Merge remote-tracking branch 'origin/release-v4.6.1'
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / kpp_dvode.f
blobe120543074caa4c54bfb3e58818bd59029e5b034
1 SUBROUTINE INTEGRATE( TIN, TOUT )
3 IMPLICIT KPP_REAL (A-H,O-Z)
4 INCLUDE 'KPP_ROOT_Parameters.h'
5 INCLUDE 'KPP_ROOT_Global.h'
7 C TIN - Start Time
8 KPP_REAL TIN
9 C TOUT - End Time
10 KPP_REAL TOUT
12 PARAMETER (LRW=2*NVAR*NVAR+9*NVAR+25,LIW=NVAR+35)
13 PARAMETER (LRCONT=4*NVAR+4+10)
14 COMMON /CONT/ICONT(4),RCONT(LRCONT)
15 COMMON/STAT/NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL
16 COMMON /VERWER/ IVERWER, IBEGIN, STEPCUT
17 EXTERNAL VODE_FSPLIT_VAR, VODE_Jac_SP
19 KPP_REAL RWORK(LRW)
20 INTEGER IWORK(LIW)
22 STEPCUT = 0.
23 MAXORD = 5
24 IBEGIN = 1
25 ITOL=4
27 C ---- NORMAL COMPUTATION ---
28 ITASK=1
29 ISTATE=1
30 C ---- USE OPTIONAL INPUT ---
31 IOPT=1
32 IWORK(5) = MAXORD ! MAX ORD
33 IWORK(6) = 20000
34 IWORK(7) = 0
35 RWORK(6) = STEPMAX ! STEP MAX
36 RWORK(7) = STEPMIN ! STEP MIN
37 RWORK(5) = STEPMIN ! INITIAL STEP
39 C ----- SIGNAL FOR STIFF CASE, FULL JACOBIAN, INTERN (22) or SUPPLIED (21)
40 MF = 21
42 CALL DVODE (VODE_FSPLIT_VAR, NVAR, VAR, TIN, TOUT, ITOL,
43 * RTOL, ATOL, ITASK,
44 * ISTATE, IOPT, RWORK, LRW, IWORK, LIW,
45 * VODE_Jac_SP, MF, RPAR, IPAR)
47 IF (ISTATE.LT.0) THEN
48 print *,'ATMDVODE: Unsucessfull exit at T=',
49 & TIN,' (ISTATE=',ISTATE,')'
50 ENDIF
52 RETURN
53 END
56 C -- This version has JAC sparse, FCN aggregate --
58 SUBROUTINE DVODE (F, NEQ, Y, T, TOUT, ITOL, RelTol, AbsTol, ITASK,
59 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF,
60 2 RPAR, IPAR)
62 KPP_REAL Y, T, TOUT, RelTol, AbsTol, RWORK, RPAR
63 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW,
64 1 MF, IPAR
65 DIMENSION Y(*), RelTol(*), AbsTol(*), RWORK(LRW), IWORK(LIW),
66 1 RPAR(*), IPAR(*)
