1 !WRF:model_layer:physics
5 !-------------------------------------------------------------------------------
6 subroutine gwdo(u3d,v3d,t3d,qv3d,p3d,p3di,pi3d,z, &
8 dtaux3d,dtauy3d,dusfcg,dvsfcg, &
9 var2d,oc12d,oa2d1,oa2d2,oa2d3,oa2d4,ol2d1,ol2d2,ol2d3,ol2d4, &
10 sina,cosa,znu,znw,p_top, &
12 dt,dx,kpbl2d,itimestep, &
13 ids,ide, jds,jde, kds,kde, &
14 ims,ime, jms,jme, kms,kme, &
15 its,ite, jts,jte, kts,kte)
16 !-------------------------------------------------------------------------------
18 !-------------------------------------------------------------------------------
20 !-- u3d 3d u-velocity interpolated to theta points (m/s)
21 !-- v3d 3d v-velocity interpolated to theta points (m/s)
22 !-- t3d temperature (k)
23 !-- qv3d 3d water vapor mixing ratio (kg/kg)
24 !-- p3d 3d pressure (pa)
25 !-- p3di 3d pressure (pa) at interface level
26 !-- pi3d 3d exner function (dimensionless)
27 !-- rublten u tendency due to pbl parameterization (m/s/s)
28 !-- rvblten v tendency due to pbl parameterization (m/s/s)
29 !-- sina sine rotation angle
30 !-- cosa cosine rotation angle
31 !-- znu eta values (sigma values)
32 !-- cp heat capacity at constant pressure for dry air (j/kg/k)
33 !-- g acceleration due to gravity (m/s^2)
34 !-- rd gas constant for dry air (j/kg/k)
35 !-- z height above sea level (m)
36 !-- rv gas constant for water vapor (j/kg/k)
38 !-- dx model grid interval (m)
39 !-- ep1 constant for virtual temperature (r_v/r_d - 1) (dimensionless)
40 !-- ids start index for i in domain
41 !-- ide end index for i in domain
42 !-- jds start index for j in domain
43 !-- jde end index for j in domain
44 !-- kds start index for k in domain
45 !-- kde end index for k in domain
46 !-- ims start index for i in memory
47 !-- ime end index for i in memory
48 !-- jms start index for j in memory
49 !-- jme end index for j in memory
50 !-- kms start index for k in memory
51 !-- kme end index for k in memory
52 !-- its start index for i in tile
53 !-- ite end index for i in tile
54 !-- jts start index for j in tile
55 !-- jte end index for j in tile
56 !-- kts start index for k in tile
57 !-- kte end index for k in tile
59 !-------------------------------------------------------------------------------
60 integer, intent(in ) :: ids,ide, jds,jde, kds,kde, &
61 ims,ime, jms,jme, kms,kme, &
62 its,ite, jts,jte, kts,kte
63 integer, intent(in ) :: itimestep
65 real, intent(in ) :: dt,dx,cp,g,rd,rv,ep1,pi
67 real, dimension( ims:ime, kms:kme, jms:jme ) , &
68 intent(in ) :: qv3d, &
73 real, dimension( ims:ime, kms:kme, jms:jme ) , &
76 real, dimension( ims:ime, kms:kme, jms:jme ) , &
77 intent(inout) :: rublten, &
79 real, dimension( ims:ime, kms:kme, jms:jme ) , &
80 intent(inout) :: dtaux3d, &
83 real, dimension( ims:ime, kms:kme, jms:jme ) , &
87 integer, dimension( ims:ime, jms:jme ) , &
89 real, dimension( ims:ime, jms:jme ) , &
90 intent(inout ) :: dusfcg, &
93 real, dimension( ims:ime, jms:jme ) , &
94 intent(in ) :: var2d, &
96 oa2d1,oa2d2,oa2d3,oa2d4, &
97 ol2d1,ol2d2,ol2d3,ol2d4, &
100 real, dimension( kms:kme ) , &
102 intent(in ) :: znu, &
105 real, optional, intent(in ) :: p_top
109 real, dimension( its:ite, kts:kte ) :: delprsi, &
111 real, dimension( its:ite, kts:kte ) :: ugeo, vgeo, dudt, dvdt, dtaux, dtauy
112 real, dimension( its:ite ) :: dusfc, dvsfc
