1 #EQUATIONS { -------- NMHC9(b) ---------------------------------------------------------- }
2 { background+isoprene(MIM)+ethane+propane+propylene+ethene+n-butane chemistry }
3 { Modified MATCH-MPIC mechansim based on: von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J. 2003: A model
4 for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and
5 ozone results. J. Geophys. Res., 108, doi:10.1029/2002JD002893 }
6 { this file is based on RvKs Version, 09/2003: Time-stamp: <2004-06-28 16:27:25 kuhlmann> }
7 { NOTE: equation numbering is not used by KPP but by the budget routines in MATCH-MPIC}
9 { last changed: M. Salzmann: started adaptation for WRF-Chem, UNFINISHED!!!}
10 { !!!!WARNING: DO NOT USE UNLESS IMPLEMENTATION IS FINISHED!!!!}
11 { DO NOT YET DISTRIBUTE }
12 { hetn2o5 not implemented, not all photolysis rates calculated, not all species initialized/emitted, soluble species not scavenged, ... }
14 { --------------------- background: CH4-CO-NOx-HOx chemistry ------------------------- }
15 { hetn2o5 NOT IMPLEMENTED}
17 {1} O3 + hv = O1D : j(Pj_o31d) ;
18 {2} O1D + M = O3 : .7902_dp*2.1D-11*exp(115._dp/TEMP)+.20946_dp*3.2D-11*exp(70._dp/TEMP); {new:Rav02,JPL03, also added~1% to N2-rate due to noble gases}
19 {3} O1D + H2O = 2 OH : 2.2D-10; {JPL03}
20 {4} M {=O2} + hv = 2 O3 : min(1.D-11,.20946_dp*j(Pj_O2)); {xxc}
21 {5} O3 + OH = HO2 : 1.7D-12*exp(-940._dp/TEMP); {JPL03new}
22 {6} O3 + HO2 = OH : 1.0D-14*exp(-490._dp/TEMP); {JPL03new}
23 {7} HO2 + OH = H2O : 4.8D-11*exp(250._dp/TEMP); {JPL03}
24 {8} 2 HO2 = H2O2 : RHO2HO2(C_M,C_H2O,TEMP);{JPL03+new:Chris02}
25 {9} H2O2 + hv = 2 OH : j(Pj_h2o2);
26 {10} OH + H2O2 = HO2 : 2.9D-12*exp(-160._dp/TEMP); {JPL03}
27 {11} OH + CO = HO2 {+ CO2} : 1.57D-13 + 3.54D-33*C_M; {McCabe et al. 2001}
28 {12} CH4 + OH = MeO2 + H2O : 1.85D-20*exp(2.82_dp*log(TEMP)-987._dp/TEMP); {Atkinson 2003, ACP}
29 {13} CH4 + O1D = .75 MeO2 + .75 OH + .25 HCHO + .4 HO2 {+.05 H2} : 1.5D-10; {JPL03=Atk02, new}
30 {14} MeO2 + HO2 = MeOOH {+ O2} : 4.1D-13*exp(750._dp/TEMP)/(1._dp+1._dp/497.7_dp*EXP(1160._dp/TEMP)); {JPL03new, br.: Elrod et al. 2001}
31 {15} MeO2 + HO2 = HCHO + H2O {+ O2} : 4.1D-13*exp(750._dp/TEMP)/(1._dp+497.7_dp*EXP(-1160._dp/TEMP)); {JPL03new, br.: Elrod et al. 2001}
32 {16} MeO2 + NO = HCHO + HO2 + NO2 : 2.8D-12*exp(300._dp/TEMP); {JPL03, MCM.1% MeONO2,J.Crowley<1D-5,+oth.path.,Tyn01:<0._dp5%}
33 {17} 2 MeO2 = 2 HCHO + 2 HO2 : 9.5D-14*exp(390._dp/TEMP)/(1._dp+1._dp/26.2_dp*EXP(1130._dp/TEMP)); {JPL03}