67 C-----------------------------------------------------------------------
68 C DVODE.. Variable-coefficient Ordinary Differential Equation solver,
69 C with fixed-leading coefficient implementation.
70 C This version is in KPP_REAL.
72 C DVODE solves the initial value problem for stiff or nonstiff
73 C systems of first order ODEs,
74 C dy/dt = f(t,y) , or, in component form,
75 C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ).
76 C DVODE is a package based on the EPISODE and EPISODEB packages, and
77 C on the ODEPACK user interface standard, with minor modifications.
78 C-----------------------------------------------------------------------
79 C Revision History (YYMMDD)
80 C 890615 Date Written
81 C 890922 Added interrupt/restart ability, minor changes throughout.
82 C 910228 Minor revisions in line format, prologue, etc.
83 C 920227 Modifications by D. Pang:
84 C (1) Applied subgennam to get generic intrinsic names.
85 C (2) Changed intrinsic names to generic in comments.
86 C (3) Added *DECK lines before each routine.
87 C 920721 Names of routines and labeled Common blocks changed, so as
88 C to be unique in combined single/KPP_REAL code (ACH).
89 C 920722 Minor revisions to prologue (ACH).
90 C 920831 Conversion to KPP_REAL done (ACH).
91 C-----------------------------------------------------------------------
92 C References..
94 C 1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variable
95 C Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989),
96 C pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.
97 C 2. G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the
98 C Numerical Solution of Ordinary Differential Equations,"
99 C ACM Trans. Math. Software, 1 (1975), pp. 71-96.
100 C 3. A. C. Hindmarsh and G. D. Byrne, "EPISODE: An Effective Package
101 C for the Integration of Systems of Ordinary Differential
102 C Equations," LLNL Report UCID-30112, Rev. 1, April 1977.
103 C 4. G. D. Byrne and A. C. Hindmarsh, "EPISODEB: An Experimental
104 C Package for the Integration of Systems of Ordinary Differential
105 C Equations with Banded Jacobians," LLNL Report UCID-30132, April
106 C 1976.
107 C 5. A. C. Hindmarsh, "ODEPACK, a Systematized Collection of ODE
108 C Solvers," in Scientific Computing, R. S. Stepleman et al., eds.,
109 C North-Holland, Amsterdam, 1983, pp. 55-64.
110 C 6. K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation
111 C of Variable Step-Size Multistep Formulas for Stiff ODEs," ACM
112 C Trans. Math. Software, 6 (1980), pp. 295-318.
113 C-----------------------------------------------------------------------
114 C Authors..
116 C Peter N. Brown and Alan C. Hindmarsh
117 C Computing and Mathematics Research Division, L-316
118 C Lawrence Livermore National Laboratory
119 C Livermore, CA 94550
120 C and
121 C George D. Byrne
122 C Exxon Research and Engineering Co.
123 C Clinton Township
124 C Route 22 East
125 C Annandale, NJ 08801
126 C-----------------------------------------------------------------------
127 C Summary of usage.
129 C Communication between the user and the DVODE package, for normal
130 C situations, is summarized here. This summary describes only a subset
131 C of the full set of options available. See the full description for
132 C details, including optional communication, nonstandard options,
133 C and instructions for special situations. See also the example
134 C problem (with program and output) following this summary.
136 C A. First provide a subroutine of the form..
138 C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
139 C KPP_REAL T, Y, YDOT, RPAR
140 C DIMENSION Y(NEQ), YDOT(NEQ)
142 C which supplies the vector function f by loading YDOT(i) with f(i).
144 C B. Next determine (or guess) whether or not the problem is stiff.
145 C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue
146 C whose real part is negative and large in magnitude, compared to the
147 C reciprocal of the t span of interest. If the problem is nonstiff,