113 real, dimension( its:ite, kts:kte+1 ) :: pdhi
114 real, dimension( its:ite, 4 ) :: oa4, &
116 integer :: i,j,k,kpblmax
119 if (znu(k).gt.0.6) kpblmax = k + 1
125 if (k.le.kte)pdh(i,k) = p3d(i,k,j)
126 pdhi(i,k) = p3di(i,k,j)
132 delprsi(i,k) = pdhi(i,k)-pdhi(i,k+1)
133 ! rotate winds to zonal/meridional
134 ugeo(i,k) = u3d(i,k,j)*cosa(i,j) - v3d(i,k,j)*sina(i,j)
135 vgeo(i,k) = u3d(i,k,j)*sina(i,j) + v3d(i,k,j)*cosa(i,j)
141 oa4(i,1) = oa2d1(i,j)
142 oa4(i,2) = oa2d2(i,j)
143 oa4(i,3) = oa2d3(i,j)
144 oa4(i,4) = oa2d4(i,j)
145 ol4(i,1) = ol2d1(i,j)
146 ol4(i,2) = ol2d2(i,j)
147 ol4(i,3) = ol2d3(i,j)
148 ol4(i,4) = ol2d4(i,j)
150 call gwdo2d(dudt=dudt(its,kts),dvdt=dvdt(its,kts) &
151 ,dtaux2d=dtaux(its,kts),dtauy2d=dtauy(its,kts) &
152 ,u1=ugeo(its,kts),v1=vgeo(its,kts) &
153 ,t1=t3d(ims,kms,j),q1=qv3d(ims,kms,j) &
154 ,del=delprsi(its,kts) &
155 ,prsi=pdhi(its,kts) &
156 ,prsl=pdh(its,kts),prslk=pi3d(ims,kms,j) &
159 ,var=var2d(ims,j),oc1=oc12d(ims,j) &
161 ,dusfc=dusfc(its),dvsfc=dvsfc(its) &
162 ,g_=g,cp_=cp,rd_=rd,rv_=rv,fv_=ep1,pi_=pi &
163 ,dxmeter=dx,deltim=dt &
164 ,kpbl=kpbl2d(ims,j),lat=j &
165 ,ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde &
166 ,ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme &
167 ,its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte )
170 ! rotate tendencies from zonal/meridional to model grid
171 rublten(i,k,j) = rublten(i,k,j)+dudt(i,k)*cosa(i,j) + dvdt(i,k)*sina(i,j)
172 rvblten(i,k,j) = rvblten(i,k,j)-dudt(i,k)*sina(i,j) + dvdt(i,k)*cosa(i,j)
173 dtaux3d(i,k,j) = dtaux(i,k)*cosa(i,j) + dtauy(i,k)*sina(i,j)
174 dtauy3d(i,k,j) =-dtaux(i,k)*sina(i,j) + dtauy(i,k)*cosa(i,j)
176 dusfcg(i,j) = dusfc(i)*cosa(i,j) + dvsfc(i)*sina(i,j)
177 dvsfcg(i,j) =-dusfc(i)*sina(i,j) + dvsfc(i)*cosa(i,j)
184 !-------------------------------------------------------------------------------
185 !-------------------------------------------------------------------------------
186 subroutine gwdo2d(dudt, dvdt, dtaux2d, dtauy2d, &
189 prsi, prsl, prslk, zl, &
191 var, oc1, oa4, ol4, dusfc, dvsfc, &
192 g_, cp_, rd_, rv_, fv_, pi_, &
193 dxmeter, deltim, kpbl, lat, &
194 ids, ide, jds, jde, kds, kde, &
195 ims, ime, jms, jme, kms, kme, &
196 its, ite, jts, jte, kts, kte)
197 !-------------------------------------------------------------------------------
200 ! this code handles the time tendencies of u v due to the effect of
201 ! mountain induced gravity wave drag from sub-grid scale orography.
202 ! this routine not only treats the traditional upper-level wave breaking due
203 ! to mountain variance (alpert 1988), but also the enhanced
204 ! lower-tropospheric wave breaking due to mountain convexity and asymmetry
205 ! (kim and arakawa 1995). thus, in addition to the terrain height data
206 ! in a model grid gox, additional 10-2d topographic statistics files are
207 ! needed, including orographic standard deviation (var), convexity (oc1),
208 ! asymmetry (oa4) and ol (ol4). these data sets are prepared based on the
209 ! 30 sec usgs orography (hong 1999). the current scheme was implmented as in
210 ! choi and hong (2015), which names kim gwdo since it was developed by
211 ! kiaps staffs for kiaps integrated model system (kim). the scheme
212 ! additionally includes the effects of orographic anisotropy and
213 ! flow-blocking drag.
