1 subroutine d1f5kf ( ido, l1, cc, in1, ch, in2, wa1, wa2, wa3, wa4 )
3 !*****************************************************************************80
5 !! D1F5KF is an FFTPACK5 auxiliary routine.
15 ! Original real single precision by Paul Swarztrauber, Richard Valent.
16 ! Real double precision version by John Burkardt.
21 ! Vectorizing the Fast Fourier Transforms,
22 ! in Parallel Computations,
23 ! edited by G. Rodrigue,
24 ! Academic Press, 1982.
27 ! Fast Fourier Transform Algorithms for Vector Computers,
28 ! Parallel Computing, pages 45-63, 1984.
34 integer ( kind = 4 ) ido
35 integer ( kind = 4 ) in1
36 integer ( kind = 4 ) in2
37 integer ( kind = 4 ) l1
40 real ( kind = 8 ) cc(in1,ido,l1,5)
41 real ( kind = 8 ) ch(in2,ido,5,l1)
42 integer ( kind = 4 ) i
43 integer ( kind = 4 ) ic
44 integer ( kind = 4 ) idp2
45 integer ( kind = 4 ) k
46 real ( kind = 8 ) ti11
47 real ( kind = 8 ) ti12
48 real ( kind = 8 ) tr11
49 real ( kind = 8 ) tr12
50 real ( kind = 8 ) wa1(ido)
51 real ( kind = 8 ) wa2(ido)
52 real ( kind = 8 ) wa3(ido)
53 real ( kind = 8 ) wa4(ido)
55 arg = 2.0D+00 * 4.0D+00 * atan ( 1.0D+00 ) / 5.0D+00
58 tr12 = cos ( 2.0D+00 * arg )
59 ti12 = sin ( 2.0D+00 * arg )
63 ch(1,1,1,k) = cc(1,1,k,1) + ( cc(1,1,k,5) + cc(1,1,k,2) ) &
64 + ( cc(1,1,k,4) + cc(1,1,k,3) )
66 ch(1,ido,2,k) = cc(1,1,k,1) + tr11 * ( cc(1,1,k,5) + cc(1,1,k,2) ) &
67 + tr12 * ( cc(1,1,k,4) + cc(1,1,k,3) )
69 ch(1,1,3,k) = ti11 * ( cc(1,1,k,5) - cc(1,1,k,2) ) &
70 + ti12 * ( cc(1,1,k,4) - cc(1,1,k,3) )
72 ch(1,ido,4,k) = cc(1,1,k,1) + tr12 * ( cc(1,1,k,5) + cc(1,1,k,2) ) &
73 + tr11 * ( cc(1,1,k,4) + cc(1,1,k,3) )
75 ch(1,1,5,k) = ti12 * ( cc(1,1,k,5) - cc(1,1,k,2) ) &
76 - ti11 * ( cc(1,1,k,4) - cc(1,1,k,3) )
88 ch(1,i-1,1,k) = cc(1,i-1,k,1)+((wa1(i-2)*cc(1,i-1,k,2)+ &
89 wa1(i-1)*cc(1,i,k,2))+(wa4(i-2)*cc(1,i-1,k,5)+wa4(i-1)* &
90 cc(1,i,k,5)))+((wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* &
91 cc(1,i,k,3))+(wa3(i-2)*cc(1,i-1,k,4)+ &
92 wa3(i-1)*cc(1,i,k,4)))
93 ch(1,i,1,k) = cc(1,i,k,1)+((wa1(i-2)*cc(1,i,k,2)- &
94 wa1(i-1)*cc(1,i-1,k,2))+(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)* &
95 cc(1,i-1,k,5)))+((wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* &
96 cc(1,i-1,k,3))+(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)* &
98 ch(1,i-1,3,k) = cc(1,i-1,k,1)+tr11* &
99 ( wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)*cc(1,i,k,2) &
100 +wa4(i-2)*cc(1,i-1,k,5)+wa4(i-1)*cc(1,i,k,5))+tr12* &
101 ( wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)*cc(1,i,k,3) &
102 +wa3(i-2)*cc(1,i-1,k,4)+wa3(i-1)*cc(1,i,k,4))+ti11* &
103 ( wa1(i-2)*cc(1,i,k,2)-wa1(i-1)*cc(1,i-1,k,2) &
104 -(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)*cc(1,i-1,k,5)))+ti12* &
105 ( wa2(i-2)*cc(1,i,k,3)-wa2(i-1)*cc(1,i-1,k,3) &
106 -(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)*cc(1,i-1,k,4)))
107 ch(1,ic-1,2,k) = cc(1,i-1,k,1)+tr11* &
108 ( wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)*cc(1,i,k,2) &
109 +wa4(i-2)*cc(1,i-1,k,5)+wa4(i-1)*cc(1,i,k,5))+tr12* &
110 ( wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)*cc(1,i,k,3) &
111 +wa3(i-2)*cc(1,i-1,k,4)+wa3(i-1)*cc(1,i,k,4))-(ti11* &
112 ( wa1(i-2)*cc(1,i,k,2)-wa1(i-1)*cc(1,i-1,k,2) &
113 -(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)*cc(1,i-1,k,5)))+ti12* &
114 ( wa2(i-2)*cc(1,i,k,3)-wa2(i-1)*cc(1,i-1,k,3) &