34 {18} 2 MeO2 = HCHO + MeOH : 9.5D-14*exp(390._dp/TEMP)/(1._dp+26.2_dp*EXP(-1130._dp/TEMP)); {JPL03}
35 {19} MeO2 + NO3 = HCHO + HO2 + NO2 : 1.3D-12; {Atk02}
36 {20} MeOOH + hv = HCHO + HO2 + OH : j(Pj_ch3o2h); {xxc}
37 {21} MeOOH + OH = .7 MeO2 + .3 HCHO + .3 OH : RCH3OOHOH(TEMP); {JPL03, potentially CH3OH as product, see comment below}
38 {22} HCHO + hv {+ 2 O2} = CO + 2 HO2 : j(Pj_ch2or);
39 {23} HCHO + hv = CO {+ H2} : j(Pj_ch2om);
40 {24} HCHO + OH = CO + HO2 + H2O : 9.52D-18*exp(2.03_dp*log(TEMP)+636._dp/TEMP); {new: Sivakumaran et al. 2003}
41 {25} HCHO + NO3 = HNO3 + CO + HO2 : 3.4D-13*exp(-1900._dp/TEMP); {JPL03, E/R ass. same as ALD+NO3}
42 {26} NO + O3 = NO2 {+O2} : 3.0D-12*exp(-1500._dp/TEMP); {JPL03}
43 {27} NO + HO2 = NO2 + OH : 3.5D-12*exp(250._dp/TEMP); {JPL03}
44 {28} NO2 + hv = NO + O3 : j(Pj_no2); {xxc}
45 {29} NO2 + O3 = NO3 : 1.2D-13*exp(-2450._dp/TEMP); {JPL03}
46 {30} NO2 + OH {+M} = HNO3 : TROE2(C_M,TEMP,.933_dp,2.85D-30,-2.67_dp,3.13D-11,363._dp); {Dransfield '99}
47 {31} NO2 + HO2 {+M} = HNO4 : RJPL(1.8D-31,3.2_dp,4.7D-12,1.4_dp,C_M,TEMP);{JPL03}
48 {32} HNO3 + hv = OH + NO2 : j(Pj_hno3);
49 {33} OH + HNO3 {+M} = NO3 : RHNO3(C_M,TEMP); {JPL03}
50 {34} NO3 + hv {+O2} = NO2 + O3 : j(Pj_no3o);
51 {35} NO3 + hv = NO : j(Pj_no3o2);
52 {36} NO3 + NO = 2 NO2 : 1.5D-11*exp(170._dp/TEMP); {JPL03}
53 {37} NO3 + NO2 {+M} = N2O5 : RJPL(2.D-30,4.4_dp,1.4D-12,.7_dp,C_M,TEMP); {JPL03}
54 {38} NO3 + HO2 = NO2 + OH : 3.5D-12; {JPL03, maybe some (<30%) HNO3 formation, see comment C14}
55 {39} N2O5 + hv = NO3 + NO2 : j(Pj_N2O5); {xxc}
56 {40} N2O5 {+M} = NO3 + NO2 : RJPL(2.D-30,4.4_dp,1.4D-12,.7_dp,C_M,TEMP)/(3.D-27*exp(10990._dp/TEMP)); {JPL03}
57 {41} N2O5 = 2 HNO3 : 3.D-7*TEMP; {xxc hetn2o5(i) ~10D-5,Dentener&Crutzen93}
58 {42} N2O5 + H2O = 2 HNO3 : 2.5D-22+C_H2O*1.8D-39; {Wahner et al. 1998, JPL03 <2.D-21}
59 {43} HNO4 + hv = .39 NO3 + .39 OH + .61 NO2 + .61 HO2 : j(Pj_HNO4_2);{xxc Atk97,p.599,S.Sander:.56 +-.17 NO2 yield}
60 {44} HNO4 {+M} = HO2 + NO2 : RJPL(1.8D-31,3.2_dp,4.7D-12,1.4_dp,C_M,TEMP)/(2.1D-27*exp(10900._dp/TEMP)); {JPL03}
61 {45} HNO4 + OH = NO2 + H2O {+O2} : 1.3D-12*exp(380._dp/TEMP); {JPL03, poss. H2O2+NO3}
62 {46} M{=H2} + OH {+O2} = HO2 + H2O : 5.31D-7*5.5D-12*exp(-2000._dp/TEMP); {JPL03, fixed H2 (531ppb) Novelli '99}
63 {47} MeOH + OH = HCHO + HO2 : 7.3D-12*exp(-620._dp/TEMP); {JPL03new, possibly other products}