214 ! coded by song-you hong and young-joon kim and implemented by song-you hong
217 ! 2015-07-01 hyun-joo choi add flow-blocking drag and orographic anisotropy
220 ! choi and hong (2015), j. geophys. res.
221 ! hong et al. (2008), wea. forecasting
222 ! kim and doyle (2005), q. j. r. meteor. soc.
223 ! kim and arakawa (1995), j. atmos. sci.
224 ! alpet et al. (1988), NWP conference
225 ! hong (1999), NCEP office note 424
228 ! dudt, dvdt - non-lin tendency for u and v wind component
229 ! u1, v1 - zonal and meridional wind m/sec at t0-dt
230 ! t1 - temperature deg k at t0-dt
231 ! q1 - mixing ratio at t0-dt
232 ! deltim - time step (s)
233 ! del - positive increment of pressure across layer (pa)
234 ! kpblmax, kpbl - vertical index of pbl height
235 ! prslk, zl, prsl, prsi - pressure and height variables
236 ! oa4, ol4, omax, var, oc1 - orographic statistics
239 ! dudt, dvdt - wind tendency due to gwdo
240 ! dtaux2d, dtauy2d - diagnoised orographic gwd
241 ! dusfc, dvsfc - gw stress
243 !-------------------------------------------------------------------------------
246 integer , intent(in ) :: lat, kpblmax, &
247 ids, ide, jds, jde, &
248 kds, kde, ims, ime, &
249 jms, jme, kms, kme, &
250 its, ite, jts, jte, &
252 integer, dimension(ims:ime) , intent(in ) :: kpbl
253 real , intent(in ) :: g_, pi_, rd_, rv_, fv_,&
255 real , intent(in ) :: dxmeter
256 real, dimension(its:ite,kts:kte) , intent(inout) :: dudt, dvdt
257 real, dimension(its:ite,kts:kte) , intent( out) :: dtaux2d, dtauy2d
258 real, dimension(its:ite,kts:kte) , intent(in ) :: u1, v1
259 real, dimension(ims:ime,kms:kme) , intent(in ) :: t1, q1, prslk, zl
261 real, dimension(its:ite,kts:kte) , intent(in ) :: prsl, del
262 real, dimension(its:ite,kts:kte+1), intent(in ) :: prsi
263 real, dimension(its:ite,4) , intent(in ) :: oa4, ol4
265 real, dimension(ims:ime) , intent(in ) :: var, oc1
266 real, dimension(its:ite) , intent( out) :: dusfc, dvsfc
268 real, parameter :: ric = 0.25 ! critical richardson number
269 real, parameter :: dw2min = 1.
270 real, parameter :: rimin = -100.
271 real, parameter :: bnv2min = 1.0e-5
272 real, parameter :: efmin = 0.0
273 real, parameter :: efmax = 10.0
274 real, parameter :: xl = 4.0e4
275 real, parameter :: critac = 1.0e-5
276 real, parameter :: gmax = 1.
277 real, parameter :: veleps = 1.0
278 real, parameter :: frc = 1.0
279 real, parameter :: ce = 0.8
280 real, parameter :: cg = 0.5
281 integer,parameter :: kpblmin = 2
286 integer :: i,k,lcap,lcapp1,nwd,idir, &
289 real :: fdir,cs,rcsks, &
290 wdir,ti,rdz,temp,tem2,dw2,shr2,bvf2,rdelks, &
291 wtkbj,tem,gfobnv,hd,fro,rim,temc,tem1,efact, &
294 logical, dimension(its:ite) :: ldrag, icrilv, flag,kloop1
295 real, dimension(its:ite) :: coefm
297 real, dimension(its:ite) :: taub, xn, yn, ubar, vbar, fr, &
298 ulow, rulow, bnv, oa, ol, rhobar, &
299 dtfac, brvf, xlinv, delks,delks1, &
301 real, dimension(its:ite,kts:kte+1) :: taup
302 real, dimension(its:ite,kts:kte-1) :: velco
303 real, dimension(its:ite,kts:kte) :: bnv2, usqj, taud, rho, vtk, vtj
305 integer, dimension(its:ite) :: kbl, klowtop
306 integer, parameter :: mdir=8
307 integer, dimension(mdir) :: nwdir
308 data nwdir/6,7,5,8,2,3,1,4/
310 ! variables for flow-blocking drag
312 real, parameter :: frmax = 10.
