4 ** See Copyright Notice in lua.h
31 ** Maximum number of elements to sweep in each single step.
32 ** (Large enough to dissipate fixed overheads but small enough
33 ** to allow small steps for the collector.)
35 #define GCSWEEPMAX 100
38 ** Maximum number of finalizers to call in each single step.
44 ** Cost of calling one finalizer.
46 #define GCFINALIZECOST 50
50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51 ** sweeping an object, etc.)
53 #define WORK2MEM sizeof(TValue)
57 ** macro to adjust 'pause': 'pause' is actually used like
58 ** 'pause / PAUSEADJ' (value chosen by tests)
63 /* mask with all color bits */
64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
66 /* mask with all GC bits */
67 #define maskgcbits (maskcolors | AGEBITS)
70 /* macro to erase all color bits then set only the current white bit */
71 #define makewhite(g,x) \
72 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
74 /* make an object gray (neither white nor black) */
75 #define set2gray(x) resetbits(x->marked, maskcolors)
78 /* make an object black (coming from any color) */
79 #define set2black(x) \
80 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
89 ** Protected access to objects in values
91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
95 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
102 ** mark an object that can be NULL (either because it is really optional,
103 ** or it was stripped as debug info, or inside an uncompleted structure)
105 #define markobjectN(g,t) { if (t) markobject(g,t); }
107 static void reallymarkobject (global_State
*g
, GCObject
*o
);
108 static lu_mem
atomic (lua_State
*L
);
109 static void entersweep (lua_State
*L
);
113 ** {======================================================
115 ** =======================================================
120 ** one after last element in a hash array
122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
125 static GCObject
**getgclist (GCObject
*o
) {
127 case LUA_VTABLE
: return &gco2t(o
)->gclist
;
128 case LUA_VLCL
: return &gco2lcl(o
)->gclist
;
129 case LUA_VCCL
: return &gco2ccl(o
)->gclist
;
130 case LUA_VTHREAD
: return &gco2th(o
)->gclist
;
131 case LUA_VPROTO
: return &gco2p(o
)->gclist
;
132 case LUA_VUSERDATA
: {
134 lua_assert(u
->nuvalue
> 0);
137 default: lua_assert(0); return 0;
143 ** Link a collectable object 'o' with a known type into the list 'p'.
144 ** (Must be a macro to access the 'gclist' field in different types.)
146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
148 static void linkgclist_ (GCObject
*o
, GCObject
**pnext
, GCObject
**list
) {
149 lua_assert(!isgray(o
)); /* cannot be in a gray list */
152 set2gray(o
); /* now it is */
157 ** Link a generic collectable object 'o' into the list 'p'.
159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
164 ** Clear keys for empty entries in tables. If entry is empty, mark its
165 ** entry as dead. This allows the collection of the key, but keeps its
166 ** entry in the table: its removal could break a chain and could break
167 ** a table traversal. Other places never manipulate dead keys, because
168 ** its associated empty value is enough to signal that the entry is
171 static void clearkey (Node
*n
) {
172 lua_assert(isempty(gval(n
)));
173 if (keyiscollectable(n
))
174 setdeadkey(n
); /* unused key; remove it */
179 ** tells whether a key or value can be cleared from a weak
180 ** table. Non-collectable objects are never removed from weak
181 ** tables. Strings behave as 'values', so are never removed too. for
182 ** other objects: if really collected, cannot keep them; for objects
183 ** being finalized, keep them in keys, but not in values
185 static int iscleared (global_State
*g
, const GCObject
*o
) {
186 if (o
== NULL
) return 0; /* non-collectable value */
187 else if (novariant(o
->tt
) == LUA_TSTRING
) {
188 markobject(g
, o
); /* strings are 'values', so are never weak */
191 else return iswhite(o
);
196 ** Barrier that moves collector forward, that is, marks the white object
197 ** 'v' being pointed by the black object 'o'. In the generational
198 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
199 ** be changed directly to OLD, because it may still point to non-old
200 ** objects. So, it is marked as OLD0. In the next cycle it will become
201 ** OLD1, and in the next it will finally become OLD (regular old). By
202 ** then, any object it points to will also be old. If called in the
203 ** incremental sweep phase, it clears the black object to white (sweep
204 ** it) to avoid other barrier calls for this same object. (That cannot
205 ** be done is generational mode, as its sweep does not distinguish
206 ** whites from deads.)
208 void luaC_barrier_ (lua_State
*L
, GCObject
*o
, GCObject
*v
) {
209 global_State
*g
= G(L
);
210 lua_assert(isblack(o
) && iswhite(v
) && !isdead(g
, v
) && !isdead(g
, o
));
211 if (keepinvariant(g
)) { /* must keep invariant? */
212 reallymarkobject(g
, v
); /* restore invariant */
214 lua_assert(!isold(v
)); /* white object could not be old */
215 setage(v
, G_OLD0
); /* restore generational invariant */
218 else { /* sweep phase */
219 lua_assert(issweepphase(g
));
220 if (g
->gckind
== KGC_INC
) /* incremental mode? */
221 makewhite(g
, o
); /* mark 'o' as white to avoid other barriers */
227 ** barrier that moves collector backward, that is, mark the black object
228 ** pointing to a white object as gray again.
230 void luaC_barrierback_ (lua_State
*L
, GCObject
*o
) {
231 global_State
*g
= G(L
);
232 lua_assert(isblack(o
) && !isdead(g
, o
));
233 lua_assert((g
->gckind
== KGC_GEN
) == (isold(o
) && getage(o
) != G_TOUCHED1
));
234 if (getage(o
) == G_TOUCHED2
) /* already in gray list? */
235 set2gray(o
); /* make it gray to become touched1 */
236 else /* link it in 'grayagain' and paint it gray */
237 linkobjgclist(o
, g
->grayagain
);
238 if (isold(o
)) /* generational mode? */
239 setage(o
, G_TOUCHED1
); /* touched in current cycle */
243 void luaC_fix (lua_State
*L
, GCObject
*o
) {
244 global_State
*g
= G(L
);
245 lua_assert(g
->allgc
== o
); /* object must be 1st in 'allgc' list! */
246 set2gray(o
); /* they will be gray forever */
247 setage(o
, G_OLD
); /* and old forever */
248 g
->allgc
= o
->next
; /* remove object from 'allgc' list */
249 o
->next
= g
->fixedgc
; /* link it to 'fixedgc' list */
255 ** create a new collectable object (with given type, size, and offset)
256 ** and link it to 'allgc' list.
258 GCObject
*luaC_newobjdt (lua_State
*L
, int tt
, size_t sz
, size_t offset
) {
259 global_State
*g
= G(L
);
260 char *p
= cast_charp(luaM_newobject(L
, novariant(tt
), sz
));
261 GCObject
*o
= cast(GCObject
*, p
+ offset
);
262 o
->marked
= luaC_white(g
);
270 GCObject
*luaC_newobj (lua_State
*L
, int tt
, size_t sz
) {
271 return luaC_newobjdt(L
, tt
, sz
, 0);
274 /* }====================================================== */
279 ** {======================================================
281 ** =======================================================
286 ** Mark an object. Userdata with no user values, strings, and closed
287 ** upvalues are visited and turned black here. Open upvalues are
288 ** already indirectly linked through their respective threads in the
289 ** 'twups' list, so they don't go to the gray list; nevertheless, they
290 ** are kept gray to avoid barriers, as their values will be revisited
291 ** by the thread or by 'remarkupvals'. Other objects are added to the
292 ** gray list to be visited (and turned black) later. Both userdata and
293 ** upvalues can call this function recursively, but this recursion goes
294 ** for at most two levels: An upvalue cannot refer to another upvalue
295 ** (only closures can), and a userdata's metatable must be a table.
