* remove 'curr' from 'finobj' list */
984 curr->next = *lastnext; /* link at the end of 'tobefnz' list */
985 *lastnext = curr;
986 lastnext = &curr->next;
993 ** If pointer 'p' points to 'o', move it to the next element.
995 static void checkpointer (GCObject **p, GCObject *o) {
996 if (o == *p)
997 *p = o->next;
1002 ** Correct pointers to objects inside 'allgc' list when
1003 ** object 'o' is being removed from the list.
1005 static void correctpointers (global_State *g, GCObject *o) {
1006 checkpointer(&g->survival, o);
1007 checkpointer(&g->old1, o);
1008 checkpointer(&g->reallyold, o);
1009 checkpointer(&g->firstold1, o);
1014 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1015 ** search the list to find it) and link it in 'finobj' list.
1017 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1018 global_State *g = G(L);
1019 if (tofinalize(o) || /* obj. is already marked... */
1020 gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */
1021 (g->gcstp & GCSTPCLS)) /* or closing state? */
1022 return; /* nothing to be done */
1023 else { /* move 'o' to 'finobj' list */
1024 GCObject **p;
1025 if (issweepphase(g)) {
1026 makewhite(g, o); /* "sweep" object 'o' */
1027 if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
1028 g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
1030 else
1031 correctpointers(g, o);
1032 /* search for pointer pointing to 'o' */
1033 for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1034 *p = o->next; /* remove 'o' from 'allgc' list */
1035 o->next = g->finobj; /* link it in 'finobj' list */
1036 g->finobj = o;
1037 l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
1041 /* }====================================================== */
1045 ** {======================================================
1046 ** Generational Collector
1047 ** =======================================================
1052 ** Set the "time" to wait before starting a new GC cycle; cycle will
1053 ** start when memory use hits the threshold of ('estimate' * pause /
1054 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1055 ** because Lua cannot even start with less than PAUSEADJ bytes).
1057 static void setpause (global_State *g) {
1058 l_mem threshold, debt;
1059 int pause = getgcparam(g->gcpause);
1060 l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
1061 lua_assert(estimate > 0);
1062 threshold = (pause < MAX_LMEM / estimate) /* overflow? */
1063 ? estimate * pause /* no overflow */
1064 : MAX_LMEM; /* overflow; truncate to maximum */
1065 debt = gettotalbytes(g) - threshold;
1066 if (debt > 0) debt = 0;
1067 luaE_setdebt(g, debt);
1072 ** Sweep a list of objects to enter generational mode. Deletes dead
1073 ** objects and turns the non dead to old. All non-dead threads---which
1074 ** are now old---must be in a gray list. Everything else is not in a
1075 ** gray list. Open upvalues are also kept gray.
1077 static void sweep2old (lua_State *L, GCObject **p) {
1078 GCObject *curr;
1079 global_State *g = G(L);
1080 while ((curr = *p) != NULL) {
1081 if (iswhite(curr)) { /* is 'curr' dead? */
1082 lua_assert(isdead(g, curr));
1083 *p = curr->next; /* remove 'curr' from list */
1084 freeobj(L, curr); /* erase 'curr' */
1086 else { /* all surviving objects become old */
1087 setage(curr, G_OLD);
1088 if (curr->tt == LUA_VTHREAD) { /* threads must be watched */
1089 lua_State *th = gco2th(curr);
1090 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
1092 else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1093 set2gray(curr); /* open upvalues are always gray */
1094 else /* everything else is black */
1095 nw2black(curr);
1096 p = &curr->next; /* go to next element */
1103 ** Sweep for generational mode. Delete dead objects. (Because the
1104 ** collection is not incremental, there are no "new white" objects
1105 ** during the sweep. So, any white object must be dead.) For
1106 ** non-dead objects, advance their ages and clear the color of
1107 ** new objects. (Old objects keep their colors.)
1108 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1109 ** here, because these old-generation objects are usually not swept
1110 ** here. They will all be advanced in 'correctgraylist'. That function
1111 ** will also remove objects turned white here from any gray list.