313 real, parameter :: olmin = 1.0e-5
314 real, parameter :: odmin = 0.1
315 real, parameter :: odmax = 10.
320 real, dimension(its:ite) :: delx, dely
321 real, dimension(its:ite,4) :: dxy4, dxy4p
322 real, dimension(4) :: ol4p
323 real, dimension(its:ite) :: dxy, dxyp, olp, od
324 real, dimension(its:ite,kts:kte+1) :: taufb
326 integer, dimension(its:ite) :: komax
328 !-------------------------------------------------------------------------------
334 fdir = mdir / (2.0*pi_)
336 ! calculate length of grid for flow-blocking drag
338 delx(its:ite) = dxmeter
339 dely(its:ite) = dxmeter
340 dxy4(its:ite,1) = delx(its:ite)
341 dxy4(its:ite,2) = dely(its:ite)
342 dxy4(its:ite,3) = sqrt(delx(its:ite)**2. + dely(its:ite)**2.)
343 dxy4(its:ite,4) = dxy4(its:ite,3)
344 dxy4p(its:ite,1) = dxy4(its:ite,2)
345 dxy4p(its:ite,2) = dxy4(its:ite,1)
346 dxy4p(its:ite,3) = dxy4(its:ite,4)
347 dxy4p(its:ite,4) = dxy4(its:ite,3)
349 cleff(its:ite) = dxmeter
353 ldrag = .false. ; icrilv = .false. ; flag = .true.
355 klowtop = 0 ; kbl = 0
357 dtaux = 0. ; dtauy = 0. ; xn = 0. ; yn = 0.
358 ubar = 0. ; vbar = 0. ; rhobar = 0. ; ulow = 0.
359 oa = 0. ; ol = 0. ; taub = 0.
361 usqj = 0. ; bnv2 = 0. ; vtj = 0. ; vtk = 0.
362 taup = 0. ; taud = 0. ; dtaux2d = 0. ; dtauy2d = 0.
364 dtfac = 1.0 ; xlinv = 1.0/xl
366 ! initialize arrays for flow-blocking drag
373 vtj(i,k) = t1(i,k) * (1.+fv_*q1(i,k))
374 vtk(i,k) = vtj(i,k) / prslk(i,k)
375 rho(i,k) = 1./rd_ * prsl(i,k) / vtj(i,k) ! density kg/m**3
380 zlowtop(i) = 2. * var(i)
389 if (kloop1(i).and.zl(i,k)-zl(i,1).ge.zlowtop(i)) then
398 ! determine reference level: 2*var
401 kbl(i) = max(min(kbl(i),kpblmax),kpblmin)
404 ! determine the level of maximum orographic height
409 delks(i) = 1.0 / (prsi(i,1) - prsi(i,kbl(i)))
410 delks1(i) = 1.0 / (prsl(i,1) - prsl(i,kbl(i)))
413 ! compute low level averages within pbl
417 if (k.lt.kbl(i)) then
418 rcsks = del(i,k) * delks(i)
419 rdelks = del(i,k) * delks(i)
420 ubar(i) = ubar(i) + rcsks * u1(i,k) ! pbl u mean
421 vbar(i) = vbar(i) + rcsks * v1(i,k) ! pbl v mean
422 rhobar(i) = rhobar(i) + rdelks * rho(i,k) ! pbl rho mean
427 ! figure out low-level horizontal wind direction
429 ! nwd 1 2 3 4 5 6 7 8
430 ! wd w s sw nw e n ne se
433 wdir = atan2(ubar(i),vbar(i)) + pi_
434 idir = mod(nint(fdir*wdir),mdir) + 1
436 oa(i) = (1-2*int( (nwd-1)/4 )) * oa4(i,mod(nwd-1,4)+1)
437 ol(i) = ol4(i,mod(nwd-1,4)+1)
439 ! compute orographic width along (ol) and perpendicular (olp) the wind direction
445 olp(i) = ol4p(mod(nwd-1,4)+1)
447 ! compute orographic direction (horizontal orographic aspect ratio)
449 od(i) = olp(i)/max(ol(i),olmin)
450 od(i) = min(od(i),odmax)
451 od(i) = max(od(i),odmin)
453 ! compute length of grid in the along(dxy) and cross(dxyp) wind directions
455 dxy(i) = dxy4(i,MOD(nwd-1,4)+1)
456 dxyp(i) = dxy4p(i,MOD(nwd-1,4)+1)
459 ! saving richardson number in usqj for migwdi