64 {48} MeO2 + NO2 = MeO2NO2 : RJPL(1.3D-30,4.0_dp,7.5D-12,2.0_dp,C_M,TEMP); {Tyn01 /= JPL03}
65 {49} MeO2NO2 {+M} = MeO2 + NO2 : RJPL(1.3D-30,4.0_dp,7.5D-12,2.0_dp,C_M,TEMP)/(1.3D-28*exp(11200._dp/TEMP)); {JPL03}
66 {50} MeO2NO2 + hv = .61 MeO2 + .61 NO2 + .39 HCHO + .39 NO3 : j(Pj_HNO4_2); {as HNO4+hv, overtones uncertain}
68 { --------- isoprene oxidation chemistry --- ref. in Poeschl et al 2000: "MIM" ----- }
70 {51} ISOP + OH = ISO2 : 2.54D-11*exp(410._dp/TEMP);
71 {52} ISOP + NO3 = ISON : 3.03D-12*exp(-446._dp/TEMP);
72 {53} ISOP + O3 = .28 HCOOH + .65 MVK + .1 MVKO2 + .1 PA + .14 CO + .58 HCHO + .09 H2O2 + .08 MeO2 + .25 OH + .25 HO2 {ca. +.22 CO2} : 7.86D-15*exp(-1913._dp/TEMP);
73 {54} ISO2 + HO2 = ISOOH : 2.22D-13*exp(1300._dp/TEMP);{new: Boyd et al.,2003, T: generic}
74 {55} ISO2 + NO = .88 NO2 + .88 MVK + .88 HCHO + .88 HO2 + .12 ISON : 2.54D-12*exp(360._dp/TEMP); {new: 12% nitrates: Sprengnether et al. 2002}
75 {56} ISOOH + hv = MVK + HCHO + HO2 + OH : j(Pj_ch3o2h);
76 {57} ISOOH + OH = MVK + OH : 1.D-10;
77 {58} MVK + OH = MVKO2 : .5_dp*(4.1D-12*exp(452._dp/TEMP)+1.9D-11*exp(175._dp/TEMP));
78 {59} MVK + hv = PA + HCHO + CO + HO2 : .019_dp*j(Pj_ch2om)+.015_dp*j(Pj_MGLO);{rvk99=.0372*.5,.0305*.5} {xxc}
79 {60} MVK + O3 = .45 HCOOH + .9 MGLO + .1 PA + .19 OH + .22 CO + .32 HO2 {ca. +.15 CO2} : .5_dp*(1.36D-15*exp(-2112._dp/TEMP)+7.51D-16*exp(-1521._dp/TEMP));
80 {61} MVKO2 + NO = NO2 + .25 PA + .25 ACETOL + .75 HCHO + .25 CO + .75 HO2 + .5 MGLO {ca. +.125 CO2} : 2.54D-12*exp(360._dp/TEMP);
81 {62} MVKO2 + HO2 = MVKOOH : 1.82D-13*exp(1300._dp/TEMP);
82 {63} MVKOOH + hv = OH + .5 MGLO + .25 ACETOL + .75 HCHO + .75 HO2 + .25 PA + .25 CO {ca. +.125 CO2} : j(Pj_ch3o2h);
83 {64} MVKOOH + OH = MVKO2 : 3.D-11;
84 {65} ISON + OH = ACETOL + NACA : 1.3D-11;
85 {66} ISON + hv = MVK + HCHO + NO2 + HO2 : 3.7_dp*j(Pj_PAN) ;{rvk99=iC3H7ONO2}
86 {67} MVKO2 + NO2 = MPAN : .25_dp*RJPL(9.7D-29,5.6_dp,9.3D-12,1.5_dp,C_M,TEMP);
87 {68} 2 ISO2 = 2 MVK + HCHO + HO2 {+CO2} : 2.D-12;
88 {69} 2 MVKO2 = ACETOL + MGLO + .5 CO + .5 HCHO + HO2 {+CO2} : 2.D-12;
89 {70} ISO2 + MeO2 = .5 MVK + 1.25 HCHO + HO2 + .25 MGLO + .25 ACETOL + .25 MeOH : 2.D-12;{rate:~other RO2+MeO2 reactions; Villnave&Lesclaux96,products:Poeschl}
90 {71} MVKO2 + MeO2 = .5 MGLO + .375 ACETOL + .125 PA + 1.125 HCHO + .875 HO2 + .125 CO + .25 MeOH : 2.D-12;{same citation as above}
92 { --- next part is actually ethane chemistry, but also necessary for isoprene-only runs ------------ }