297 static void reallymarkobject (global_State
*g
, GCObject
*o
) {
301 set2black(o
); /* nothing to visit */
305 UpVal
*uv
= gco2upv(o
);
307 set2gray(uv
); /* open upvalues are kept gray */
309 set2black(uv
); /* closed upvalues are visited here */
310 markvalue(g
, uv
->v
.p
); /* mark its content */
313 case LUA_VUSERDATA
: {
315 if (u
->nuvalue
== 0) { /* no user values? */
316 markobjectN(g
, u
->metatable
); /* mark its metatable */
317 set2black(u
); /* nothing else to mark */
322 case LUA_VLCL
: case LUA_VCCL
: case LUA_VTABLE
:
323 case LUA_VTHREAD
: case LUA_VPROTO
: {
324 linkobjgclist(o
, g
->gray
); /* to be visited later */
327 default: lua_assert(0); break;
333 ** mark metamethods for basic types
335 static void markmt (global_State
*g
) {
337 for (i
=0; i
< LUA_NUMTAGS
; i
++)
338 markobjectN(g
, g
->mt
[i
]);
343 ** mark all objects in list of being-finalized
345 static lu_mem
markbeingfnz (global_State
*g
) {
348 for (o
= g
->tobefnz
; o
!= NULL
; o
= o
->next
) {
357 ** For each non-marked thread, simulates a barrier between each open
358 ** upvalue and its value. (If the thread is collected, the value will be
359 ** assigned to the upvalue, but then it can be too late for the barrier
360 ** to act. The "barrier" does not need to check colors: A non-marked
361 ** thread must be young; upvalues cannot be older than their threads; so
362 ** any visited upvalue must be young too.) Also removes the thread from
363 ** the list, as it was already visited. Removes also threads with no
364 ** upvalues, as they have nothing to be checked. (If the thread gets an
365 ** upvalue later, it will be linked in the list again.)
367 static int remarkupvals (global_State
*g
) {
369 lua_State
**p
= &g
->twups
;
370 int work
= 0; /* estimate of how much work was done here */
371 while ((thread
= *p
) != NULL
) {
373 if (!iswhite(thread
) && thread
->openupval
!= NULL
)
374 p
= &thread
->twups
; /* keep marked thread with upvalues in the list */
375 else { /* thread is not marked or without upvalues */
377 lua_assert(!isold(thread
) || thread
->openupval
== NULL
);
378 *p
= thread
->twups
; /* remove thread from the list */
379 thread
->twups
= thread
; /* mark that it is out of list */
380 for (uv
= thread
->openupval
; uv
!= NULL
; uv
= uv
->u
.open
.next
) {
381 lua_assert(getage(uv
) <= getage(thread
));
383 if (!iswhite(uv
)) { /* upvalue already visited? */
384 lua_assert(upisopen(uv
) && isgray(uv
));
385 markvalue(g
, uv
->v
.p
); /* mark its value */
394 static void cleargraylists (global_State
*g
) {
395 g
->gray
= g
->grayagain
= NULL
;
396 g
->weak
= g
->allweak
= g
->ephemeron
= NULL
;
401 ** mark root set and reset all gray lists, to start a new collection
403 static void restartcollection (global_State
*g
) {
405 markobject(g
, g
->mainthread
);
406 markvalue(g
, &g
->l_registry
);
408 markbeingfnz(g
); /* mark any finalizing object left from previous cycle */
411 /* }====================================================== */
415 ** {======================================================
416 ** Traverse functions
417 ** =======================================================
422 ** Check whether object 'o' should be kept in the 'grayagain' list for
423 ** post-processing by 'correctgraylist'. (It could put all old objects
424 ** in the list and leave all the work to 'correctgraylist', but it is
425 ** more efficient to avoid adding elements that will be removed.) Only
426 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
427 ** back to a gray list, but then it must become OLD. (That is what
428 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
430 static void genlink (global_State
*g
, GCObject
*o
) {
431 lua_assert(isblack(o
));
432 if (getage(o
) == G_TOUCHED1
) { /* touched in this cycle? */
433 linkobjgclist(o
, g
->grayagain
); /* link it back in 'grayagain' */
434 } /* everything else do not need to be linked back */
435 else if (getage(o
) == G_TOUCHED2
)
436 changeage(o
, G_TOUCHED2
, G_OLD
); /* advance age */
441 ** Traverse a table with weak values and link it to proper list. During
442 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
443 ** atomic phase. In the atomic phase, if table has any white value,
444 ** put it in 'weak' list, to be cleared.
446 static void traverseweakvalue (global_State
*g
, Table
*h
) {
447 Node
*n
, *limit
= gnodelast(h
);
448 /* if there is array part, assume it may have white values (it is not
449 worth traversing it now just to check) */
450 int hasclears
= (h
->alimit
> 0);
451 for (n
= gnode(h
, 0); n
< limit
; n
++) { /* traverse hash part */
452 if (isempty(gval(n
))) /* entry is empty? */
453 clearkey(n
); /* clear its key */
455 lua_assert(!keyisnil(n
));
457 if (!hasclears
&& iscleared(g
, gcvalueN(gval(n
)))) /* a white value? */
458 hasclears
= 1; /* table will have to be cleared */
461 if (g
->gcstate
== GCSatomic
&& hasclears
)
462 linkgclist(h
, g
->weak
); /* has to be cleared later */
464 linkgclist(h
, g
->grayagain
); /* must retraverse it in atomic phase */
469 ** Traverse an ephemeron table and link it to proper list. Returns true
470 ** iff any object was marked during this traversal (which implies that
471 ** convergence has to continue). During propagation phase, keep table
472 ** in 'grayagain' list, to be visited again in the atomic phase. In
473 ** the atomic phase, if table has any white->white entry, it has to
474 ** be revisited during ephemeron convergence (as that key may turn
475 ** black). Otherwise, if it has any white key, table has to be cleared
476 ** (in the atomic phase). In generational mode, some tables
477 ** must be kept in some gray list for post-processing; this is done
480 static int traverseephemeron (global_State
*g
, Table
*h
, int inv
) {
481 int marked
= 0; /* true if an object is marked in this traversal */
482 int hasclears
= 0; /* true if table has white keys */
483 int hasww
= 0; /* true if table has entry "white-key -> white-value" */
485 unsigned int asize
= luaH_realasize(h
);
486 unsigned int nsize
= sizenode(h
);
487 /* traverse array part */
488 for (i
= 0; i
< asize
; i
++) {
489 if (valiswhite(&h
->array
[i
])) {
491 reallymarkobject(g
, gcvalue(&h
->array
[i
]));
494 /* traverse hash part; if 'inv', traverse descending
495 (see 'convergeephemerons') */
496 for (i
= 0; i
< nsize
; i
++) {
497 Node
*n
= inv
? gnode(h
, nsize
- 1 - i
) : gnode(h
, i
);
498 if (isempty(gval(n
))) /* entry is empty? */
499 clearkey(n
); /* clear its key */