148 C use a method flag MF = 10. If it is stiff, there are four standard
149 C choices for MF (21, 22, 24, 25), and DVODE requires the Jacobian
150 C matrix in some form. In these cases (MF .gt. 0), DVODE will use a
151 C saved copy of the Jacobian matrix. If this is undesirable because of
152 C storage limitations, set MF to the corresponding negative value
153 C (-21, -22, -24, -25). (See full description of MF below.)
154 C The Jacobian matrix is regarded either as full (MF = 21 or 22),
155 C or banded (MF = 24 or 25). In the banded case, DVODE requires two
156 C half-bandwidth parameters ML and MU. These are, respectively, the
157 C widths of the lower and upper parts of the band, excluding the main
158 C diagonal. Thus the band consists of the locations (i,j) with
159 C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1.
161 C C. If the problem is stiff, you are encouraged to supply the Jacobian
162 C directly (MF = 21 or 24), but if this is not feasible, DVODE will
163 C compute it internally by difference quotients (MF = 22 or 25).
164 C If you are supplying the Jacobian, provide a subroutine of the form..
166 C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR)
167 C KPP_REAL T, Y, PD, RPAR
168 C DIMENSION Y(NEQ), PD(NROWPD,NEQ)
170 C which supplies df/dy by loading PD as follows..
171 C For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
172 C the partial derivative of f(i) with respect to y(j). (Ignore the
173 C ML and MU arguments in this case.)
174 C For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
175 C df(i)/dy(j), i.e. load the diagonal lines of df/dy into the rows of
176 C PD from the top down.
177 C In either case, only nonzero elements need be loaded.
179 C D. Write a main program which calls subroutine DVODE once for
180 C each point at which answers are desired. This should also provide
181 C for possible use of logical unit 6 for output of error messages
182 C by DVODE. On the first CALL to DVODE, supply arguments as follows..
183 C F = Name of subroutine for right-hand side vector f.
184 C This name must be declared external in calling program.
185 C NEQ = Number of first order ODE-s.
186 C Y = Array of initial values, of length NEQ.
187 C T = The initial value of the independent variable.
188 C TOUT = First point where output is desired (.ne. T).
189 C ITOL = 1 or 2 according as AbsTol (below) is a scalar or array.
190 C RelTol = Relative tolerance parameter (scalar).
191 C AbsTol = Absolute tolerance parameter (scalar or array).
192 C The estimated local error in Y(i) will be controlled so as
193 C to be roughly less (in magnitude) than
194 C EWT(i) = RelTol*abs(Y(i)) + AbsTol if ITOL = 1, or
195 C EWT(i) = RelTol*abs(Y(i)) + AbsTol(i) if ITOL = 2.
196 C Thus the local error test passes if, in each component,
197 C either the absolute error is less than AbsTol (or AbsTol(i)),
198 C or the relative error is less than RelTol.
199 C Use RelTol = 0.0 for pure absolute error control, and
200 C use AbsTol = 0.0 (or AbsTol(i) = 0.0) for pure relative error
201 C control. Caution.. Actual (global) errors may exceed these
202 C local tolerances, so choose them conservatively.
203 C ITASK = 1 for normal computation of output values of Y at t = TOUT.
204 C ISTATE = Integer flag (input and output). Set ISTATE = 1.
205 C IOPT = 0 to indicate no optional input used.
206 C RWORK = Real work array of length at least..
207 C 20 + 16*NEQ for MF = 10,
208 C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
209 C 22 + 11*NEQ + (3*ML + 2*MU)*NEQ for MF = 24 or 25.
210 C LRW = Declared length of RWORK (in user's DIMENSION statement).
211 C IWORK = Integer work array of length at least..
212 C 30 for MF = 10,
213 C 30 + NEQ for MF = 21, 22, 24, or 25.
214 C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower
215 C and upper half-bandwidths ML,MU.
216 C LIW = Declared length of IWORK (in user's DIMENSION).
217 C JAC = Name of subroutine for Jacobian matrix (MF = 21 or 24).