94 {72} MGLO + OH = PA + CO : 8.4D-13*exp(830._dp/TEMP);{Tyndall et al.,Int.J.Chem.Kinet.1995,Atk99: 1.5D-11,for products: see also Atk97,p.621,Atk02: 1.5D-11 +-20\%}
95 {73} MGLO + hv = PA + CO + HO2 : j(Pj_MGLO); {xxc}
96 {74} ACETOL + OH = MGLO + HO2 : 3.D-12; {Atk02, Orlando et al. 1999: 2-3% PA+HCHO}
97 {75} ACETOL + hv = PA + HCHO + HO2 : .074_dp*j(Pj_ch2or); {rvk 99,new: Orlando, 1999 q.y. 0.65 included}
98 {76} PA + HO2 = PAA : 4.3D-13*exp(1040._dp/TEMP)/(1._dp+1._dp/37._dp*exp(660._dp/TEMP)); {Tyn01=JPL03}
99 {77} PA + HO2 = CH3COOH + O3 : 4.3D-13*exp(1040._dp/TEMP)/(1._dp+37._dp*exp(-660._dp/TEMP)); {Tyn01=JPL03}
100 {78} PA + NO = MeO2 + NO2 {+CO2} : 8.1D-12*exp(270._dp/TEMP); {Tyn01=JPL03}
101 {79} PA + NO2 = PAN : RJPL(9.7D-29,5.6_dp,9.3D-12,1.5_dp,C_M,TEMP);{JPL03new /= Tyn01, Tyn01 is 0-14\% faster,14\% in PBL}
102 {80} PA + MeO2 = HCHO + HO2 + MeO2 : 2.0D-12*exp(500._dp/TEMP)/(1._dp+1._dp/2.2D6*exp(3820._dp/TEMP));{Tyn01=JPL03,br.JPL97; JPL03: 0.9 at 298K}
103 {81} PA + MeO2 = CH3COOH + HCHO : 2.0D-12*exp(500._dp/TEMP)/(1._dp+2.2D6* exp(-3820._dp/TEMP));{Tyn01=JPL03,br.:JPL97; JPL03: 0.1 at 298K}
104 {82} 2 PA = 2 MeO2 { + 2 CO2 +O2} : 2.5D-12*exp(500._dp/TEMP); {Tyn01 /= JPL03 =2.9D-12*exp(500/T), typo???}
105 {83} PA + NO3 = MeO2 + NO2 {+CO2} : 4.D-12; {K&S 96,MCM}
106 {84} PAA + hv = MeO2 + OH : .025_dp*j(Pj_ch2or);{rvk99,Giguerre&Olmos56 extrapol. 300-340nm}
107 {85} PAA + OH = PA : 3.8D-12*exp(200._dp/TEMP);{as MeOOH+OH, different products used in RACM}
108 {86} PAN + OH = HCHO + NO2 {+CO2} : 2.D-14; {JPL03:<4.D-14(products unknown), could probably skip this}
109 {87} PAN + hv = PA + NO2 : j(Pj_PAN);
110 {88} PAN {+M} = PA + NO2 : RJPL(9.7D-29,5.6_dp,9.3D-12,1.5_dp,C_M,TEMP)/(9.D-29*exp(14000._dp/TEMP)); {JPL03}
111 {89} MPAN + OH = ACETOL + NO2 {+CO2} : 3.2D-11;{new: Orlando02, 9x faster than old(MCM) rate, other products! PA,HCHO}
112 {90} MPAN {+M} = MVKO2 + NO2 : RJPL(9.7D-29,5.6_dp,9.3D-12,1.5_dp,C_M,TEMP)/(9.D-29*exp(14000._dp/TEMP)); {Roberts&Bertman92}
113 {91} MPAN + hv = ACETOL + NO2 {+CO2} : j(Pj_PAN); {as PAN+hv,MCM}
114 {92} CH3COOH + OH = MeO2 + H2O {+CO2} : 4.D-13*exp(200._dp/TEMP); {JPL03}
115 {93} HCOOH + OH = HO2 {+CO2} : 4.D-13; {JPL03}
116 {94} NACA + OH = NO2 + HCHO + CO : 5.6D-12*exp(270._dp/TEMP); {MIM, as CH3CHO+OH}
117 {95} NACA + hv = NO2 + HCHO + CO : .19_dp*j(Pj_ch2or);{ass.=j(ALD)}