500 else if (iscleared(g
, gckeyN(n
))) { /* key is not marked (yet)? */
501 hasclears
= 1; /* table must be cleared */
502 if (valiswhite(gval(n
))) /* value not marked yet? */
503 hasww
= 1; /* white-white entry */
505 else if (valiswhite(gval(n
))) { /* value not marked yet? */
507 reallymarkobject(g
, gcvalue(gval(n
))); /* mark it now */
510 /* link table into proper list */
511 if (g
->gcstate
== GCSpropagate
)
512 linkgclist(h
, g
->grayagain
); /* must retraverse it in atomic phase */
513 else if (hasww
) /* table has white->white entries? */
514 linkgclist(h
, g
->ephemeron
); /* have to propagate again */
515 else if (hasclears
) /* table has white keys? */
516 linkgclist(h
, g
->allweak
); /* may have to clean white keys */
518 genlink(g
, obj2gco(h
)); /* check whether collector still needs to see it */
523 static void traversestrongtable (global_State
*g
, Table
*h
) {
524 Node
*n
, *limit
= gnodelast(h
);
526 unsigned int asize
= luaH_realasize(h
);
527 for (i
= 0; i
< asize
; i
++) /* traverse array part */
528 markvalue(g
, &h
->array
[i
]);
529 for (n
= gnode(h
, 0); n
< limit
; n
++) { /* traverse hash part */
530 if (isempty(gval(n
))) /* entry is empty? */
531 clearkey(n
); /* clear its key */
533 lua_assert(!keyisnil(n
));
535 markvalue(g
, gval(n
));
538 genlink(g
, obj2gco(h
));
542 static lu_mem
traversetable (global_State
*g
, Table
*h
) {
543 const char *weakkey
, *weakvalue
;
544 const TValue
*mode
= gfasttm(g
, h
->metatable
, TM_MODE
);
545 markobjectN(g
, h
->metatable
);
546 if (mode
&& ttisstring(mode
) && /* is there a weak mode? */
547 (cast_void(weakkey
= strchr(svalue(mode
), 'k')),
548 cast_void(weakvalue
= strchr(svalue(mode
), 'v')),
549 (weakkey
|| weakvalue
))) { /* is really weak? */
550 if (!weakkey
) /* strong keys? */
551 traverseweakvalue(g
, h
);
552 else if (!weakvalue
) /* strong values? */
553 traverseephemeron(g
, h
, 0);
555 linkgclist(h
, g
->allweak
); /* nothing to traverse now */
558 traversestrongtable(g
, h
);
559 return 1 + h
->alimit
+ 2 * allocsizenode(h
);
563 static int traverseudata (global_State
*g
, Udata
*u
) {
565 markobjectN(g
, u
->metatable
); /* mark its metatable */
566 for (i
= 0; i
< u
->nuvalue
; i
++)
567 markvalue(g
, &u
->uv
[i
].uv
);
568 genlink(g
, obj2gco(u
));
569 return 1 + u
->nuvalue
;
574 ** Traverse a prototype. (While a prototype is being build, its
575 ** arrays can be larger than needed; the extra slots are filled with
576 ** NULL, so the use of 'markobjectN')
578 static int traverseproto (global_State
*g
, Proto
*f
) {
580 markobjectN(g
, f
->source
);
581 for (i
= 0; i
< f
->sizek
; i
++) /* mark literals */
582 markvalue(g
, &f
->k
[i
]);
583 for (i
= 0; i
< f
->sizeupvalues
; i
++) /* mark upvalue names */
584 markobjectN(g
, f
->upvalues
[i
].name
);
585 for (i
= 0; i
< f
->sizep
; i
++) /* mark nested protos */
586 markobjectN(g
, f
->p
[i
]);
587 for (i
= 0; i
< f
->sizelocvars
; i
++) /* mark local-variable names */
588 markobjectN(g
, f
->locvars
[i
].varname
);
589 return 1 + f
->sizek
+ f
->sizeupvalues
+ f
->sizep
+ f
->sizelocvars
;
593 static int traverseCclosure (global_State
*g
, CClosure
*cl
) {
595 for (i
= 0; i
< cl
->nupvalues
; i
++) /* mark its upvalues */
596 markvalue(g
, &cl
->upvalue
[i
]);
597 return 1 + cl
->nupvalues
;
601 ** Traverse a Lua closure, marking its prototype and its upvalues.
602 ** (Both can be NULL while closure is being created.)
604 static int traverseLclosure (global_State
*g
, LClosure
*cl
) {
606 markobjectN(g
, cl
->p
); /* mark its prototype */
607 for (i
= 0; i
< cl
->nupvalues
; i
++) { /* visit its upvalues */
608 UpVal
*uv
= cl
->upvals
[i
];
609 markobjectN(g
, uv
); /* mark upvalue */
611 return 1 + cl
->nupvalues
;
616 ** Traverse a thread, marking the elements in the stack up to its top
617 ** and cleaning the rest of the stack in the final traversal. That
618 ** ensures that the entire stack have valid (non-dead) objects.
619 ** Threads have no barriers. In gen. mode, old threads must be visited
620 ** at every cycle, because they might point to young objects. In inc.
621 ** mode, the thread can still be modified before the end of the cycle,
622 ** and therefore it must be visited again in the atomic phase. To ensure
623 ** these visits, threads must return to a gray list if they are not new
624 ** (which can only happen in generational mode) or if the traverse is in
625 ** the propagate phase (which can only happen in incremental mode).
627 static int traversethread (global_State
*g
, lua_State
*th
) {
629 StkId o
= th
->stack
.p
;
630 if (isold(th
) || g
->gcstate
== GCSpropagate
)
631 linkgclist(th
, g
->grayagain
); /* insert into 'grayagain' list */
633 return 1; /* stack not completely built yet */
634 lua_assert(g
->gcstate
== GCSatomic
||
635 th
->openupval
== NULL
|| isintwups(th
));
636 for (; o
< th
->top
.p
; o
++) /* mark live elements in the stack */
637 markvalue(g
, s2v(o
));
638 for (uv
= th
->openupval
; uv
!= NULL
; uv
= uv
->u
.open
.next
)
639 markobject(g
, uv
); /* open upvalues cannot be collected */
640 if (g
->gcstate
== GCSatomic
) { /* final traversal? */
641 for (; o
< th
->stack_last
.p
+ EXTRA_STACK
; o
++)
642 setnilvalue(s2v(o
)); /* clear dead stack slice */
643 /* 'remarkupvals' may have removed thread from 'twups' list */
644 if (!isintwups(th
) && th
->openupval
!= NULL
) {
645 th
->twups
= g
->twups
; /* link it back to the list */
649 else if (!g
->gcemergency
)
650 luaD_shrinkstack(th
); /* do not change stack in emergency cycle */
651 return 1 + stacksize(th
);
656 ** traverse one gray object, turning it to black.
658 static lu_mem
propagatemark (global_State
*g
) {
659 GCObject
*o
= g
->gray
;
661 g
->gray
= *getgclist(o
); /* remove from 'gray' list */
663 case LUA_VTABLE
: return traversetable(g
, gco2t(o
));
664 case LUA_VUSERDATA
: return traverseudata(g
, gco2u(o
));
665 case LUA_VLCL
: return traverseLclosure(g
, gco2lcl(o
));
666 case LUA_VCCL
: return traverseCclosure(g
, gco2ccl(o
));
667 case LUA_VPROTO
: return traverseproto(g
, gco2p(o
));
668 case LUA_VTHREAD
: return traversethread(g
, gco2th(o
));
669 default: lua_assert(0); return 0;
674 static lu_mem
propagateall (global_State
*g
) {
677 tot
+= propagatemark(g
);
683 ** Traverse all ephemeron tables propagating marks from keys to values.
684 ** Repeat until it converges, that is, nothing new is marked. 'dir'
685 ** inverts the direction of the traversals, trying to speed up
686 ** convergence on chains in the same table.