1113 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1114 GCObject *limit, GCObject **pfirstold1) {
1115 static const lu_byte nextage[] = {
1116 G_SURVIVAL, /* from G_NEW */
1117 G_OLD1, /* from G_SURVIVAL */
1118 G_OLD1, /* from G_OLD0 */
1119 G_OLD, /* from G_OLD1 */
1120 G_OLD, /* from G_OLD (do not change) */
1121 G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
1122 G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
1124 int white = luaC_white(g);
1125 GCObject *curr;
1126 while ((curr = *p) != limit) {
1127 if (iswhite(curr)) { /* is 'curr' dead? */
1128 lua_assert(!isold(curr) && isdead(g, curr));
1129 *p = curr->next; /* remove 'curr' from list */
1130 freeobj(L, curr); /* erase 'curr' */
1132 else { /* correct mark and age */
1133 if (getage(curr) == G_NEW) { /* new objects go back to white */
1134 int marked = curr->marked & ~maskgcbits; /* erase GC bits */
1135 curr->marked = cast_byte(marked | G_SURVIVAL | white);
1137 else { /* all other objects will be old, and so keep their color */
1138 setage(curr, nextage[getage(curr)]);
1139 if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1140 *pfirstold1 = curr; /* first OLD1 object in the list */
1142 p = &curr->next; /* go to next element */
1145 return p;
1150 ** Traverse a list making all its elements white and clearing their
1151 ** age. In incremental mode, all objects are 'new' all the time,
1152 ** except for fixed strings (which are always old).
1154 static void whitelist (global_State *g, GCObject *p) {
1155 int white = luaC_white(g);
1156 for (; p != NULL; p = p->next)
1157 p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1162 ** Correct a list of gray objects. Return pointer to where rest of the
1163 ** list should be linked.
1164 ** Because this correction is done after sweeping, young objects might
1165 ** be turned white and still be in the list. They are only removed.
1166 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1167 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1168 ** regular old; they and anything else are removed from the list.
1170 static GCObject **correctgraylist (GCObject **p) {
1171 GCObject *curr;
1172 while ((curr = *p) != NULL) {
1173 GCObject **next = getgclist(curr);
1174 if (iswhite(curr))
1175 goto remove; /* remove all white objects */
1176 else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
1177 lua_assert(isgray(curr));
1178 nw2black(curr); /* make it black, for next barrier */
1179 changeage(curr, G_TOUCHED1, G_TOUCHED2);
1180 goto remain; /* keep it in the list and go to next element */
1182 else if (curr->tt == LUA_VTHREAD) {
1183 lua_assert(isgray(curr));
1184 goto remain; /* keep non-white threads on the list */
1186 else { /* everything else is removed */
1187 lua_assert(isold(curr)); /* young objects should be white here */
1188 if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */
1189 changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */
1190 nw2black(curr); /* make object black (to be removed) */
1191 goto remove;
1193 remove: *p = *next; continue;
1194 remain: p = next; continue;
1196 return p;
1201 ** Correct all gray lists, coalescing them into 'grayagain'.
1203 static void correctgraylists (global_State *g) {
1204 GCObject **list = correctgraylist(&g->grayagain);
1205 *list = g->weak; g->weak = NULL;
1206 list = correctgraylist(list);
1207 *list = g->allweak; g->allweak = NULL;
1208 list = correctgraylist(list);
1209 *list = g->ephemeron; g->ephemeron = NULL;
1210 correctgraylist(list);
1215 ** Mark black 'OLD1' objects when starting a new young collection.
1216 ** Gray objects are already in some gray list, and so will be visited
1217 ** in the atomic step.
1219 static void markold (global_State *g, GCObject *from, GCObject *to) {
1220 GCObject *p;
1221 for (p = from; p != to; p = p->next) {
1222 if (getage(p) == G_OLD1) {
1223 lua_assert(!iswhite(p));
1224 changeage(p, G_OLD1, G_OLD); /* now they are old */
1225 if (isblack(p))
1226 reallymarkobject(g, p);
1233 ** Finish a young-generation collection.
1235 static void finishgencycle (lua_State *L, global_State *g) {
1236 correctgraylists(g);
1237 checkSizes(L, g);
1238 g->gcstate = GCSpropagate; /* skip restart */
1239 if (!g->gcemergency)
1240 callallpendingfinalizers(L);
1245 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1246 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1247 ** finish the collection.