218 C If used, this name must be declared external in calling
219 C program. If not used, pass a dummy name.
220 C MF = Method flag. Standard values are..
221 C 10 for nonstiff (Adams) method, no Jacobian used.
222 C 21 for stiff (BDF) method, user-supplied full Jacobian.
223 C 22 for stiff method, internally generated full Jacobian.
224 C 24 for stiff method, user-supplied banded Jacobian.
225 C 25 for stiff method, internally generated banded Jacobian.
226 C RPAR,IPAR = user-defined real and integer arrays passed to F and JAC.
227 C Note that the main program must declare arrays Y, RWORK, IWORK,
228 C and possibly AbsTol, RPAR, and IPAR.
230 C E. The output from the first CALL (or any call) is..
231 C Y = Array of computed values of y(t) vector.
232 C T = Corresponding value of independent variable (normally TOUT).
233 C ISTATE = 2 if DVODE was successful, negative otherwise.
234 C -1 means excess work done on this call. (Perhaps wrong MF.)
235 C -2 means excess accuracy requested. (Tolerances too small.)
236 C -3 means illegal input detected. (See printed message.)
237 C -4 means repeated error test failures. (Check all input.)
238 C -5 means repeated convergence failures. (Perhaps bad
239 C Jacobian supplied or wrong choice of MF or tolerances.)
240 C -6 means error weight became zero during problem. (Solution
241 C component i vanished, and AbsTol or AbsTol(i) = 0.)
243 C F. To continue the integration after a successful return, simply
244 C reset TOUT and CALL DVODE again. No other parameters need be reset.
246 C-----------------------------------------------------------------------
247 C EXAMPLE PROBLEM
249 C The following is a simple example problem, with the coding
250 C needed for its solution by DVODE. The problem is from chemical
251 C kinetics, and consists of the following three rate equations..
252 C dy1/dt = -.04*y1 + 1.e4*y2*y3
253 C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
254 C dy3/dt = 3.e7*y2**2
255 C on the interval from t = 0.0 to t = 4.e10, with initial conditions
256 C y1 = 1.0, y2 = y3 = 0. The problem is stiff.
258 C The following coding solves this problem with DVODE, using MF = 21
259 C and printing results at t = .4, 4., ..., 4.e10. It uses
260 C ITOL = 2 and AbsTol much smaller for y2 than y1 or y3 because
261 C y2 has much smaller values.
262 C At the end of the run, statistical quantities of interest are
263 C printed. (See optional output in the full description below.)
264 C To generate Fortran source code, replace C in column 1 with a blank
265 C in the coding below.
267 C EXTERNAL FEX, JEX
268 C KPP_REAL AbsTol, RPAR, RelTol, RWORK, T, TOUT, Y
269 C DIMENSION Y(3), AbsTol(3), RWORK(67), IWORK(33)
270 C NEQ = 3
271 C Y(1) = 1.0D0
272 C Y(2) = 0.0D0
273 C Y(3) = 0.0D0
274 C T = 0.0D0
275 C TOUT = 0.4D0
276 C ITOL = 2
277 C RelTol = 1.D-4
278 C AbsTol(1) = 1.D-8
279 C AbsTol(2) = 1.D-14
280 C AbsTol(3) = 1.D-6
281 C ITASK = 1
282 C ISTATE = 1
283 C IOPT = 0
284 C LRW = 67
285 C LIW = 33
286 C MF = 21
287 C DO 40 IOUT = 1,12
288 C CALL DVODE(FEX,NEQ,Y,T,TOUT,ITOL,RelTol,AbsTol,ITASK,ISTATE,
289 C 1 IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)
290 C WRITE(6,20)T,Y(1),Y(2),Y(3)
291 C 20 FORMAT(' At t =',D12.4,' y =',3D14.6)
292 C IF (ISTATE .LT. 0) GO TO 80
293 C 40 TOUT = TOUT*10.
294 C WRITE(6,60) IWORK(11),IWORK(12),IWORK(13),IWORK(19),
295 C 1 IWORK(20),IWORK(21),IWORK(22)
296 C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,
297 C 1 ' No. J-s =',I4,' No. LU-s =',I4/
298 C 2 ' No. nonlinear iterations =',I4/
299 C 3 ' No. nonlinear convergence failures =',I4/
300 C 4 ' No. error test failures =',I4/)
301 C STOP
302 C 80 WRITE(6,90)ISTATE
303 C 90 FORMAT(///' Error halt.. ISTATE =',I3)
304 C STOP
305 C END
307 C SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)
308 C KPP_REAL RPAR, T, Y, YDOT
309 C DIMENSION Y(NEQ), YDOT(NEQ)
310 C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)
311 C YDOT(3) = 3.D7*Y(2)*Y(2)
312 C YDOT(2) = -YDOT(1) - YDOT(3)