689 static void convergeephemerons (global_State
*g
) {
694 GCObject
*next
= g
->ephemeron
; /* get ephemeron list */
695 g
->ephemeron
= NULL
; /* tables may return to this list when traversed */
697 while ((w
= next
) != NULL
) { /* for each ephemeron table */
699 next
= h
->gclist
; /* list is rebuilt during loop */
700 nw2black(h
); /* out of the list (for now) */
701 if (traverseephemeron(g
, h
, dir
)) { /* marked some value? */
702 propagateall(g
); /* propagate changes */
703 changed
= 1; /* will have to revisit all ephemeron tables */
706 dir
= !dir
; /* invert direction next time */
707 } while (changed
); /* repeat until no more changes */
710 /* }====================================================== */
714 ** {======================================================
716 ** =======================================================
721 ** clear entries with unmarked keys from all weaktables in list 'l'
723 static void clearbykeys (global_State
*g
, GCObject
*l
) {
724 for (; l
; l
= gco2t(l
)->gclist
) {
726 Node
*limit
= gnodelast(h
);
728 for (n
= gnode(h
, 0); n
< limit
; n
++) {
729 if (iscleared(g
, gckeyN(n
))) /* unmarked key? */
730 setempty(gval(n
)); /* remove entry */
731 if (isempty(gval(n
))) /* is entry empty? */
732 clearkey(n
); /* clear its key */
739 ** clear entries with unmarked values from all weaktables in list 'l' up
742 static void clearbyvalues (global_State
*g
, GCObject
*l
, GCObject
*f
) {
743 for (; l
!= f
; l
= gco2t(l
)->gclist
) {
745 Node
*n
, *limit
= gnodelast(h
);
747 unsigned int asize
= luaH_realasize(h
);
748 for (i
= 0; i
< asize
; i
++) {
749 TValue
*o
= &h
->array
[i
];
750 if (iscleared(g
, gcvalueN(o
))) /* value was collected? */
751 setempty(o
); /* remove entry */
753 for (n
= gnode(h
, 0); n
< limit
; n
++) {
754 if (iscleared(g
, gcvalueN(gval(n
)))) /* unmarked value? */
755 setempty(gval(n
)); /* remove entry */
756 if (isempty(gval(n
))) /* is entry empty? */
757 clearkey(n
); /* clear its key */
763 static void freeupval (lua_State
*L
, UpVal
*uv
) {
765 luaF_unlinkupval(uv
);
770 static void freeobj (lua_State
*L
, GCObject
*o
) {
773 luaF_freeproto(L
, gco2p(o
));
776 freeupval(L
, gco2upv(o
));
779 LClosure
*cl
= gco2lcl(o
);
780 luaM_freemem(L
, cl
, sizeLclosure(cl
->nupvalues
));
784 CClosure
*cl
= gco2ccl(o
);
785 luaM_freemem(L
, cl
, sizeCclosure(cl
->nupvalues
));
789 luaH_free(L
, gco2t(o
));
792 luaE_freethread(L
, gco2th(o
));
794 case LUA_VUSERDATA
: {
796 luaM_freemem(L
, o
, sizeudata(u
->nuvalue
, u
->len
));
800 TString
*ts
= gco2ts(o
);
801 luaS_remove(L
, ts
); /* remove it from hash table */
802 luaM_freemem(L
, ts
, sizelstring(ts
->shrlen
));
806 TString
*ts
= gco2ts(o
);
807 luaM_freemem(L
, ts
, sizelstring(ts
->u
.lnglen
));
810 default: lua_assert(0);
816 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
817 ** objects, where a dead object is one marked with the old (non current)
818 ** white; change all non-dead objects back to white, preparing for next
819 ** collection cycle. Return where to continue the traversal or NULL if
820 ** list is finished. ('*countout' gets the number of elements traversed.)
822 static GCObject
**sweeplist (lua_State
*L
, GCObject
**p
, int countin
,
824 global_State
*g
= G(L
);
825 int ow
= otherwhite(g
);
827 int white
= luaC_white(g
); /* current white */
828 for (i
= 0; *p
!= NULL
&& i
< countin
; i
++) {
830 int marked
= curr
->marked
;
831 if (isdeadm(ow
, marked
)) { /* is 'curr' dead? */
832 *p
= curr
->next
; /* remove 'curr' from list */
833 freeobj(L
, curr
); /* erase 'curr' */
835 else { /* change mark to 'white' */
836 curr
->marked
= cast_byte((marked
& ~maskgcbits
) | white
);
837 p
= &curr
->next
; /* go to next element */
841 *countout
= i
; /* number of elements traversed */
842 return (*p
== NULL
) ? NULL
: p
;
847 ** sweep a list until a live object (or end of list)
849 static GCObject
**sweeptolive (lua_State
*L
, GCObject
**p
) {
852 p
= sweeplist(L
, p
, 1, NULL
);
857 /* }====================================================== */
861 ** {======================================================
863 ** =======================================================
867 ** If possible, shrink string table.
869 static void checkSizes (lua_State
*L
, global_State
*g
) {
870 if (!g
->gcemergency
) {
871 if (g
->strt
.nuse
< g
->strt
.size
/ 4) { /* string table too big? */
872 l_mem olddebt
= g
->GCdebt
;
873 luaS_resize(L
, g
->strt
.size
/ 2);
874 g
->GCestimate
+= g
->GCdebt
- olddebt
; /* correct estimate */
881 ** Get the next udata to be finalized from the 'tobefnz' list, and
882 ** link it back into the 'allgc' list.
884 static GCObject
*udata2finalize (global_State
*g
) {
885 GCObject
*o
= g
->tobefnz
; /* get first element */
886 lua_assert(tofinalize(o
));
887 g
->tobefnz
= o
->next
; /* remove it from 'tobefnz' list */
888 o
->next
= g
->allgc
; /* return it to 'allgc' list */
890 resetbit(o
->marked
, FINALIZEDBIT
); /* object is "normal" again */
892 makewhite(g
, o
); /* "sweep" object */
893 else if (getage(o
) == G_OLD1
)
894 g
->firstold1
= o
; /* it is the first OLD1 object in the list */
899 static void dothecall (lua_State
*L
, void *ud
) {
901 luaD_callnoyield(L
, L
->top
.p
- 2, 0);
905 static void GCTM (lua_State
*L
) {
906 global_State
*g
= G(L
);
909 lua_assert(!g
->gcemergency
);
910 setgcovalue(L
, &v
, udata2finalize(g
));
911 tm
= luaT_gettmbyobj(L
, &v
, TM_GC
);
912 if (!notm(tm
)) { /* is there a finalizer? */
914 lu_byte oldah
= L
->allowhook
;
915 int oldgcstp
= g
->gcstp
;
916 g
->gcstp
|= GCSTPGC
; /* avoid GC steps */
917 L
->allowhook
= 0; /* stop debug hooks during GC metamethod */
918 setobj2s(L
, L
->top
.p
++, tm
); /* push finalizer... */
919 setobj2s(L
, L
->top
.p
++, &v
); /* ... and its argument */
920 L
->ci
->callstatus
|= CIST_FIN
; /* will run a finalizer */
921 status
= luaD_pcall(L
, dothecall
, NULL
, savestack(L
, L
->top
.p
- 2), 0);
922 L
->ci
->callstatus
&= ~CIST_FIN
; /* not running a finalizer anymore */
923 L
->allowhook
= oldah
; /* restore hooks */
924 g
->gcstp
= oldgcstp
; /* restore state */
925 if (l_unlikely(status
!= LUA_OK
)) { /* error while running __gc? */
926 luaE_warnerror(L
, "__gc");
927 L
->top
.p
--; /* pops error object */
934 ** Call a few finalizers
936 static int runafewfinalizers (lua_State
*L
, int n
) {
937 global_State
*g
= G(L
);
939 for (i
= 0; i
< n
&& g
->tobefnz
; i
++)
940 GCTM(L
); /* call one finalizer */
946 ** call all pending finalizers
948 static void callallpendingfinalizers (lua_State
*L
) {
949 global_State
*g
= G(L
);
956 ** find last 'next' field in list 'p' list (to add elements in its end)
958 static GCObject
**findlast (GCObject
**p
) {
966 ** Move all unreachable objects (or 'all' objects) that need
967 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
968 ** (Note that objects after 'finobjold1' cannot be white, so they
969 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
970 ** so the whole list is traversed.)