1249 static void youngcollection (lua_State *L, global_State *g) {
1250 GCObject **psurvival; /* to point to first non-dead survival object */
1251 GCObject *dummy; /* dummy out parameter to 'sweepgen' */
1252 lua_assert(g->gcstate == GCSpropagate);
1253 if (g->firstold1) { /* are there regular OLD1 objects? */
1254 markold(g, g->firstold1, g->reallyold); /* mark them */
1255 g->firstold1 = NULL; /* no more OLD1 objects (for now) */
1257 markold(g, g->finobj, g->finobjrold);
1258 markold(g, g->tobefnz, NULL);
1259 atomic(L);
1261 /* sweep nursery and get a pointer to its last live element */
1262 g->gcstate = GCSswpallgc;
1263 psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1264 /* sweep 'survival' */
1265 sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1266 g->reallyold = g->old1;
1267 g->old1 = *psurvival; /* 'survival' survivals are old now */
1268 g->survival = g->allgc; /* all news are survivals */
1270 /* repeat for 'finobj' lists */
1271 dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */
1272 psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1273 /* sweep 'survival' */
1274 sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1275 g->finobjrold = g->finobjold1;
1276 g->finobjold1 = *psurvival; /* 'survival' survivals are old now */
1277 g->finobjsur = g->finobj; /* all news are survivals */
1279 sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1280 finishgencycle(L, g);
1285 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1286 ** generational mode. The sweeps remove dead objects and turn all
1287 ** surviving objects to old. Threads go back to 'grayagain'; everything
1288 ** else is turned black (not in any gray list).
1290 static void atomic2gen (lua_State *L, global_State *g) {
1291 cleargraylists(g);
1292 /* sweep all elements making them old */
1293 g->gcstate = GCSswpallgc;
1294 sweep2old(L, &g->allgc);
1295 /* everything alive now is old */
1296 g->reallyold = g->old1 = g->survival = g->allgc;
1297 g->firstold1 = NULL; /* there are no OLD1 objects anywhere */
1299 /* repeat for 'finobj' lists */
1300 sweep2old(L, &g->finobj);
1301 g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1303 sweep2old(L, &g->tobefnz);
1305 g->gckind = KGC_GEN;
1306 g->lastatomic = 0;
1307 g->GCestimate = gettotalbytes(g); /* base for memory control */
1308 finishgencycle(L, g);
1313 ** Set debt for the next minor collection, which will happen when
1314 ** memory grows 'genminormul'%.
1316 static void setminordebt (global_State *g) {
1317 luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1322 ** Enter generational mode. Must go until the end of an atomic cycle
1323 ** to ensure that all objects are correctly marked and weak tables
1324 ** are cleared. Then, turn all objects into old and finishes the
1325 ** collection.
1327 static lu_mem entergen (lua_State *L, global_State *g) {
1328 lu_mem numobjs;
1329 luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
1330 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1331 numobjs = atomic(L); /* propagates all and then do the atomic stuff */
1332 atomic2gen(L, g);
1333 setminordebt(g); /* set debt assuming next cycle will be minor */
1334 return numobjs;
1339 ** Enter incremental mode. Turn all objects white, make all
1340 ** intermediate lists point to NULL (to avoid invalid pointers),
1341 ** and go to the pause state.
1343 static void enterinc (global_State *g) {
1344 whitelist(g, g->allgc);
1345 g->reallyold = g->old1 = g->survival = NULL;
1346 whitelist(g, g->finobj);
1347 whitelist(g, g->tobefnz);
1348 g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1349 g->gcstate = GCSpause;
1350 g->gckind = KGC_INC;
1351 g->lastatomic = 0;
1356 ** Change collector mode to 'newmode'.
1358 void luaC_changemode (lua_State *L, int newmode) {
1359 global_State *g = G(L);
1360 if (newmode != g->gckind) {
1361 if (newmode == KGC_GEN) /* entering generational mode? */
1362 entergen(L, g);
1363 else
1364 enterinc(g); /* entering incremental mode */
1366 g->lastatomic = 0;
1371 ** Does a full collection in generational mode.
