1 subroutine d1f2kb ( ido, l1, cc, in1, ch, in2, wa1 )
3 !*****************************************************************************80
5 !! D1F2KB is an FFTPACK5 auxiliary routine.
15 ! Original real single precision by Paul Swarztrauber, Richard Valent.
16 ! Real double precision version by John Burkardt.
21 ! Vectorizing the Fast Fourier Transforms,
22 ! in Parallel Computations,
23 ! edited by G. Rodrigue,
24 ! Academic Press, 1982.
27 ! Fast Fourier Transform Algorithms for Vector Computers,
28 ! Parallel Computing, pages 45-63, 1984.
34 integer ( kind = 4 ) ido
35 integer ( kind = 4 ) in1
36 integer ( kind = 4 ) in2
37 integer ( kind = 4 ) l1
39 real ( kind = 8 ) cc(in1,ido,2,l1)
40 real ( kind = 8 ) ch(in2,ido,l1,2)
41 integer ( kind = 4 ) i
42 integer ( kind = 4 ) ic
43 integer ( kind = 4 ) idp2
44 integer ( kind = 4 ) k
45 real ( kind = 8 ) wa1(ido)
48 ch(1,1,k,1) = cc(1,1,1,k) + cc(1,ido,2,k)
49 ch(1,1,k,2) = cc(1,1,1,k) - cc(1,ido,2,k)
63 ch(1,i-1,k,1) = cc(1,i-1,1,k) + cc(1,ic-1,2,k)
64 ch(1,i,k,1) = cc(1,i,1,k) - cc(1,ic,2,k)
66 ch(1,i-1,k,2) = wa1(i-2) * ( cc(1,i-1,1,k) - cc(1,ic-1,2,k) ) &
67 - wa1(i-1) * ( cc(1,i,1,k) + cc(1,ic,2,k) )
68 ch(1,i,k,2) = wa1(i-2) * ( cc(1,i,1,k) + cc(1,ic,2,k) ) &
69 + wa1(i-1) * ( cc(1,i-1,1,k) - cc(1,ic-1,2,k) )
74 if ( mod ( ido, 2 ) == 1 ) then
81 ch(1,ido,k,1) = cc(1,ido,1,k) + cc(1,ido,1,k)
82 ch(1,ido,k,2) = - ( cc(1,1,2,k) + cc(1,1,2,k) )