972 static void separatetobefnz (global_State
*g
, int all
) {
974 GCObject
**p
= &g
->finobj
;
975 GCObject
**lastnext
= findlast(&g
->tobefnz
);
976 while ((curr
= *p
) != g
->finobjold1
) { /* traverse all finalizable objects */
977 lua_assert(tofinalize(curr
));
978 if (!(iswhite(curr
) || all
)) /* not being collected? */
979 p
= &curr
->next
; /* don't bother with it */
981 if (curr
== g
->finobjsur
) /* removing 'finobjsur'? */
982 g
->finobjsur
= curr
->next
; /* correct it */
983 *p
= curr
->next
; /* remove 'curr' from 'finobj' list */
984 curr
->next
= *lastnext
; /* link at the end of 'tobefnz' list */
986 lastnext
= &curr
->next
;
993 ** If pointer 'p' points to 'o', move it to the next element.
995 static void checkpointer (GCObject
**p
, GCObject
*o
) {
1002 ** Correct pointers to objects inside 'allgc' list when
1003 ** object 'o' is being removed from the list.
1005 static void correctpointers (global_State
*g
, GCObject
*o
) {
1006 checkpointer(&g
->survival
, o
);
1007 checkpointer(&g
->old1
, o
);
1008 checkpointer(&g
->reallyold
, o
);
1009 checkpointer(&g
->firstold1
, o
);
1014 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1015 ** search the list to find it) and link it in 'finobj' list.
1017 void luaC_checkfinalizer (lua_State
*L
, GCObject
*o
, Table
*mt
) {
1018 global_State
*g
= G(L
);
1019 if (tofinalize(o
) || /* obj. is already marked... */
1020 gfasttm(g
, mt
, TM_GC
) == NULL
|| /* or has no finalizer... */
1021 (g
->gcstp
& GCSTPCLS
)) /* or closing state? */
1022 return; /* nothing to be done */
1023 else { /* move 'o' to 'finobj' list */
1025 if (issweepphase(g
)) {
1026 makewhite(g
, o
); /* "sweep" object 'o' */
1027 if (g
->sweepgc
== &o
->next
) /* should not remove 'sweepgc' object */
1028 g
->sweepgc
= sweeptolive(L
, g
->sweepgc
); /* change 'sweepgc' */
1031 correctpointers(g
, o
);
1032 /* search for pointer pointing to 'o' */
1033 for (p
= &g
->allgc
; *p
!= o
; p
= &(*p
)->next
) { /* empty */ }
1034 *p
= o
->next
; /* remove 'o' from 'allgc' list */
1035 o
->next
= g
->finobj
; /* link it in 'finobj' list */
1037 l_setbit(o
->marked
, FINALIZEDBIT
); /* mark it as such */
1041 /* }====================================================== */
1045 ** {======================================================
1046 ** Generational Collector
1047 ** =======================================================
1052 ** Set the "time" to wait before starting a new GC cycle; cycle will
1053 ** start when memory use hits the threshold of ('estimate' * pause /
1054 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1055 ** because Lua cannot even start with less than PAUSEADJ bytes).
1057 static void setpause (global_State
*g
) {
1058 l_mem threshold
, debt
;
1059 int pause
= getgcparam(g
->gcpause
);
1060 l_mem estimate
= g
->GCestimate
/ PAUSEADJ
; /* adjust 'estimate' */
1061 lua_assert(estimate
> 0);
1062 threshold
= (pause
< MAX_LMEM
/ estimate
) /* overflow? */
1063 ? estimate
* pause
/* no overflow */
1064 : MAX_LMEM
; /* overflow; truncate to maximum */
1065 debt
= gettotalbytes(g
) - threshold
;
1066 if (debt
> 0) debt
= 0;
1067 luaE_setdebt(g
, debt
);
1072 ** Sweep a list of objects to enter generational mode. Deletes dead
1073 ** objects and turns the non dead to old. All non-dead threads---which
1074 ** are now old---must be in a gray list. Everything else is not in a
1075 ** gray list. Open upvalues are also kept gray.
1077 static void sweep2old (lua_State
*L
, GCObject
**p
) {
1079 global_State
*g
= G(L
);
1080 while ((curr
= *p
) != NULL
) {
1081 if (iswhite(curr
)) { /* is 'curr' dead? */
1082 lua_assert(isdead(g
, curr
));
1083 *p
= curr
->next
; /* remove 'curr' from list */
1084 freeobj(L
, curr
); /* erase 'curr' */
1086 else { /* all surviving objects become old */
1087 setage(curr
, G_OLD
);
1088 if (curr
->tt
== LUA_VTHREAD
) { /* threads must be watched */
1089 lua_State
*th
= gco2th(curr
);
1090 linkgclist(th
, g
->grayagain
); /* insert into 'grayagain' list */
1092 else if (curr
->tt
== LUA_VUPVAL
&& upisopen(gco2upv(curr
)))
1093 set2gray(curr
); /* open upvalues are always gray */
1094 else /* everything else is black */
1096 p
= &curr
->next
; /* go to next element */
1103 ** Sweep for generational mode. Delete dead objects. (Because the
1104 ** collection is not incremental, there are no "new white" objects
1105 ** during the sweep. So, any white object must be dead.) For
1106 ** non-dead objects, advance their ages and clear the color of
1107 ** new objects. (Old objects keep their colors.)
1108 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1109 ** here, because these old-generation objects are usually not swept
1110 ** here. They will all be advanced in 'correctgraylist'. That function
1111 ** will also remove objects turned white here from any gray list.
1113 static GCObject
**sweepgen (lua_State
*L
, global_State
*g
, GCObject
**p
,
1114 GCObject
*limit
, GCObject
**pfirstold1
) {
1115 static const lu_byte nextage
[] = {
1116 G_SURVIVAL
, /* from G_NEW */
1117 G_OLD1
, /* from G_SURVIVAL */
1118 G_OLD1
, /* from G_OLD0 */
1119 G_OLD
, /* from G_OLD1 */
1120 G_OLD
, /* from G_OLD (do not change) */
1121 G_TOUCHED1
, /* from G_TOUCHED1 (do not change) */
1122 G_TOUCHED2
/* from G_TOUCHED2 (do not change) */
1124 int white
= luaC_white(g
);
1126 while ((curr
= *p
) != limit
) {
1127 if (iswhite(curr
)) { /* is 'curr' dead? */
1128 lua_assert(!isold(curr
) && isdead(g
, curr
));
1129 *p
= curr
->next
; /* remove 'curr' from list */
1130 freeobj(L
, curr
); /* erase 'curr' */
1132 else { /* correct mark and age */
1133 if (getage(curr
) == G_NEW
) { /* new objects go back to white */
1134 int marked
= curr
->marked
& ~maskgcbits
; /* erase GC bits */
1135 curr
->marked
= cast_byte(marked
| G_SURVIVAL
| white
);
1137 else { /* all other objects will be old, and so keep their color */
1138 setage(curr
, nextage
[getage(curr
)]);
1139 if (getage(curr
) == G_OLD1
&& *pfirstold1
== NULL
)
1140 *pfirstold1
= curr
; /* first OLD1 object in the list */
1142 p
= &curr
->next
; /* go to next element */
1150 ** Traverse a list making all its elements white and clearing their
1151 ** age. In incremental mode, all objects are 'new' all the time,
1152 ** except for fixed strings (which are always old).
