1 ! this is namelist input for perimeter ignition by specifying time of ignition in file input_tign_g
2 ! this file has format: m=number of points in x direction, n=number of points in y direction, all tign(i,j) with i varying faster
3 ! and it can be created by running create_tign.m in matlab or octave
11 start_year = 0001, 0001, 0001,
12 start_month = 01, 01, 01,
13 start_day = 01, 01, 01,
14 start_hour = 00, 00, 00,
15 start_minute = 00, 00, 00,
16 start_second = 00, 00, 00,
17 end_year = 0001, 0001, 0001,
18 end_month = 01, 01, 01,
20 end_hour = 00, 00, 00,
21 end_minute = 600, 600, 600,
22 end_second = 00, 00, 00,
23 history_interval_s = 5, 30, 30,
24 frames_per_outfile = 10, 1000, 1000,
37 time_step_fract_num = 25,
38 time_step_fract_den = 100,
48 ztop = 1500, 1500, 1500,
51 i_parent_start = 0, 1, 1,
52 j_parent_start = 0, 1, 1,
53 parent_grid_ratio = 1, 2, 3,
54 parent_time_step_ratio = 1, 2, 3,
63 ra_lw_physics = 0, 0, 0,
64 ra_sw_physics = 0, 0, 0,
66 sf_sfclay_physics = 0, 0, 0,
67 sf_surface_physics = 0, 0, 0,
68 bl_pbl_physics = 0, 0, 0,
87 zdamp = 5000., 5000., 5000.,
88 dampcoef = 0.2, 0.2, 0.2
89 khdif = 0.05, 0.05, 0.05,
90 kvdif = 0.05, 0.05, 0.05,
91 smdiv = 0.1, 0.1, 0.1,
92 emdiv = 0.01, 0.01, 0.01,
94 mix_full_fields = .true., .true., .true.,
95 non_hydrostatic = .true., .true., .true.,
96 h_mom_adv_order = 5, 5, 5,
97 v_mom_adv_order = 3, 3, 3,
98 h_sca_adv_order = 5, 5, 5,
99 v_sca_adv_order = 3, 3, 3,
100 time_step_sound = 20, 20, 20,
101 moist_adv_opt = 1, 1, 1,
102 scalar_adv_opt = 1, 1, 1,
106 periodic_x = .false.,.false.,.false.,
107 symmetric_xs = .false.,.false.,.false.,
108 symmetric_xe = .false.,.false.,.false.,
109 open_xs = .true., .false.,.false.,
110 open_xe = .true., .false.,.false.,
111 periodic_y = .false.,.false.,.false.,
112 symmetric_ys = .false.,.false.,.false.,
113 symmetric_ye = .false.,.false.,.false.,
114 open_ys = .true., .false.,.false.,
115 open_ye = .true., .false.,.false.,
116 nested = .false., .true., .true.,
123 nio_tasks_per_group = 0,
127 &fire ! be sure to set sr_x,sr_y in domains-namelist (to set refinement in x,y)
128 ifire = 2, ! integer, = 0: no fire, 2=turn on fire model
129 fire_fuel_read = 0, ! integer, -1: from WPS, 0= use fire_fuel_cat, 1= by altitude
130 fire_fuel_cat = 3, ! integer, if specified which fuel category?