1373 static lu_mem fullgen (lua_State *L, global_State *g) {
1374 enterinc(g);
1375 return entergen(L, g);
1380 ** Does a major collection after last collection was a "bad collection".
1382 ** When the program is building a big structure, it allocates lots of
1383 ** memory but generates very little garbage. In those scenarios,
1384 ** the generational mode just wastes time doing small collections, and
1385 ** major collections are frequently what we call a "bad collection", a
1386 ** collection that frees too few objects. To avoid the cost of switching
1387 ** between generational mode and the incremental mode needed for full
1388 ** (major) collections, the collector tries to stay in incremental mode
1389 ** after a bad collection, and to switch back to generational mode only
1390 ** after a "good" collection (one that traverses less than 9/8 objects
1391 ** of the previous one).
1392 ** The collector must choose whether to stay in incremental mode or to
1393 ** switch back to generational mode before sweeping. At this point, it
1394 ** does not know the real memory in use, so it cannot use memory to
1395 ** decide whether to return to generational mode. Instead, it uses the
1396 ** number of objects traversed (returned by 'atomic') as a proxy. The
1397 ** field 'g->lastatomic' keeps this count from the last collection.
1398 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1400 static void stepgenfull (lua_State *L, global_State *g) {
1401 lu_mem newatomic; /* count of traversed objects */
1402 lu_mem lastatomic = g->lastatomic; /* count from last collection */
1403 if (g->gckind == KGC_GEN) /* still in generational mode? */
1404 enterinc(g); /* enter incremental mode */
1405 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1406 newatomic = atomic(L); /* mark everybody */
1407 if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */
1408 atomic2gen(L, g); /* return to generational mode */
1409 setminordebt(g);
1411 else { /* another bad collection; stay in incremental mode */
1412 g->GCestimate = gettotalbytes(g); /* first estimate */;
1413 entersweep(L);
1414 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1415 setpause(g);
1416 g->lastatomic = newatomic;
1422 ** Does a generational "step".
1423 ** Usually, this means doing a minor collection and setting the debt to
1424 ** make another collection when memory grows 'genminormul'% larger.
1426 ** However, there are exceptions. If memory grows 'genmajormul'%
1427 ** larger than it was at the end of the last major collection (kept
1428 ** in 'g->GCestimate'), the function does a major collection. At the
1429 ** end, it checks whether the major collection was able to free a
1430 ** decent amount of memory (at least half the growth in memory since
1431 ** previous major collection). If so, the collector keeps its state,
1432 ** and the next collection will probably be minor again. Otherwise,
1433 ** we have what we call a "bad collection". In that case, set the field
1434 ** 'g->lastatomic' to signal that fact, so that the next collection will
1435 ** go to 'stepgenfull'.
1437 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1438 ** in that case, do a minor collection.
1440 static void genstep (lua_State *L, global_State *g) {
1441 if (g->lastatomic != 0) /* last collection was a bad one? */
1442 stepgenfull(L, g); /* do a full step */
1443 else {
1444 lu_mem majorbase = g->GCestimate; /* memory after last major collection */
1445 lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1446 if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1447 lu_mem numobjs = fullgen(L, g); /* do a major collection */
1448 if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1449 /* collected at least half of memory growth since last major
1450 collection; keep doing minor collections. */
1451 lua_assert(g->lastatomic == 0);
1453 else { /* bad collection */
1454 g->lastatomic = numobjs; /* signal that last collection was bad */
1455 setpause(g); /* do a long wait for next (major) collection */
1458 else { /* regular case; do a minor collection */
1459 youngcollection(L, g);
1460 setminordebt(g);
1461 g->GCestimate = majorbase; /* preserve base value */
1464 lua_assert(isdecGCmodegen(g));
1467 /* }====================================================== */
1471 ** {======================================================
1472 ** GC control
1473 ** =======================================================
1478 ** Enter first sweep phase.
1479 ** The call to 'sweeptolive' makes the pointer point to an object
1480 ** inside the list (instead of to the header), so that the real sweep do
1481 ** not need to skip objects created between "now" and the start of the
1482 ** real sweep.
1484 static void entersweep (lua_State *L) {
1485 global_State *g = G(L);
1486 g->gcstate = GCSswpallgc;
1487 lua_assert(g->sweepgc == NULL);
1488 g->sweepgc = sweeptolive(L, &g->allgc);
1493 ** Delete all objects in list 'p' until (but not including) object
1494 ** 'limit'.