1154 static void whitelist (global_State
*g
, GCObject
*p
) {
1155 int white
= luaC_white(g
);
1156 for (; p
!= NULL
; p
= p
->next
)
1157 p
->marked
= cast_byte((p
->marked
& ~maskgcbits
) | white
);
1162 ** Correct a list of gray objects. Return pointer to where rest of the
1163 ** list should be linked.
1164 ** Because this correction is done after sweeping, young objects might
1165 ** be turned white and still be in the list. They are only removed.
1166 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1167 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1168 ** regular old; they and anything else are removed from the list.
1170 static GCObject
**correctgraylist (GCObject
**p
) {
1172 while ((curr
= *p
) != NULL
) {
1173 GCObject
**next
= getgclist(curr
);
1175 goto remove
; /* remove all white objects */
1176 else if (getage(curr
) == G_TOUCHED1
) { /* touched in this cycle? */
1177 lua_assert(isgray(curr
));
1178 nw2black(curr
); /* make it black, for next barrier */
1179 changeage(curr
, G_TOUCHED1
, G_TOUCHED2
);
1180 goto remain
; /* keep it in the list and go to next element */
1182 else if (curr
->tt
== LUA_VTHREAD
) {
1183 lua_assert(isgray(curr
));
1184 goto remain
; /* keep non-white threads on the list */
1186 else { /* everything else is removed */
1187 lua_assert(isold(curr
)); /* young objects should be white here */
1188 if (getage(curr
) == G_TOUCHED2
) /* advance from TOUCHED2... */
1189 changeage(curr
, G_TOUCHED2
, G_OLD
); /* ... to OLD */
1190 nw2black(curr
); /* make object black (to be removed) */
1193 remove
: *p
= *next
; continue;
1194 remain
: p
= next
; continue;
1201 ** Correct all gray lists, coalescing them into 'grayagain'.
1203 static void correctgraylists (global_State
*g
) {
1204 GCObject
**list
= correctgraylist(&g
->grayagain
);
1205 *list
= g
->weak
; g
->weak
= NULL
;
1206 list
= correctgraylist(list
);
1207 *list
= g
->allweak
; g
->allweak
= NULL
;
1208 list
= correctgraylist(list
);
1209 *list
= g
->ephemeron
; g
->ephemeron
= NULL
;
1210 correctgraylist(list
);
1215 ** Mark black 'OLD1' objects when starting a new young collection.
1216 ** Gray objects are already in some gray list, and so will be visited
1217 ** in the atomic step.
1219 static void markold (global_State
*g
, GCObject
*from
, GCObject
*to
) {
1221 for (p
= from
; p
!= to
; p
= p
->next
) {
1222 if (getage(p
) == G_OLD1
) {
1223 lua_assert(!iswhite(p
));
1224 changeage(p
, G_OLD1
, G_OLD
); /* now they are old */
1226 reallymarkobject(g
, p
);
1233 ** Finish a young-generation collection.
1235 static void finishgencycle (lua_State
*L
, global_State
*g
) {
1236 correctgraylists(g
);
1238 g
->gcstate
= GCSpropagate
; /* skip restart */
1239 if (!g
->gcemergency
)
1240 callallpendingfinalizers(L
);
1245 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1246 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1247 ** finish the collection.
1249 static void youngcollection (lua_State
*L
, global_State
*g
) {
1250 GCObject
**psurvival
; /* to point to first non-dead survival object */
1251 GCObject
*dummy
; /* dummy out parameter to 'sweepgen' */
1252 lua_assert(g
->gcstate
== GCSpropagate
);
1253 if (g
->firstold1
) { /* are there regular OLD1 objects? */
1254 markold(g
, g
->firstold1
, g
->reallyold
); /* mark them */
1255 g
->firstold1
= NULL
; /* no more OLD1 objects (for now) */
1257 markold(g
, g
->finobj
, g
->finobjrold
);
1258 markold(g
, g
->tobefnz
, NULL
);
1261 /* sweep nursery and get a pointer to its last live element */
1262 g
->gcstate
= GCSswpallgc
;
1263 psurvival
= sweepgen(L
, g
, &g
->allgc
, g
->survival
, &g
->firstold1
);
1264 /* sweep 'survival' */
1265 sweepgen(L
, g
, psurvival
, g
->old1
, &g
->firstold1
);
1266 g
->reallyold
= g
->old1
;
1267 g
->old1
= *psurvival
; /* 'survival' survivals are old now */
1268 g
->survival
= g
->allgc
; /* all news are survivals */
1270 /* repeat for 'finobj' lists */
1271 dummy
= NULL
; /* no 'firstold1' optimization for 'finobj' lists */
1272 psurvival
= sweepgen(L
, g
, &g
->finobj
, g
->finobjsur
, &dummy
);
1273 /* sweep 'survival' */
1274 sweepgen(L
, g
, psurvival
, g
->finobjold1
, &dummy
);
1275 g
->finobjrold
= g
->finobjold1
;
1276 g
->finobjold1
= *psurvival
; /* 'survival' survivals are old now */
1277 g
->finobjsur
= g
->finobj
; /* all news are survivals */
1279 sweepgen(L
, g
, &g
->tobefnz
, NULL
, &dummy
);
1280 finishgencycle(L
, g
);
1285 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1286 ** generational mode. The sweeps remove dead objects and turn all
1287 ** surviving objects to old. Threads go back to 'grayagain'; everything
1288 ** else is turned black (not in any gray list).
1290 static void atomic2gen (lua_State
*L
, global_State
*g
) {
1292 /* sweep all elements making them old */
1293 g
->gcstate
= GCSswpallgc
;
1294 sweep2old(L
, &g
->allgc
);
1295 /* everything alive now is old */
1296 g
->reallyold
= g
->old1
= g
->survival
= g
->allgc
;
1297 g
->firstold1
= NULL
; /* there are no OLD1 objects anywhere */
1299 /* repeat for 'finobj' lists */
1300 sweep2old(L
, &g
->finobj
);
1301 g
->finobjrold
= g
->finobjold1
= g
->finobjsur
= g
->finobj
;
1303 sweep2old(L
, &g
->tobefnz
);
1305 g
->gckind
= KGC_GEN
;
1307 g
->GCestimate
= gettotalbytes(g
); /* base for memory control */
1308 finishgencycle(L
, g
);
1313 ** Set debt for the next minor collection, which will happen when
1314 ** memory grows 'genminormul'%.
1316 static void setminordebt (global_State
*g
) {
1317 luaE_setdebt(g
, -(cast(l_mem
, (gettotalbytes(g
) / 100)) * g
->genminormul
));
1322 ** Enter generational mode. Must go until the end of an atomic cycle
1323 ** to ensure that all objects are correctly marked and weak tables
1324 ** are cleared. Then, turn all objects into old and finishes the
1327 static lu_mem
entergen (lua_State
*L
, global_State
*g
) {
1329 luaC_runtilstate(L
, bitmask(GCSpause
)); /* prepare to start a new cycle */
1330 luaC_runtilstate(L
, bitmask(GCSpropagate
)); /* start new cycle */
1331 numobjs
= atomic(L
); /* propagates all and then do the atomic stuff */
1333 setminordebt(g
); /* set debt assuming next cycle will be minor */
1339 ** Enter incremental mode. Turn all objects white, make all
1340 ** intermediate lists point to NULL (to avoid invalid pointers),
1341 ** and go to the pause state.
