1 subroutine z1fm1f ( n, inc, c, ch, wa, fnf, fac )
3 !*****************************************************************************80
5 !! Z1FM1F is an FFTPACK5 auxiliary routine.
15 ! Original complex single precision by Paul Swarztrauber, Richard Valent.
16 ! Complex double precision version by John Burkardt.
21 ! Vectorizing the Fast Fourier Transforms,
22 ! in Parallel Computations,
23 ! edited by G. Rodrigue,
24 ! Academic Press, 1982.
27 ! Fast Fourier Transform Algorithms for Vector Computers,
28 ! Parallel Computing, pages 45-63, 1984.
34 complex ( kind = 8 ) c(*)
35 real ( kind = 8 ) ch(*)
36 real ( kind = 8 ) fac(*)
38 integer ( kind = 4 ) ido
39 integer ( kind = 4 ) inc
40 integer ( kind = 4 ) inc2
41 integer ( kind = 4 ) ip
42 integer ( kind = 4 ) iw
43 integer ( kind = 4 ) k1
44 integer ( kind = 4 ) l1
45 integer ( kind = 4 ) l2
46 integer ( kind = 4 ) lid
47 integer ( kind = 4 ) n
48 integer ( kind = 4 ) na
49 integer ( kind = 4 ) nbr
50 integer ( kind = 4 ) nf
51 real ( kind = 8 ) wa(*)
65 nbr = 1 + na + 2 * min ( ip - 2, 4 )
68 call z1f2kf ( ido, l1, na, c, inc2, ch, 2, wa(iw) )
69 else if ( nbr == 2 ) then
70 call z1f2kf ( ido, l1, na, ch, 2, c, inc2, wa(iw) )
71 else if ( nbr == 3 ) then
72 call z1f3kf ( ido, l1, na, c, inc2, ch, 2, wa(iw) )
73 else if ( nbr == 4 ) then
74 call z1f3kf ( ido, l1, na, ch, 2, c, inc2, wa(iw) )
75 else if ( nbr == 5 ) then
76 call z1f4kf ( ido, l1, na, c, inc2, ch, 2, wa(iw) )
77 else if ( nbr == 6 ) then
78 call z1f4kf ( ido, l1, na, ch, 2, c, inc2, wa(iw) )
79 else if ( nbr == 7 ) then
80 call z1f5kf ( ido, l1, na, c, inc2, ch, 2, wa(iw) )
81 else if ( nbr == 8 ) then
82 call z1f5kf ( ido, l1, na, ch, 2, c, inc2, wa(iw) )
83 else if ( nbr == 9 ) then
84 call z1fgkf ( ido, ip, l1, lid, na, c, c, inc2, ch, ch, 1, wa(iw) )
85 else if ( nbr == 10 ) then
86 call z1fgkf ( ido, ip, l1, lid, na, ch, ch, 2, c, c, inc2, wa(iw) )
90 iw = iw + ( ip - 1 ) * ( ido + ido )