119 {-------------- ethane chemistry --(part that is not involved in isoprene-only runs------------ }
121 {96} C2H6 + OH = EtO2 + H2O : 1.49D-17*TEMP*TEMP*exp(-499._dp/TEMP); {Atkinson 2003, ACP}
122 {97} EtO2 + HO2 = EtOOH : 7.5D-13*exp(700._dp/TEMP); {JPL03~Tyn01}
123 {98} EtO2 + MeO2 = .75 HCHO + HO2 + .75 ALD + .25 MeOH {+ .25 EtOH} : 1.6D-13*exp(195._dp/TEMP);{K&S96+JPL03}
124 {99} EtO2 + PA = .82 MeO2 + ALD + .82 HO2 + .18 CH3COOH : 4.9D-12*exp(211._dp/TEMP);{Atk99(=Villnave&Lesclaux96),K&S96 for E/A, Prod.}
125 {100} EtO2 + NO = ALD + HO2 + NO2 : 2.7D-12*exp(350._dp/TEMP); {Tyn01, MCM: 0.9%EtONO2, Tyn01:<1.4%}
126 {101} EtO2 + NO3 = ALD + HO2 + NO2 : 2.3D-12; {Atk99}
127 {102} ALD + OH = PA + H2O : 5.6D-12*exp(270._dp/TEMP); {JPL03,CH3+HCOOH channel <0.03, HO2+CH3COOH <0.02, IUPAC based on Crowley: 4.4D-12*exp(365+-40/TEMP)}
128 {103} ALD + hv = MeO2 + HO2 + CO : .19_dp*j(Pj_ch2or); {rvk 99}
129 {104} ALD + NO3 = PA + HNO3 : 1.4D-12*exp(-1900._dp/TEMP); {JPL03}
130 {105} EtOOH + hv = ALD + HO2 + OH : j(Pj_ch3o2h);
131 {106} EtOOH + OH = .3 EtO2 + .7 ALD + .7 OH : RCH3OOHOH(TEMP);{as MeOOH+OH,br.:~MCM~Poisson2000}
133 { -------------------------- propane chemistry (only iso-branch) --------------------- }
135 {107} C3H8 + OH = .82 PrO2 + .18 EtO2 + H2O : 1.65D-17*TEMP*TEMP*exp(-87._dp/TEMP);{rate: Atkinson 2003 (ACP),EtO2~nPrO2->PAN param. PPN-formation}
136 {108} PrO2 + NO = .96 ACET + .96 HO2 + .96 NO2 + .04 PrONO2 : 2.7D-12*exp(360._dp/TEMP); {rate:Atk99,PrO2=i-PrO2,yields for 298K,1atm}
137 {109} PrO2 + HO2 = PrOOH : 1.9D-13*exp(1300._dp/TEMP); {Atk97,generic,p.225}
138 {110} PrO2 + MeO2 = ACET + .8 HCHO + .8 HO2 + .2 MeOH : 2.0D-14*exp(-886._dp/TEMP); {rate:K&S96+JPL03,branch:~Poisson2000}
139 {111} PrOOH + hv = ACET + HO2 + OH : j(Pj_ch3o2h);
140 {112} PrOOH + OH = 0.3 PrO2 + 0.7 ACET + 0.7 OH : RCH3OOHOH(TEMP); {ass. same as MeOOH+OH,br.as EtOOH+OH}
141 {113} PrONO2 + hv = ACET + NO2 + HO2 : 3.7_dp*j(Pj_PAN);{rvk99}
142 {114} PrONO2 + OH = ACET + NO2 : 6.2D-13*exp(-230._dp/TEMP); {Atk99}
143 {115} ACET + OH = ACETO2 + H2O : 1.33D-13+3.82D-11*exp(-2000._dp/TEMP); {JPL03new~Gierczak03, 0.96+-0.11 yield, acetic acid <1\%, possibly ~<5\% PA+CH3OH (methanol)?}
144 {116} ACET + hv = PA + MeO2 : j(Pj_ACET);{j(i,14) xxc}
145 {117} ACETO2 + NO = NO2 + PA + HCHO : 2.9D-12*exp(300._dp/TEMP);{JPL03~=Tyn01: 2.8D-12...}
146 {118} ACETO2 + HO2 = ACETP : 8.6D-13*exp(700._dp/TEMP);{JPL03=Tyn01}