1343 static void enterinc (global_State
*g
) {
1344 whitelist(g
, g
->allgc
);
1345 g
->reallyold
= g
->old1
= g
->survival
= NULL
;
1346 whitelist(g
, g
->finobj
);
1347 whitelist(g
, g
->tobefnz
);
1348 g
->finobjrold
= g
->finobjold1
= g
->finobjsur
= NULL
;
1349 g
->gcstate
= GCSpause
;
1350 g
->gckind
= KGC_INC
;
1356 ** Change collector mode to 'newmode'.
1358 void luaC_changemode (lua_State
*L
, int newmode
) {
1359 global_State
*g
= G(L
);
1360 if (newmode
!= g
->gckind
) {
1361 if (newmode
== KGC_GEN
) /* entering generational mode? */
1364 enterinc(g
); /* entering incremental mode */
1371 ** Does a full collection in generational mode.
1373 static lu_mem
fullgen (lua_State
*L
, global_State
*g
) {
1375 return entergen(L
, g
);
1380 ** Does a major collection after last collection was a "bad collection".
1382 ** When the program is building a big structure, it allocates lots of
1383 ** memory but generates very little garbage. In those scenarios,
1384 ** the generational mode just wastes time doing small collections, and
1385 ** major collections are frequently what we call a "bad collection", a
1386 ** collection that frees too few objects. To avoid the cost of switching
1387 ** between generational mode and the incremental mode needed for full
1388 ** (major) collections, the collector tries to stay in incremental mode
1389 ** after a bad collection, and to switch back to generational mode only
1390 ** after a "good" collection (one that traverses less than 9/8 objects
1391 ** of the previous one).
1392 ** The collector must choose whether to stay in incremental mode or to
1393 ** switch back to generational mode before sweeping. At this point, it
1394 ** does not know the real memory in use, so it cannot use memory to
1395 ** decide whether to return to generational mode. Instead, it uses the
1396 ** number of objects traversed (returned by 'atomic') as a proxy. The
1397 ** field 'g->lastatomic' keeps this count from the last collection.
1398 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1400 static void stepgenfull (lua_State
*L
, global_State
*g
) {
1401 lu_mem newatomic
; /* count of traversed objects */
1402 lu_mem lastatomic
= g
->lastatomic
; /* count from last collection */
1403 if (g
->gckind
== KGC_GEN
) /* still in generational mode? */
1404 enterinc(g
); /* enter incremental mode */
1405 luaC_runtilstate(L
, bitmask(GCSpropagate
)); /* start new cycle */
1406 newatomic
= atomic(L
); /* mark everybody */
1407 if (newatomic
< lastatomic
+ (lastatomic
>> 3)) { /* good collection? */
1408 atomic2gen(L
, g
); /* return to generational mode */
1411 else { /* another bad collection; stay in incremental mode */
1412 g
->GCestimate
= gettotalbytes(g
); /* first estimate */;
1414 luaC_runtilstate(L
, bitmask(GCSpause
)); /* finish collection */
1416 g
->lastatomic
= newatomic
;
1422 ** Does a generational "step".
1423 ** Usually, this means doing a minor collection and setting the debt to
1424 ** make another collection when memory grows 'genminormul'% larger.
1426 ** However, there are exceptions. If memory grows 'genmajormul'%
1427 ** larger than it was at the end of the last major collection (kept
1428 ** in 'g->GCestimate'), the function does a major collection. At the
1429 ** end, it checks whether the major collection was able to free a
1430 ** decent amount of memory (at least half the growth in memory since
1431 ** previous major collection). If so, the collector keeps its state,
1432 ** and the next collection will probably be minor again. Otherwise,
1433 ** we have what we call a "bad collection". In that case, set the field
1434 ** 'g->lastatomic' to signal that fact, so that the next collection will
1435 ** go to 'stepgenfull'.
1437 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1438 ** in that case, do a minor collection.
1440 static void genstep (lua_State
*L
, global_State
*g
) {
1441 if (g
->lastatomic
!= 0) /* last collection was a bad one? */
1442 stepgenfull(L
, g
); /* do a full step */
1444 lu_mem majorbase
= g
->GCestimate
; /* memory after last major collection */
1445 lu_mem majorinc
= (majorbase
/ 100) * getgcparam(g
->genmajormul
);
1446 if (g
->GCdebt
> 0 && gettotalbytes(g
) > majorbase
+ majorinc
) {
1447 lu_mem numobjs
= fullgen(L
, g
); /* do a major collection */
1448 if (gettotalbytes(g
) < majorbase
+ (majorinc
/ 2)) {
1449 /* collected at least half of memory growth since last major
1450 collection; keep doing minor collections. */
1451 lua_assert(g
->lastatomic
== 0);
1453 else { /* bad collection */
1454 g
->lastatomic
= numobjs
; /* signal that last collection was bad */
1455 setpause(g
); /* do a long wait for next (major) collection */
1458 else { /* regular case; do a minor collection */
1459 youngcollection(L
, g
);
1461 g
->GCestimate
= majorbase
; /* preserve base value */
1464 lua_assert(isdecGCmodegen(g
));
1467 /* }====================================================== */
1471 ** {======================================================
1473 ** =======================================================
1478 ** Enter first sweep phase.
1479 ** The call to 'sweeptolive' makes the pointer point to an object
1480 ** inside the list (instead of to the header), so that the real sweep do
1481 ** not need to skip objects created between "now" and the start of the
1484 static void entersweep (lua_State
*L
) {
1485 global_State
*g
= G(L
);
1486 g
->gcstate
= GCSswpallgc
;
1487 lua_assert(g
->sweepgc
== NULL
);
1488 g
->sweepgc
= sweeptolive(L
, &g
->allgc
);
1493 ** Delete all objects in list 'p' until (but not including) object
1496 static void deletelist (lua_State
*L
, GCObject
*p
, GCObject
*limit
) {
1497 while (p
!= limit
) {
1498 GCObject
*next
= p
->next
;
1506 ** Call all finalizers of the objects in the given Lua state, and
1507 ** then free all objects, except for the main thread.