463 ti = 2.0 / (t1(i,k)+t1(i,k+1))
464 rdz = 1./(zl(i,k+1) - zl(i,k))
465 tem1 = u1(i,k) - u1(i,k+1)
466 tem2 = v1(i,k) - v1(i,k+1)
467 dw2 = tem1*tem1 + tem2*tem2
468 shr2 = max(dw2,dw2min) * rdz * rdz
469 bvf2 = g_*(g_/cp_+rdz*(vtj(i,k+1)-vtj(i,k))) * ti
470 usqj(i,k) = max(bvf2/shr2,rimin)
471 bnv2(i,k) = 2.0*g_*rdz*(vtk(i,k+1)-vtk(i,k))/(vtk(i,k+1)+vtk(i,k))
475 ! compute the "low level" or 1/3 wind magnitude (m/s)
478 ulow(i) = max(sqrt(ubar(i)*ubar(i) + vbar(i)*vbar(i)), 1.0)
479 rulow(i) = 1./ulow(i)
484 velco(i,k) = 0.5 * ((u1(i,k)+u1(i,k+1)) * ubar(i) &
485 + (v1(i,k)+v1(i,k+1)) * vbar(i))
486 velco(i,k) = velco(i,k) * rulow(i)
487 if ((velco(i,k).lt.veleps) .and. (velco(i,k).gt.0.)) then
493 ! no drag when critical level in the base layer
496 ldrag(i) = velco(i,1).le.0.
499 ! no drag when velco.lt.0
501 do k = kpblmin,kpblmax
503 if (k .lt. kbl(i)) ldrag(i) = ldrag(i).or. velco(i,k).le.0.
507 ! the low level weighted average ri is stored in usqj(1,1; im)
508 ! the low level weighted average n**2 is stored in bnv2(1,1; im)
509 ! this is called bnvl2 in phy_gwd_alpert_sub not bnv2
510 ! rdelks (del(k)/delks) vert ave factor so we can * instead of /
513 wtkbj = (prsl(i,1)-prsl(i,2)) * delks1(i)
514 bnv2(i,1) = wtkbj * bnv2(i,1)
515 usqj(i,1) = wtkbj * usqj(i,1)
518 do k = kpblmin,kpblmax
520 if (k .lt. kbl(i)) then
521 rdelks = (prsl(i,k)-prsl(i,k+1)) * delks1(i)
522 bnv2(i,1) = bnv2(i,1) + bnv2(i,k) * rdelks
523 usqj(i,1) = usqj(i,1) + usqj(i,k) * rdelks
529 ldrag(i) = ldrag(i) .or. bnv2(i,1).le.0.0
530 ldrag(i) = ldrag(i) .or. ulow(i).eq.1.0
531 ldrag(i) = ldrag(i) .or. var(i) .le. 0.0
534 ! set all ri low level values to the low level value
536 do k = kpblmin,kpblmax
538 if (k .lt. kbl(i)) usqj(i,k) = usqj(i,1)
543 if (.not.ldrag(i)) then
544 bnv(i) = sqrt( bnv2(i,1) )
545 fr(i) = bnv(i) * rulow(i) * var(i) * od(i)
546 fr(i) = min(fr(i),frmax)
547 xn(i) = ubar(i) * rulow(i)
548 yn(i) = vbar(i) * rulow(i)
552 ! compute the base level stress and store it in taub
553 ! calculate enhancement factor, number of mountains & aspect
554 ! ratio const. use simplified relationship between standard
555 ! deviation & critical hgt
558 if (.not. ldrag(i)) then
559 efact = (oa(i) + 2.) ** (ce*fr(i)/frc)
560 efact = min( max(efact,efmin), efmax )
561 coefm(i) = (1. + ol(i)) ** (oa(i)+1.)
562 xlinv(i) = coefm(i) / cleff(i)
563 tem = fr(i) * fr(i) * oc1(i)
564 gfobnv = gmax * tem / ((tem + cg)*bnv(i))
565 taub(i) = xlinv(i) * rhobar(i) * ulow(i) * ulow(i) &
566 * ulow(i) * gfobnv * efact
574 ! now compute vertical structure of the stress.
578 if (k .le. kbl(i)) taup(i,k) = taub(i)
582 do k = kpblmin, kte-1 ! vertical level k loop!
586 ! unstablelayer if ri < ric
587 ! unstable layer if upper air vel comp along surf vel <=0 (crit lay)
588 ! at (u-c)=0. crit layer exists and bit vector should be set (.le.)
