4 subroutine gocart_seasalt_driver(ktau,dt,config_flags,julday,alt,t_phy,moist,u_phy, &
5 v_phy,chem,rho_phy,dz8w,u10,v10,p8w, &
6 xland,xlat,xlong,dx,g,emis_seas, &
7 ids,ide, jds,jde, kds,kde, &
8 ims,ime, jms,jme, kms,kme, &
9 its,ite, jts,jte, kts,kte )
11 USE module_state_description
12 USE module_model_constants, ONLY: mwdry
14 TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
16 INTEGER, INTENT(IN ) :: julday, ktau, &
17 ids,ide, jds,jde, kds,kde, &
18 ims,ime, jms,jme, kms,kme, &
19 its,ite, jts,jte, kts,kte
20 REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_moist ), &
22 REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ), &
23 INTENT(INOUT ) :: chem
24 REAL, DIMENSION( ims:ime, 1, jms:jme,num_emis_seas),OPTIONAL,&
27 REAL, DIMENSION( ims:ime , jms:jme ) , &
34 REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
41 REAL, INTENT(IN ) :: dt,dx,g
45 integer :: ipr,nmx,i,j,k,ndt,imx,jmx,lmx
46 integer,dimension (1,1) :: ilwi
47 real*8, DIMENSION (4) :: tc,bems
48 real*8, dimension (1,1) :: w10m,gwet,airden,airmas
49 real*8, dimension (1) :: dxy
64 ! don't do dust over water!!!
66 if(xland(i,j).gt.1.5)then
68 tc(1)=chem(i,kts,j,p_seas_1)*conver
69 tc(2)=chem(i,kts,j,p_seas_2)*conver
70 tc(3)=chem(i,kts,j,p_seas_3)*conver
71 tc(4)=chem(i,kts,j,p_seas_4)*conver
72 w10m(1,1)=sqrt(u10(i,j)*u10(i,j)+v10(i,j)*v10(i,j))
73 airmas(1,1)=-(p8w(i,kts+1,j)-p8w(i,kts,j))*dx*dx/g
75 ! we don't trust the u10,v10 values, is model layers are very thin near surface
77 if(dz8w(i,kts,j).lt.12.)w10m=sqrt(u_phy(i,kts,j)*u_phy(i,kts,j)+v_phy(i,kts,j)*v_phy(i,kts,j))
82 call source_ss( imx,jmx,lmx,nmx, dt, tc,ilwi, dxy, w10m, airmas, bems,ipr)
83 chem(i,kts,j,p_seas_1)=tc(1)*converi
84 chem(i,kts,j,p_seas_2)=tc(2)*converi
85 chem(i,kts,j,p_seas_3)=tc(3)*converi
86 chem(i,kts,j,p_seas_4)=tc(4)*converi
87 ! for output diagnostics
88 emis_seas(i,1,j,p_edust1)=bems(1)
89 emis_seas(i,1,j,p_edust2)=bems(2)
90 emis_seas(i,1,j,p_edust3)=bems(3)
91 emis_seas(i,1,j,p_edust4)=bems(4)
97 end subroutine gocart_seasalt_driver
99 SUBROUTINE source_ss(imx,jmx,lmx,nmx, dt1, tc, &
100 ilwi, dxy, w10m, airmas, &
103 ! ****************************************************************************
104 ! * Evaluate the source of each seasalt particles size classes (kg/m3)
105 ! * by soil emission.
107 ! * SSALTDEN Sea salt density (kg/m3)
108 ! * DXY Surface of each grid cell (m2)
109 ! * NDT1 Time step (s)
110 ! * W10m Velocity at the anemometer level (10meters) (m/s)
113 ! * DSRC Source of each sea salt bins (kg/timestep/cell)
116 ! * Number flux density: Original formula by Monahan et al. (1986) adapted
117 ! * by Sunling Gong (JGR 1997 (old) and GBC 2003 (new)). The new version is
118 ! * to better represent emission of sub-micron sea salt particles.
120 ! * dFn/dr = c1*u10**c2/(r**A) * (1+c3*r**c4)*10**(c5*exp(-B**2))
121 ! * where B = (b1 -log(r))/b2
122 ! * see c_old, c_new, b_old, b_new below for the constants.
123 ! * number fluxes are at 80% RH.
125 ! * To calculate the flux:
126 ! * 1) Calculate dFn based on Monahan et al. (1986) and Gong (2003)
127 ! * 2) Assume that wet radius r at 80% RH = dry radius r_d *frh
128 ! * 3) Convert particles flux to mass flux :
129 ! * dFM/dr_d = 4/3*pi*rho_d*r_d^3 *(dr/dr_d) * dFn/dr
130 ! * = 4/3*pi*rho_d*r_d^3 * frh * dFn/dr
131 ! * where rho_p is particle density [kg/m3]
132 ! * The factor 1.e-18 is to convert in micro-meter r_d^3
133 ! ****************************************************************************
136 USE module_data_gocart_seas
140 INTEGER, INTENT(IN) :: nmx,imx,jmx,lmx,ipr
141 INTEGER, INTENT(IN) :: ilwi(imx,jmx)
142 REAL*8, INTENT(IN) :: dxy(jmx), w10m(imx,jmx)
143 REAL*8, INTENT(IN) :: airmas(imx,jmx,lmx)
144 REAL*8, INTENT(INOUT) :: tc(imx,jmx,lmx,nmx)
145 REAL*8, INTENT(OUT) :: bems(imx,jmx,nmx)
147 REAL*8 :: c0(5), b0(2)
148 ! REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.41, 0.057, 1.05, 1.190/)
149 ! REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.41, 0.057, 3.45, 1.607/)
150 ! Change suggested by MC
151 REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.2, 0.057, 1.05, 1.190/)
152 REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.2, 0.057, 3.45, 1.607/)
153 REAL*8, PARAMETER :: b_old(2)=(/0.380, 0.650/)
154 REAL*8, PARAMETER :: b_new(2)=(/0.433, 0.433/)
155 REAL*8, PARAMETER :: dr=5.0D-2 ! um
156 REAL*8, PARAMETER :: theta=30.0
157 ! Swelling coefficient frh (d rwet / d rd)