1509 void luaC_freeallobjects (lua_State
*L
) {
1510 global_State
*g
= G(L
);
1511 g
->gcstp
= GCSTPCLS
; /* no extra finalizers after here */
1512 luaC_changemode(L
, KGC_INC
);
1513 separatetobefnz(g
, 1); /* separate all objects with finalizers */
1514 lua_assert(g
->finobj
== NULL
);
1515 callallpendingfinalizers(L
);
1516 deletelist(L
, g
->allgc
, obj2gco(g
->mainthread
));
1517 lua_assert(g
->finobj
== NULL
); /* no new finalizers */
1518 deletelist(L
, g
->fixedgc
, NULL
); /* collect fixed objects */
1519 lua_assert(g
->strt
.nuse
== 0);
1523 static lu_mem
atomic (lua_State
*L
) {
1524 global_State
*g
= G(L
);
1526 GCObject
*origweak
, *origall
;
1527 GCObject
*grayagain
= g
->grayagain
; /* save original list */
1528 g
->grayagain
= NULL
;
1529 lua_assert(g
->ephemeron
== NULL
&& g
->weak
== NULL
);
1530 lua_assert(!iswhite(g
->mainthread
));
1531 g
->gcstate
= GCSatomic
;
1532 markobject(g
, L
); /* mark running thread */
1533 /* registry and global metatables may be changed by API */
1534 markvalue(g
, &g
->l_registry
);
1535 markmt(g
); /* mark global metatables */
1536 work
+= propagateall(g
); /* empties 'gray' list */
1537 /* remark occasional upvalues of (maybe) dead threads */
1538 work
+= remarkupvals(g
);
1539 work
+= propagateall(g
); /* propagate changes */
1540 g
->gray
= grayagain
;
1541 work
+= propagateall(g
); /* traverse 'grayagain' list */
1542 convergeephemerons(g
);
1543 /* at this point, all strongly accessible objects are marked. */
1544 /* Clear values from weak tables, before checking finalizers */
1545 clearbyvalues(g
, g
->weak
, NULL
);
1546 clearbyvalues(g
, g
->allweak
, NULL
);
1547 origweak
= g
->weak
; origall
= g
->allweak
;
1548 separatetobefnz(g
, 0); /* separate objects to be finalized */
1549 work
+= markbeingfnz(g
); /* mark objects that will be finalized */
1550 work
+= propagateall(g
); /* remark, to propagate 'resurrection' */
1551 convergeephemerons(g
);
1552 /* at this point, all resurrected objects are marked. */
1553 /* remove dead objects from weak tables */
1554 clearbykeys(g
, g
->ephemeron
); /* clear keys from all ephemeron tables */
1555 clearbykeys(g
, g
->allweak
); /* clear keys from all 'allweak' tables */
1556 /* clear values from resurrected weak tables */
1557 clearbyvalues(g
, g
->weak
, origweak
);
1558 clearbyvalues(g
, g
->allweak
, origall
);
1560 g
->currentwhite
= cast_byte(otherwhite(g
)); /* flip current white */
1561 lua_assert(g
->gray
== NULL
);
1562 return work
; /* estimate of slots marked by 'atomic' */
1566 static int sweepstep (lua_State
*L
, global_State
*g
,
1567 int nextstate
, GCObject
**nextlist
) {
1569 l_mem olddebt
= g
->GCdebt
;
1571 g
->sweepgc
= sweeplist(L
, g
->sweepgc
, GCSWEEPMAX
, &count
);
1572 g
->GCestimate
+= g
->GCdebt
- olddebt
; /* update estimate */
1575 else { /* enter next state */
1576 g
->gcstate
= nextstate
;
1577 g
->sweepgc
= nextlist
;
1578 return 0; /* no work done */
1583 static lu_mem
singlestep (lua_State
*L
) {
1584 global_State
*g
= G(L
);
1586 lua_assert(!g
->gcstopem
); /* collector is not reentrant */
1587 g
->gcstopem
= 1; /* no emergency collections while collecting */
1588 switch (g
->gcstate
) {
1590 restartcollection(g
);
1591 g
->gcstate
= GCSpropagate
;
1595 case GCSpropagate
: {
1596 if (g
->gray
== NULL
) { /* no more gray objects? */
1597 g
->gcstate
= GCSenteratomic
; /* finish propagate phase */
1601 work
= propagatemark(g
); /* traverse one gray object */
1604 case GCSenteratomic
: {
1605 work
= atomic(L
); /* work is what was traversed by 'atomic' */
1607 g
->GCestimate
= gettotalbytes(g
); /* first estimate */;
1610 case GCSswpallgc
: { /* sweep "regular" objects */
1611 work
= sweepstep(L
, g
, GCSswpfinobj
, &g
->finobj
);
1614 case GCSswpfinobj
: { /* sweep objects with finalizers */
1615 work
= sweepstep(L
, g
, GCSswptobefnz
, &g
->tobefnz
);
1618 case GCSswptobefnz
: { /* sweep objects to be finalized */
1619 work
= sweepstep(L
, g
, GCSswpend
, NULL
);
1622 case GCSswpend
: { /* finish sweeps */
1624 g
->gcstate
= GCScallfin
;
1628 case GCScallfin
: { /* call remaining finalizers */
1629 if (g
->tobefnz
&& !g
->gcemergency
) {
1630 g
->gcstopem
= 0; /* ok collections during finalizers */
1631 work
= runafewfinalizers(L
, GCFINMAX
) * GCFINALIZECOST
;
1633 else { /* emergency mode or no more finalizers */
1634 g
->gcstate
= GCSpause
; /* finish collection */
1639 default: lua_assert(0); return 0;
1647 ** advances the garbage collector until it reaches a state allowed
1650 void luaC_runtilstate (lua_State
*L
, int statesmask
) {
1651 global_State
*g
= G(L
);
1652 while (!testbit(statesmask
, g
->gcstate
))
1659 ** Performs a basic incremental step. The debt and step size are
1660 ** converted from bytes to "units of work"; then the function loops
1661 ** running single steps until adding that many units of work or
1662 ** finishing a cycle (pause state). Finally, it sets the debt that
1663 ** controls when next step will be performed.
1665 static void incstep (lua_State
*L
, global_State
*g
) {
1666 int stepmul
= (getgcparam(g
->gcstepmul
) | 1); /* avoid division by 0 */
1667 l_mem debt
= (g
->GCdebt
/ WORK2MEM
) * stepmul
;
1668 l_mem stepsize
= (g
->gcstepsize
<= log2maxs(l_mem
))
1669 ? ((cast(l_mem
, 1) << g
->gcstepsize
) / WORK2MEM
) * stepmul
1670 : MAX_LMEM
; /* overflow; keep maximum value */
1671 do { /* repeat until pause or enough "credit" (negative debt) */
1672 lu_mem work
= singlestep(L
); /* perform one single step */
1674 } while (debt
> -stepsize
&& g
->gcstate
!= GCSpause
);
1675 if (g
->gcstate
== GCSpause
)
1676 setpause(g
); /* pause until next cycle */
1678 debt
= (debt
/ stepmul
) * WORK2MEM
; /* convert 'work units' to bytes */
1679 luaE_setdebt(g
, debt
);
1684 ** Performs a basic GC step if collector is running. (If collector is
1685 ** not running, set a reasonable debt to avoid it being called at
1686 ** every single check.)
1688 void luaC_step (lua_State
*L
) {
1689 global_State
*g
= G(L
);
1690 if (!gcrunning(g
)) /* not running? */
1691 luaE_setdebt(g
, -2000);
1693 if(isdecGCmodegen(g
))
1702 ** Perform a full collection in incremental mode.
1703 ** Before running the collection, check 'keepinvariant'; if it is true,
1704 ** there may be some objects marked as black, so the collector has
1705 ** to sweep all objects to turn them back to white (as white has not
1706 ** changed, nothing will be collected).
1708 static void fullinc (lua_State
*L
, global_State
*g
) {
1709 if (keepinvariant(g
)) /* black objects? */
1710 entersweep(L
); /* sweep everything to turn them back to white */
1711 /* finish any pending sweep phase to start a new cycle */
1712 luaC_runtilstate(L
, bitmask(GCSpause
));
1713 luaC_runtilstate(L
, bitmask(GCScallfin
)); /* run up to finalizers */
1714 /* estimate must be correct after a full GC cycle */
1715 lua_assert(g
->GCestimate
== gettotalbytes(g
));
1716 luaC_runtilstate(L
, bitmask(GCSpause
)); /* finish collection */
1722 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1723 ** some operations which could change the interpreter state in some
1724 ** unexpected ways (running finalizers and shrinking some structures).
1726 void luaC_fullgc (lua_State
*L
, int isemergency
) {
1727 global_State
*g
= G(L
);
1728 lua_assert(!g
->gcemergency
);
1729 g
->gcemergency
= isemergency
; /* set flag */
1730 if (g
->gckind
== KGC_INC
)
1737 /* }====================================================== */