1 subroutine z1f2kf ( ido, l1, na, cc, in1, ch, in2, wa )
3 !*****************************************************************************80
5 !! Z1F2KF is an FFTPACK5 auxiliary routine.
15 ! Original complex single precision by Paul Swarztrauber, Richard Valent.
16 ! Complex double precision version by John Burkardt.
21 ! Vectorizing the Fast Fourier Transforms,
22 ! in Parallel Computations,
23 ! edited by G. Rodrigue,
24 ! Academic Press, 1982.
27 ! Fast Fourier Transform Algorithms for Vector Computers,
28 ! Parallel Computing, pages 45-63, 1984.
34 integer ( kind = 4 ) ido
35 integer ( kind = 4 ) in1
36 integer ( kind = 4 ) in2
37 integer ( kind = 4 ) l1
39 real ( kind = 8 ) cc(in1,l1,ido,2)
40 real ( kind = 8 ) ch(in2,l1,2,ido)
41 real ( kind = 8 ) chold1
42 real ( kind = 8 ) chold2
43 integer ( kind = 4 ) i
44 integer ( kind = 4 ) k
45 integer ( kind = 4 ) na
49 real ( kind = 8 ) wa(ido,1,2)
54 ch(1,k,1,1) = cc(1,k,1,1) + cc(1,k,1,2)
55 ch(1,k,2,1) = cc(1,k,1,1) - cc(1,k,1,2)
56 ch(2,k,1,1) = cc(2,k,1,1) + cc(2,k,1,2)
57 ch(2,k,2,1) = cc(2,k,1,1) - cc(2,k,1,2)
62 ch(1,k,1,i) = cc(1,k,i,1) + cc(1,k,i,2)
63 tr2 = cc(1,k,i,1) - cc(1,k,i,2)
64 ch(2,k,1,i) = cc(2,k,i,1) + cc(2,k,i,2)
65 ti2 = cc(2,k,i,1) - cc(2,k,i,2)
66 ch(2,k,2,i) = wa(i,1,1) * ti2 - wa(i,1,2) * tr2
67 ch(1,k,2,i) = wa(i,1,1) * tr2 + wa(i,1,2) * ti2
71 else if ( na == 1 ) then
73 sn = 1.0D+00 / real ( 2 * l1, kind = 8 )
76 ch(1,k,1,1) = sn * ( cc(1,k,1,1) + cc(1,k,1,2) )
77 ch(1,k,2,1) = sn * ( cc(1,k,1,1) - cc(1,k,1,2) )
78 ch(2,k,1,1) = sn * ( cc(2,k,1,1) + cc(2,k,1,2) )
79 ch(2,k,2,1) = sn * ( cc(2,k,1,1) - cc(2,k,1,2) )
84 sn = 1.0D+00 / real ( 2 * l1, kind = 8 )
88 chold1 = sn * ( cc(1,k,1,1) + cc(1,k,1,2) )
89 cc(1,k,1,2) = sn * ( cc(1,k,1,1) - cc(1,k,1,2) )
92 chold2 = sn * ( cc(2,k,1,1) + cc(2,k,1,2) )
93 cc(2,k,1,2) = sn * ( cc(2,k,1,1) - cc(2,k,1,2) )