132 fire_perimeter_time =20, ! replay fire from input_tign_g until this, or set to 0 or less for no replay
133 fire_num_ignitions = 0, ! integer, only the first fire_num_ignition used, up to 5 allowed
134 fire_ignition_ros1 = 0.1, ! ignition rate of spread, m/s
135 fire_ignition_start_x1 = 1005, ! start points of ignition lines, in m from lower left corner
136 fire_ignition_start_y1 = 500, ! start points of ignition lines, in m from lower left corner
137 fire_ignition_end_x1 = 1005, ! end points of ignition lines, in m from lower left corner
138 fire_ignition_end_y1 = 1900, ! end points of ignition lines, in m from lower left corner
139 fire_ignition_radius1 = 18, ! all within this radius will ignite, > fire mesh step
140 fire_ignition_start_time1 = 2, ! sec for ignition from the start
141 fire_ignition_end_time1 =502, ! sec for ignition from the start
142 fire_ignition_ros2 = 0.01, ! ignition rate of spread, m/s
143 fire_ignition_start_x2 = 1503, ! start points of ignition lines, in m from lower left corner
144 fire_ignition_start_y2 = 500, ! start points of ignition lines, in m from lower left corner
145 fire_ignition_end_x2 = 1503, ! end points of ignition lines, in m from lower left corner
146 fire_ignition_end_y2 = 1900, ! end points of ignition lines, in m from lower left corner
147 fire_ignition_radius2 = 18, ! all within this radius will ignite, > fire mesh step
148 fire_ignition_start_time2 = 3, ! sec for ignition from the start! end ignition for sfire
149 fire_ignition_end_time2 =503, ! sec for ignition from the start! end ignition for sfire
150 fire_ignition_ros3 = 0.1, ! ignition rate of spread, m/s
151 !fire_ignition_start_x3 = 1400, ! start points of ignition lines, in m from lower left corner
152 !fire_ignition_start_y3 = 1400, ! start points of ignition lines, in m from lower left corner
153 !fire_ignition_end_x3 = 1400, ! end points of ignition lines, in m from lower left corner
154 !fire_ignition_end_y3 = 1400, ! end points of ignition lines, in m from lower left corner
155 !fire_ignition_radius3 = 50, ! all within this radius will ignite, > fire mesh step
156 !fire_ignition_start_time3 = 4, ! sec for ignition from the start! end ignition for sfire
157 !fire_ignition_end_time3 = 4, ! sec for ignition from the start! end ignition for sfire
160 fire_print_msg = 1, ! 1 print fire debugging messages
161 fire_print_file = 0, ! 1 write files for matlab
166 fire_const_time = -1., ! (s) if >0, time from start to stop fire evolution and keep heat output constant
167 fire_const_grnhfx = -1, ! (W/s) if both >=0, use this flux (meant to be used when fire_const_time=ignition time)
168 fire_const_grnqfx = -1, ! (W/s) if both >=0, use this flux (meant to be used when fire_const_time=ignition time)
169 fire_test_steps=0, ! >0 = on first call, do specified number of steps and terminate (testing only)
170 fire_mountain_type=1, ! in ideal: 0=none, 1= hill, 2=EW ridge, 3=NS ridge
171 fire_mountain_height=100., ! (m) ideal mountain height
172 fire_mountain_start_x=900., ! (m) coord of start of the mountain from lower left corder (just like ignition)
173 fire_mountain_start_y=1000., ! (m) coord of start of the mountain from lower left corder (just like ignition)
174 fire_mountain_end_x=1400., ! (m) coord of end of the mountain from lower left corder (just like ignition)
175 fire_mountain_end_y=1600., ! (m) coord of end of the mountain from lower left corder (just like ignition)
176 fire_topo_from_atm=0, ! 0 = fire mesh topo set from fine-res data, 1 = populate by interpolating from atmosphere
177 !delt_perturbation = 3.0, ! Temperature perturbation for creating cold (negative) / warm (positive) bubble [K], 0 turns it off
178 !xrad_perturbation = 10000.0, ! Horizontal radius of the bubble in E-W direction [m]
179 !yrad_perturbation = 10000.0, ! Horizontal radius of the bubble in N-S direction [m]
180 !zrad_perturbation = 1500.0, ! Vertical radius of the bubble [m]
181 !hght_perturbation = 1500.0, ! Perturbation height - height at which the warm/cold bubble will be suspended [m]
184 ! method switches for developers only, do not change!
186 fire_boundary_guard = -1, ! integer, number of cells to stop when fire close to the domain boundary, -1 turn off
187 fire_fuel_left_irl=2, ! refinement to integrate fuel_left, must be even
188 fire_fuel_left_jrl=2, ! refinement to integrate fuel_left, must be even
189 fire_atm_feedback=1.0, ! real, multiplier for heat fluxes, 1.=normal, 0.=turn off two-way coupling
190 fire_back_weight=0.5, ! RK timestepping coefficient, 0=forward, 0.5=Heun
191 fire_grows_only=1, ! if >0 level set function cannot increase = fire can only grow
192 fire_viscosity=0.4, ! artificial viscosity in level set method (max 1, needed with fire_upwinding=0)
193 fire_upwinding=3, ! 0=none, 1=standard, 2=godunov, 3=eno, 4=sethian
194 fire_fuel_left_method=1, ! for now, use 1 only
195 fire_lfn_ext_up=1.0, ! 0.=extend level set function at boundary by reflection, 1.=always up
196 fire_advection=0, ! 0 = cawfe, 1 = use abs speed/slope in spread rate, then project on normal to fireline