147 {119} ACETO2 + MeO2 = .5 MGLO + .5 MeOH + .3 PA + .8 HCHO + .3 HO2 + .2 ACETOL : 7.5D-13*exp(500._dp/TEMP);{JPL03=Tyn01}
148 {120} ACETP + OH = .3 ACETO2 + .7 MGLO + .7 OH : RCH3OOHOH(TEMP);{as MeOOH+OH, branching: ~Poisson2000}
149 {121} ACETP + hv = PA + HO2 + OH : j(Pj_ch3o2h);
151 { -------------------------- propylene chemistry ------------------------------------- }
153 {122} C3H6 + OH {+M + O2} = C3H6O2 : RALKE(8.D-27,3.5_dp,3.D-11,0.5_dp,C_M,TEMP); {Atk99}
154 {123} C3H6 + O3 = .57 HCHO + .47 ALD + .33 OH + .26 HO2 + .07 MeO2 + .06 EtO2 + .23 PA + .04 MGLO + .06 CH4 + .31 CO + .22 HCOOH + .03 MeOH {+0.13CO2} : 6.5D-15*exp(-1900._dp/TEMP);{JPL03,Zaveri&Peters99,OLET+O3}
155 {124} C3H6 + NO3 = ONIT : 4.6D-13*exp(-1155._dp/TEMP);{Atk99}
156 {125} C3H6O2 + NO = .98 ALD + .98 HCHO + .98 HO2 + .98 NO2 + .02 ONIT : 4.2D-12*exp(180._dp/TEMP);{NCAR Master Mec.,Nitr.Yield:MCM}
157 {126} C3H6O2 + HO2 = C3H6OOH : 6.5D-13*exp(650._dp/TEMP); {NCAR Master Mec.}
158 {127} C3H6OOH + OH = .5 C3H6O2 + .5 ACETOL + .5 OH + H2O : 3.8D-12*exp(200._dp/TEMP); {NCAR Master Mec.}
159 {128} C3H6OOH + hv = ALD + HCHO + OH + HO2 : j(Pj_ch3o2h);{products: MCM}
161 { -------------------------- ethene chemistry (parameterized into C3H6) ------------- }
163 {129} C2H4 + OH {+M+O2} = .6666667 C3H6O2 : RJPL(1.D-28,0.8_dp,8.8D-12,0._dp,C_H2O,TEMP); {JPL03, see IMAGES/MOZART}
164 {130} C2H4 + O3 = HCHO + .22 HO2 + 0.12 OH + .23 CO + .54 HCOOH {+.1 H2 + 0.23CO2} : 1.2D-14*exp(-2630._dp/TEMP);{JPL03,Neeb98~Z&P99}
166 { ------------- higher alkanes chemistry (n-butane as surrogate) --------------------- }
168 {131} C4H10 + OH = C4H9O2 + H2O : 1.81D-17*TEMP*TEMP*exp(114._dp/TEMP);{Atkinson 2003, ACP, corrected sign}
169 {132} C4H9O2 + NO = .84 NO2 + .56 MEK + .56 HO2 + .28 EtO2 + .84 ALD + .16 ONIT : 2.7D-12*exp(360._dp/TEMP);{16%Nitr.Yield:Z&P99,other yields:Poisson2000(1:3)}
170 {133} C4H9O2 + HO2 = C4H9OOH : 1.9D-13*exp(1300._dp/TEMP); {Atk97,generic,p.225}
171 {134} C4H9O2 + MeO2 = .88 MEK + .68 HCHO + 1.23 HO2 + .12 ALD + .12 EtO2 + .18 MeOH : 9.46D-14*exp(431._dp/TEMP);{branch:~Poisson2000}
172 {135} C4H9OOH + OH = .15 C4H9O2 + .85 MEK + .85 OH + .85 H2O : RCH3OOHOH(TEMP);{as MeOOH,branch.:~MCM+Poisson2000}
173 {136} C4H9OOH + hv = OH + .67 MEK + .67 HO2 + .33 EtO2 + .33 ALD : j(Pj_ch3o2h) ;
174 {137} MEK + hv = PA + EtO2 : .42_dp*j(Pj_ch2or);{rvk99,~7.*J_ACETONE}
175 {138} MEK + OH = MEKO2 : 1.3D-12*exp(-25._dp/TEMP);{Atk02}