158 !!! REAL*8, PARAMETER :: frh = 1.65
159 REAL*8, PARAMETER :: frh = 2.d0
160 LOGICAL, PARAMETER :: old=.TRUE., new=.FALSE.
161 REAL*8 :: rho_d, r0, r1, r, r_w, a, b, dfn, r_d, dfm, src
162 INTEGER :: i, j, n, nr, ir
166 REAL*8 :: tcmw(nmx), ar(nmx), tcvv(nmx)
167 REAL*8 :: ar_wetdep(nmx), kc(nmx)
168 CHARACTER(LEN=20) :: tcname(nmx), tcunits(nmx)
169 LOGICAL :: aerosol(nmx)
172 REAL*8 :: tc1(imx,jmx,lmx,nmx)
173 REAL*8, TARGET :: tcms(imx,jmx,lmx,nmx) ! tracer mass (kg; kgS for sulfur case)
174 REAL*8, TARGET :: tcgm(imx,jmx,lmx,nmx) ! g/m3
176 !-----------------------------------------------------------------------
178 !-----------------------------------------------------------------------
179 ! REAL*8, DIMENSION(nmx) :: ra, rb
180 ! REAL*8 :: ch_ss(nmx,12)
182 !-----------------------------------------------------------------------
184 !-----------------------------------------------------------------------
185 REAL*8 :: e_an(imx,jmx,2,nmx), e_bb(imx,jmx,nmx), &
186 e_ac(imx,jmx,lmx,nmx)
188 !-----------------------------------------------------------------------
189 ! diagnostics (budget)
190 !-----------------------------------------------------------------------
191 ! ! tendencies per time step and process
192 ! REAL*8, TARGET :: bems(imx,jmx,nmx), bdry(imx,jmx,nmx), bstl(imx,jmx,nmx)
193 ! REAL*8, TARGET :: bwet(imx,jmx,nmx), bcnv(imx,jmx,nmx)!
195 ! ! integrated tendencies per process
196 ! REAL*8, TARGET :: tems(imx,jmx,nmx), tstl(imx,jmx,nmx)
197 ! REAL*8, TARGET :: tdry(imx,jmx,nmx), twet(imx,jmx,nmx), tcnv(imx,jmx,nmx)
199 ! global mass balance per time step
200 REAL*8 :: tmas0(nmx), tmas1(nmx)
201 REAL*8 :: dtems(nmx), dttrp(nmx), dtdif(nmx), dtcnv(nmx)
202 REAL*8 :: dtwet(nmx), dtdry(nmx), dtstl(nmx)
203 REAL*8 :: dtems2(nmx), dttrp2(nmx), dtdif2(nmx), dtcnv2(nmx)
204 REAL*8 :: dtwet2(nmx), dtdry2(nmx), dtstl2(nmx)
206 ! detailed integrated budgets for individual emissions
207 REAL*8, TARGET :: ems_an(imx,jmx,nmx), ems_bb(imx,jmx,nmx), ems_tp(imx,jmx)
208 REAL*8, TARGET :: ems_ac(imx,jmx,lmx,nmx)
209 REAL*8, TARGET :: ems_co(imx,jmx,nmx)
212 ! executable statements
215 ! if(ipr.eq.1)write(0,*)'in seasalt',n,ipr,ilwi
221 nr = INT((r1-r0)/dr+.001)
222 ! if(ipr.eq.1.and.n.eq.1)write(0,*)'in seasalt',nr,r1,r0,dr,rho_d
227 a = 4.7*(1.0 + theta*r_w)**(-0.017*r_w**(-1.44))
236 b = (b0(1) - LOG10(r_w))/b0(2)
237 dfn = (c0(1)/r_w**a)*(1.0 + c0(3)*r_w**c0(4))* &
238 10**(c0(5)*EXP(-(b**2)))
240 r_d = r_w/frh*1.0D-6 ! um -> m
241 dfm = 4.0/3.0*pi*r_d**3*rho_d*frh*dfn*dr*dt1
244 ! IF (water(i,j) > 0.0) THEN
245 IF (ilwi(i,j) == 0) THEN
246 ! src = dfm*dxy(j)*water(i,j)*w10m(i,j)**c0(2)
247 src = dfm*dxy(j)*w10m(i,j)**c0(2)
248 ! src = ch_ss(n,dt(1)%mn)*dfm*dxy(j)*w10m(i,j)**c0(2)
249 tc(i,j,1,n) = tc(i,j,1,n) + src/airmas(i,j,1)
250 ! if(ipr.eq.1)write(0,*)n,dfm,c0(2),dxy(j),w10m(i,j),src,airmas(i,j,1)
254 bems(i,j,n) = bems(i,j,n) + src
260 END SUBROUTINE source_ss
261 END MODULE GOCART_SEASALT