115 -(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)*cc(1,i-1,k,4))))
116 ch(1,i,3,k) = (cc(1,i,k,1)+tr11*((wa1(i-2)*cc(1,i,k,2)- &
117 wa1(i-1)*cc(1,i-1,k,2))+(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)* &
118 cc(1,i-1,k,5)))+tr12*((wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* &
119 cc(1,i-1,k,3))+(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)* &
120 cc(1,i-1,k,4))))+(ti11*((wa4(i-2)*cc(1,i-1,k,5)+ &
121 wa4(i-1)*cc(1,i,k,5))-(wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)* &
122 cc(1,i,k,2)))+ti12*((wa3(i-2)*cc(1,i-1,k,4)+wa3(i-1)* &
123 cc(1,i,k,4))-(wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* &
125 ch(1,ic,2,k) = (ti11*((wa4(i-2)*cc(1,i-1,k,5)+wa4(i-1)* &
126 cc(1,i,k,5))-(wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)* &
127 cc(1,i,k,2)))+ti12*((wa3(i-2)*cc(1,i-1,k,4)+wa3(i-1)* &
128 cc(1,i,k,4))-(wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* &
129 cc(1,i,k,3))))-(cc(1,i,k,1)+tr11*((wa1(i-2)*cc(1,i,k,2)- &
130 wa1(i-1)*cc(1,i-1,k,2))+(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)* &
131 cc(1,i-1,k,5)))+tr12*((wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* &
132 cc(1,i-1,k,3))+(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)* &
134 ch(1,i-1,5,k) = (cc(1,i-1,k,1)+tr12*((wa1(i-2)* &
135 cc(1,i-1,k,2)+wa1(i-1)*cc(1,i,k,2))+(wa4(i-2)* &
136 cc(1,i-1,k,5)+wa4(i-1)*cc(1,i,k,5)))+tr11*((wa2(i-2)* &
137 cc(1,i-1,k,3)+wa2(i-1)*cc(1,i,k,3))+(wa3(i-2)* &
138 cc(1,i-1,k,4)+wa3(i-1)*cc(1,i,k,4))))+(ti12*((wa1(i-2)* &
139 cc(1,i,k,2)-wa1(i-1)*cc(1,i-1,k,2))-(wa4(i-2)* &
140 cc(1,i,k,5)-wa4(i-1)*cc(1,i-1,k,5)))-ti11*((wa2(i-2)* &
141 cc(1,i,k,3)-wa2(i-1)*cc(1,i-1,k,3))-(wa3(i-2)* &
142 cc(1,i,k,4)-wa3(i-1)*cc(1,i-1,k,4))))
143 ch(1,ic-1,4,k) = (cc(1,i-1,k,1)+tr12*((wa1(i-2)* &
144 cc(1,i-1,k,2)+wa1(i-1)*cc(1,i,k,2))+(wa4(i-2)* &
145 cc(1,i-1,k,5)+wa4(i-1)*cc(1,i,k,5)))+tr11*((wa2(i-2)* &
146 cc(1,i-1,k,3)+wa2(i-1)*cc(1,i,k,3))+(wa3(i-2)* &
147 cc(1,i-1,k,4)+wa3(i-1)*cc(1,i,k,4))))-(ti12*((wa1(i-2)* &
148 cc(1,i,k,2)-wa1(i-1)*cc(1,i-1,k,2))-(wa4(i-2)* &
149 cc(1,i,k,5)-wa4(i-1)*cc(1,i-1,k,5)))-ti11*((wa2(i-2)* &
150 cc(1,i,k,3)-wa2(i-1)*cc(1,i-1,k,3))-(wa3(i-2)* &
151 cc(1,i,k,4)-wa3(i-1)*cc(1,i-1,k,4))))
152 ch(1,i,5,k) = (cc(1,i,k,1)+tr12*((wa1(i-2)*cc(1,i,k,2)- &
153 wa1(i-1)*cc(1,i-1,k,2))+(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)* &
154 cc(1,i-1,k,5)))+tr11*((wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* &
155 cc(1,i-1,k,3))+(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)* &
156 cc(1,i-1,k,4))))+(ti12*((wa4(i-2)*cc(1,i-1,k,5)+ &
157 wa4(i-1)*cc(1,i,k,5))-(wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)* &
158 cc(1,i,k,2)))-ti11*((wa3(i-2)*cc(1,i-1,k,4)+wa3(i-1)* &
159 cc(1,i,k,4))-(wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* &
161 ch(1,ic,4,k) = (ti12*((wa4(i-2)*cc(1,i-1,k,5)+wa4(i-1)* &
162 cc(1,i,k,5))-(wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)* &
163 cc(1,i,k,2)))-ti11*((wa3(i-2)*cc(1,i-1,k,4)+wa3(i-1)* &
164 cc(1,i,k,4))-(wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* &
165 cc(1,i,k,3))))-(cc(1,i,k,1)+tr12*((wa1(i-2)*cc(1,i,k,2)- &
166 wa1(i-1)*cc(1,i-1,k,2))+(wa4(i-2)*cc(1,i,k,5)-wa4(i-1)* &
167 cc(1,i-1,k,5)))+tr11*((wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* &
168 cc(1,i-1,k,3))+(wa3(i-2)*cc(1,i,k,4)-wa3(i-1)* &