176 {139} MEKO2 + NO = .985 ALD + .985 PA + .985 NO2 + .015 ONIT : 2.7D-12*exp(360._dp/TEMP); {same as PrO2+NO,Atk99,Nitr.Yield:MCM}
177 {140} MEKO2 + HO2 = MEKOOH : 1.9D-13*exp(1300._dp/TEMP); {Atk97,generic,p.225}
178 {141} MEKOOH + OH = .8 MeCOCO + .8 OH + .2 MEKO2 : RCH3OOHOH(TEMP); {as MeOOH,branch.:~MCM~Poisson2000}
179 {142} MEKOOH + hv = PA + ALD + OH : j(Pj_ch3o2h); {same as MeOOH}
180 {143} MeCOCO + hv = 2 PA : 2.15_dp * j(Pj_MGLO); {MCM;ratio:MGLO+hv}
181 {144} ONIT + OH = MEK + NO2 {+H2O} : 1.7D-12; {Atk99,for 1-C4H9ONO2}
182 {145} ONIT + hv = NO2 + .67 MEK + .67 HO2 + .33 EtO2 + .33 ALD : 3.7_dp*j(Pj_PAN);{as i-C3H7ONO2,prod.:wie:Poisson}
184 { ----------------------------------- comments ---------------------------------------
185 General procedure: priority for the use of reaction rates and product distributions
187 1. JPL2003, Sander et al. 2003, Evaluation Number 14
188 2. Tyn01: Tyndall et al. 2001 (JGR,106,12157--12182)
189 3. Atkinson et al. 1999, Web Version - August 1999
190 4. Atkinson et al. 1997 (Book)
191 5. MCM, Jenkins et al. 1997, e.g. nitrate yields and branching ratios of RO2+RO2
192 6. K&S96: Kirchner and Stockwell 1996, for some RO2+R'O2 rates or estimate of E/R
194 Some mechanistic parts were based on and other sources:
195 - isoprene Chemistry: MIM (Mainz Isoprene Mechanism), Poeschl et al. 2000
196 changes: - added ISO2+MeO2 and MVKO2+MeO2 reactions
197 - use newer nitrate yield from Sprengnether et al. 2002
198 - simple alkene representation: NCAR Master Mechanism/MOZART/IMAGES, except:
199 C3H6+O3: used products of Zaveri & Peters, 1999 (CBM-Z, denoted Z&P99)
201 C2H4+O3: used products of Neeb et al. 1998
202 - n-butane mechanism from Poisson et al 2000 (JAC)
203 but using fixed product yields for RO2+RO2 reactions (checked with MCM)
205 average alkyl nitrate formation of 16% assumed (Zaveri & Peters, 1999)
207 Other single exceptions
208 - some photolysis rates based on correlations to existing ones: von Kuhlmann et al.'03
209 - NO2 + OH : used full Troe expression from Dansfield et al. 1999
210 - n-C3H7O2 is parameterised into C2H5O2, thus giving PAN instead of PPN
211 - higher alkohols (C>=2) and higher aldehydes (C>=3) omitted (--> small loss of C)
213 Recent changes (older changes see in older equation files) ----------------------------
214 NMHC7 --> NMHC8 (~ 05/2001)
215 - included O2 photolysis
216 - use Mentel et al. 1996 for N2O5 + H2O (--> 0.1 of het. rate, glob. ave.)