1496 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1497 while (p != limit) {
1498 GCObject *next = p->next;
1499 freeobj(L, p);
1500 p = next;
1506 ** Call all finalizers of the objects in the given Lua state, and
1507 ** then free all objects, except for the main thread.
1509 void luaC_freeallobjects (lua_State *L) {
1510 global_State *g = G(L);
1511 g->gcstp = GCSTPCLS; /* no extra finalizers after here */
1512 luaC_changemode(L, KGC_INC);
1513 separatetobefnz(g, 1); /* separate all objects with finalizers */
1514 lua_assert(g->finobj == NULL);
1515 callallpendingfinalizers(L);
1516 deletelist(L, g->allgc, obj2gco(g->mainthread));
1517 lua_assert(g->finobj == NULL); /* no new finalizers */
1518 deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
1519 lua_assert(g->strt.nuse == 0);
1523 static lu_mem atomic (lua_State *L) {
1524 global_State *g = G(L);
1525 lu_mem work = 0;
1526 GCObject *origweak, *origall;
1527 GCObject *grayagain = g->grayagain; /* save original list */
1528 g->grayagain = NULL;
1529 lua_assert(g->ephemeron == NULL && g->weak == NULL);
1530 lua_assert(!iswhite(g->mainthread));
1531 g->gcstate = GCSatomic;
1532 markobject(g, L); /* mark running thread */
1533 /* registry and global metatables may be changed by API */
1534 markvalue(g, &g->l_registry);
1535 markmt(g); /* mark global metatables */
1536 work += propagateall(g); /* empties 'gray' list */
1537 /* remark occasional upvalues of (maybe) dead threads */
1538 work += remarkupvals(g);
1539 work += propagateall(g); /* propagate changes */
1540 g->gray = grayagain;
1541 work += propagateall(g); /* traverse 'grayagain' list */
1542 convergeephemerons(g);
1543 /* at this point, all strongly accessible objects are marked. */
1544 /* Clear values from weak tables, before checking finalizers */
1545 clearbyvalues(g, g->weak, NULL);
1546 clearbyvalues(g, g->allweak, NULL);
1547 origweak = g->weak; origall = g->allweak;
1548 separatetobefnz(g, 0); /* separate objects to be finalized */
1549 work += markbeingfnz(g); /* mark objects that will be finalized */
1550 work += propagateall(g); /* remark, to propagate 'resurrection' */
1551 convergeephemerons(g);
1552 /* at this point, all resurrected objects are marked. */
1553 /* remove dead objects from weak tables */
1554 clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
1555 clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
1556 /* clear values from resurrected weak tables */
1557 clearbyvalues(g, g->weak, origweak);
1558 clearbyvalues(g, g->allweak, origall);
1559 luaS_clearcache(g);
1560 g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
1561 lua_assert(g->gray == NULL);
1562 return work; /* estimate of slots marked by 'atomic' */
1566 static int sweepstep (lua_State *L, global_State *g,
1567 int nextstate, GCObject **nextlist) {
1568 if (g->sweepgc) {
1569 l_mem olddebt = g->GCdebt;
1570 int count;
1571 g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1572 g->GCestimate += g->GCdebt - olddebt; /* update estimate */
1573 return count;
1575 else { /* enter next state */
1576 g->gcstate = nextstate;
1577 g->sweepgc = nextlist;
1578 return 0; /* no work done */
1583 static lu_mem singlestep (lua_State *L) {
1584 global_State *g = G(L);
1585 lu_mem work;
1586 lua_assert(!g->gcstopem); /* collector is not reentrant */
1587 g->gcstopem = 1; /* no emergency collections while collecting */
1588 switch (g->gcstate) {
1589 case GCSpause: {
1590 restartcollection(g);
1591 g->gcstate = GCSpropagate;
1592 work = 1;
1593 break;
1595 case GCSpropagate: {
1596 if (g->gray == NULL) { /* no more gray objects? */
1597 g->gcstate = GCSenteratomic; /* finish propagate phase */
1598 work = 0;
1600 else
1601 work = propagatemark(g); /* traverse one gray object */
1602 break;
1604 case GCSenteratomic: {
1605 work = atomic(L); /* work is what was traversed by 'atomic' */
1606 entersweep(L);
1607 g->GCestimate = gettotalbytes(g); /* first estimate */;
1608 break;
1610 case GCSswpallgc: { /* sweep "regular" objects */