590 if (k .ge. kbl(i)) then
591 icrilv(i) = icrilv(i) .or. ( usqj(i,k) .lt. ric) &
592 .or. (velco(i,k) .le. 0.0)
593 brvf(i) = max(bnv2(i,k),bnv2min) ! brunt-vaisala frequency squared
594 brvf(i) = sqrt(brvf(i)) ! brunt-vaisala frequency
599 if (k .ge. kbl(i) .and. (.not. ldrag(i))) then
600 if (.not.icrilv(i) .and. taup(i,k) .gt. 0.0 ) then
601 temv = 1.0 / velco(i,k)
602 tem1 = coefm(i)/dxy(i)*(rho(i,kp1)+rho(i,k))*brvf(i)*velco(i,k)*0.5
603 hd = sqrt(taup(i,k) / tem1)
604 fro = brvf(i) * hd * temv
606 ! rim is the minimum-richardson number by shutts (1985)
608 tem2 = sqrt(usqj(i,k))
609 tem = 1. + tem2 * fro
610 rim = usqj(i,k) * (1.-fro) / (tem * tem)
612 ! check stability to employ the 'saturation hypothesis'
613 ! of lindzen (1981) except at tropospheric downstream regions
615 if (rim .le. ric) then ! saturation hypothesis!
616 if ((oa(i) .le. 0.).or.(kp1 .ge. kpblmin )) then
617 temc = 2.0 + 1.0 / tem2
618 hd = velco(i,k) * (2.*sqrt(temc)-temc) / brvf(i)
619 taup(i,kp1) = tem1 * hd * hd
621 else ! no wavebreaking!
622 taup(i,kp1) = taup(i,k)
629 if (lcap.lt.kte) then
630 do klcap = lcapp1,kte
632 taup(i,klcap) = prsi(i,klcap) / prsi(i,lcap) * taup(i,lcap)
637 if (.not.ldrag(i)) then
639 ! determine the height of flow-blocking layer
644 do k = kte, kpblmin, -1
645 if (kblk.eq.0 .and. k.le.kbl(i)) then
646 fbdpe = fbdpe + bnv2(i,k)*(zl(i,kbl(i))-zl(i,k)) &
647 *del(i,k)/g_/rho(i,k)
648 fbdke = 0.5*(u1(i,k)**2.+v1(i,k)**2.)
650 ! apply flow-blocking drag when fbdpe >= fbdke
652 if (fbdpe.ge.fbdke) then
654 kblk = min(kblk,kbl(i))
655 zblk = zl(i,kblk)-zl(i,kts)
661 ! compute flow-blocking stress
663 fbdcd = max(2.0-1.0/od(i),0.0)
664 taufb(i,kts) = 0.5*rhobar(i)*coefm(i)/dxmeter**2*fbdcd*dxyp(i) &
665 *olp(i)*zblk*ulow(i)**2
666 tautem = taufb(i,kts)/real(kblk-kts)
668 taufb(i,k) = taufb(i,k-1) - tautem
671 ! sum orographic GW stress and flow-blocking stress
673 taup(i,:) = taup(i,:) + taufb(i,:)
678 ! calculate - (g)*d(tau)/d(pressure) and deceleration terms dtaux, dtauy
682 taud(i,k) = 1. * (taup(i,k+1) - taup(i,k)) * g_ / del(i,k)
686 ! if the gravity wave drag would force a critical line
687 ! in the lower ksmm1 layers during the next deltim timestep,
688 ! then only apply drag until that critical line is reached.
692 if (k .le. kbl(i)) then
693 if (taud(i,k).ne.0.) &
694 dtfac(i) = min(dtfac(i),abs(velco(i,k)/(deltim*taud(i,k))))
706 taud(i,k) = taud(i,k) * dtfac(i)
707 dtaux = taud(i,k) * xn(i)
708 dtauy = taud(i,k) * yn(i)
711 dudt(i,k) = dtaux + dudt(i,k)
712 dvdt(i,k) = dtauy + dvdt(i,k)
713 dusfc(i) = dusfc(i) + dtaux * del(i,k)
714 dvsfc(i) = dvsfc(i) + dtauy * del(i,k)
719 dusfc(i) = (-1./g_) * dusfc(i)
720 dvsfc(i) = (-1./g_) * dvsfc(i)
724 end subroutine gwdo2d
725 !-------------------------------------------------------------------------------
726 !-------------------------------------------------------------------------------
727 end module module_bl_gwdo