217 (later a minor update to Wahner et al. 1998 made)
218 NMHC8 --> NMHC9 (09/2003)
219 - full update to JPL 2003 recommendations (comments: JPL03new = changed rate,
220 JPL03 = old rate unchanged)
221 - updated alkane+OH rates: Atkinson 2003 (ACPD)
222 - CO + OH rate updated to McCabe et al. 2001 (GRL,28,3135-3138)
223 - 2 HO2 --> H2O2 rate updated to results of Christensen et al. (2002)
224 (GRL,29(9),10.1029/2001GL014525)
225 - O(1D)+N2 rate updated to Ravishankara et al. 2002 (GRL,15,10.1029/2002GL014850),
226 also rate adjusted for noble gases (assumed like N2)
227 - replaced dangerous F(1),F(2) expressions (--> C_M,C_H2O)
228 - removed dangerous RCONST expressions (now repeat expression or use statement function)
229 - added HCHO channel in CH3O3 + HO2 based on Elrod et al. 2001
230 (--> 0.11 yield at 298K, 0.31 at 218K)
231 - removed acetic acid channel in ACET+OH based on Gierczak et al. 2003.
232 - acetol as product of AcO2+MeO2 and C3H6OOH+OH added
233 - acetol quantum yield (average: 0.65) of Orlando et al. (1999) added
234 (Atm.Env.,33,1621-1629)
235 - new rate for HCHO + OH (Sivakumaran et al. 2003, soon in Atkinson et al. 200X eval)
236 - increased nitrate yield from ISO2+NO to 12% (was 4.4%!) (Sprengnether et al. 2002)
237 - use Boyd et al. (2003) measurement for ISO2 + HO2 instead of MCM estimate
238 - MPAN + OH rate now based on Orlando et al. (2002) measurement
239 (previously MCM estimate, now 9x faster)
240 - added C3H6OOH + hv (for consistency)
241 - added CH4 + O(1D) reaction (better methane loss in the stratosphere)
242 - added chemistry of CH3O2NO2 (=MeO2NO2): thermal equilibrium, photolysis as HNO4
243 - Note: MeO2NO2 + OH = HCHO + NO3 + HO2 not included, guessed rate constant based on
244 analogies: CH3OH vs CH3ONO2, CH3OH vs CH3O2H: ~1.D-13 (8D-14 to 3D-13) --> too slow
245 NMHC9 --> NMHC9(b): some minor additional changes
246 - butane + OH rate corrected
247 - EtO2 + MeO2 rate and products changed using methodology of Kirchner and Stockwell 96, but
248 more recent MeO2 + MeO2 data from JPL03 (from Tyndall et al. 2001)
249 - dto. for PrO2 + MeO2, here additionally consider that only i-PrO2 (secondary radicals) are treated
250 - changed order (MeO2NO2 now after background CH4-CO-NOx-HOx chemistry)
252 Other comments, future improvements:
253 - could expand ethene chemistry (following Orlando 1999, instead of the simple param.)
254 - treatment of nitratoalkyl peroxy radicals (Zaveri & Peters 99: ONIT+OH-->NAP ...)
255 - potentially methanol formed from MeOOH + OH
256 ( e.g. --> = .18 MeO2 + .27 HCHO + .27 OH + .55 MeOH + .55 HO2
257 this product distrib. was suggested by P. Warneck + Crutzen, and tested:
258 --> gives too much MeOH in UT )
259 - possibly include methyl nitrate (arctic marine source of NOx)
260 - check for MIM reduction (see Geiger et al., 2003), but dont cut photolysis rates
261 - check effect of PAN+hv rate and product uncertainties:
262 rate: try 2x old, products possibly some NO3 produced: Harwood et al., JPC-A, 2003
263 0.41 (MeO2 + NO3 + CO2) + 0.59 (PA + NO2) at 308 nm (0.19 NO3 at 248 nm)