1611 work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
1612 break;
1614 case GCSswpfinobj: { /* sweep objects with finalizers */
1615 work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1616 break;
1618 case GCSswptobefnz: { /* sweep objects to be finalized */
1619 work = sweepstep(L, g, GCSswpend, NULL);
1620 break;
1622 case GCSswpend: { /* finish sweeps */
1623 checkSizes(L, g);
1624 g->gcstate = GCScallfin;
1625 work = 0;
1626 break;
1628 case GCScallfin: { /* call remaining finalizers */
1629 if (g->tobefnz && !g->gcemergency) {
1630 g->gcstopem = 0; /* ok collections during finalizers */
1631 work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
1633 else { /* emergency mode or no more finalizers */
1634 g->gcstate = GCSpause; /* finish collection */
1635 work = 0;
1637 break;
1639 default: lua_assert(0); return 0;
1641 g->gcstopem = 0;
1642 return work;
1647 ** advances the garbage collector until it reaches a state allowed
1648 ** by 'statemask'
1650 void luaC_runtilstate (lua_State *L, int statesmask) {
1651 global_State *g = G(L);
1652 while (!testbit(statesmask, g->gcstate))
1653 singlestep(L);
1659 ** Performs a basic incremental step. The debt and step size are
1660 ** converted from bytes to "units of work"; then the function loops
1661 ** running single steps until adding that many units of work or
1662 ** finishing a cycle (pause state). Finally, it sets the debt that
1663 ** controls when next step will be performed.
1665 static void incstep (lua_State *L, global_State *g) {
1666 int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
1667 l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1668 l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1669 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1670 : MAX_LMEM; /* overflow; keep maximum value */
1671 do { /* repeat until pause or enough "credit" (negative debt) */
1672 lu_mem work = singlestep(L); /* perform one single step */
1673 debt -= work;
1674 } while (debt > -stepsize && g->gcstate != GCSpause);
1675 if (g->gcstate == GCSpause)
1676 setpause(g); /* pause until next cycle */
1677 else {
1678 debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
1679 luaE_setdebt(g, debt);
1684 ** Performs a basic GC step if collector is running. (If collector is
1685 ** not running, set a reasonable debt to avoid it being called at
1686 ** every single check.)
1688 void luaC_step (lua_State *L) {
1689 global_State *g = G(L);
1690 if (!gcrunning(g)) /* not running? */
1691 luaE_setdebt(g, -2000);
1692 else {
1693 if(isdecGCmodegen(g))
1694 genstep(L, g);
1695 else
1696 incstep(L, g);
1702 ** Perform a full collection in incremental mode.
1703 ** Before running the collection, check 'keepinvariant'; if it is true,
1704 ** there may be some objects marked as black, so the collector has
1705 ** to sweep all objects to turn them back to white (as white has not
1706 ** changed, nothing will be collected).
1708 static void fullinc (lua_State *L, global_State *g) {
1709 if (keepinvariant(g)) /* black objects? */
1710 entersweep(L); /* sweep everything to turn them back to white */
1711 /* finish any pending sweep phase to start a new cycle */
1712 luaC_runtilstate(L, bitmask(GCSpause));
1713 luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
1714 /* estimate must be correct after a full GC cycle */
1715 lua_assert(g->GCestimate == gettotalbytes(g));
1716 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1717 setpause(g);
1722 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1723 ** some operations which could change the interpreter state in some
1724 ** unexpected ways (running finalizers and shrinking some structures).
1726 void luaC_fullgc (lua_State *L, int isemergency) {
1727 global_State *g = G(L);
1728 lua_assert(!g->gcemergency);
1729 g->gcemergency = isemergency; /* set flag */
1730 if (g->gckind == KGC_INC)
1731 fullinc(L, g);
1732 else
1733 fullgen(L, g);
1734 g->gcemergency = 0;
1737 /* }====================================================== */