313 C RETURN
314 C END
316 C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)
317 C KPP_REAL PD, RPAR, T, Y
318 C DIMENSION Y(NEQ), PD(NRPD,NEQ)
319 C PD(1,1) = -.04D0
320 C PD(1,2) = 1.D4*Y(3)
321 C PD(1,3) = 1.D4*Y(2)
322 C PD(2,1) = .04D0
323 C PD(2,3) = -PD(1,3)
324 C PD(3,2) = 6.D7*Y(2)
325 C PD(2,2) = -PD(1,2) - PD(3,2)
326 C RETURN
327 C END
329 C The following output was obtained from the above program on a
330 C Cray-1 computer with the CFT compiler.
332 C At t = 4.0000e-01 y = 9.851680e-01 3.386314e-05 1.479817e-02
333 C At t = 4.0000e+00 y = 9.055255e-01 2.240539e-05 9.445214e-02
334 C At t = 4.0000e+01 y = 7.158108e-01 9.184883e-06 2.841800e-01
335 C At t = 4.0000e+02 y = 4.505032e-01 3.222940e-06 5.494936e-01
336 C At t = 4.0000e+03 y = 1.832053e-01 8.942690e-07 8.167938e-01
337 C At t = 4.0000e+04 y = 3.898560e-02 1.621875e-07 9.610142e-01
338 C At t = 4.0000e+05 y = 4.935882e-03 1.984013e-08 9.950641e-01
339 C At t = 4.0000e+06 y = 5.166183e-04 2.067528e-09 9.994834e-01
340 C At t = 4.0000e+07 y = 5.201214e-05 2.080593e-10 9.999480e-01
341 C At t = 4.0000e+08 y = 5.213149e-06 2.085271e-11 9.999948e-01
342 C At t = 4.0000e+09 y = 5.183495e-07 2.073399e-12 9.999995e-01
343 C At t = 4.0000e+10 y = 5.450996e-08 2.180399e-13 9.999999e-01
345 C No. steps = 595 No. f-s = 832 No. J-s = 13 No. LU-s = 112
346 C No. nonlinear iterations = 831
347 C No. nonlinear convergence failures = 0
348 C No. error test failures = 22
349 C-----------------------------------------------------------------------
350 C Full description of user interface to DVODE.
352 C The user interface to DVODE consists of the following parts.
354 C i. The CALL sequence to subroutine DVODE, which is a driver
355 C routine for the solver. This includes descriptions of both
356 C the CALL sequence arguments and of user-supplied routines.
357 C Following these descriptions is
358 C * a description of optional input available through the
359 C CALL sequence,
360 C * a description of optional output (in the work arrays), and
361 C * instructions for interrupting and restarting a solution.
363 C ii. Descriptions of other routines in the DVODE package that may be
364 C (optionally) called by the user. These provide the ability to
365 C alter error message handling, save and restore the internal
366 C COMMON, and obtain specified derivatives of the solution y(t).
368 C iii. Descriptions of COMMON blocks to be declared in overlay
369 C or similar environments.
371 C iv. Description of two routines in the DVODE package, either of
372 C which the user may replace with his own version, if desired.
373 C these relate to the measurement of errors.
375 C-----------------------------------------------------------------------
376 C Part i. Call Sequence.
378 C The CALL sequence parameters used for input only are
379 C F, NEQ, TOUT, ITOL, RelTol, AbsTol, ITASK, IOPT, LRW, LIW, JAC, MF,
380 C and those used for both input and output are
381 C Y, T, ISTATE.
382 C The work arrays RWORK and IWORK are also used for conditional and
383 C optional input and optional output. (The term output here refers
384 C to the return from subroutine DVODE to the user's calling program.)
386 C The legality of input parameters will be thoroughly checked on the
387 C initial CALL for the problem, but not checked thereafter unless a
388 C change in input parameters is flagged by ISTATE = 3 in the input.
390 C The descriptions of the CALL arguments are as follows.
392 C F = The name of the user-supplied subroutine defining the
393 C ODE system. The system must be put in the first-order
394 C form dy/dt = f(t,y), where f is a vector-valued function
395 C of the scalar t and the vector y. Subroutine F is to
396 C compute the function f. It is to have the form
397 C SUBROUTINE F (NEQ, T, Y, YDOT, RPAR, IPAR)
398 C KPP_REAL T, Y, YDOT, RPAR
399 C DIMENSION Y(NEQ), YDOT(NEQ)
400 C where NEQ, T, and Y are input, and the array YDOT = f(t,y)
401 C is output. Y and YDOT are arrays of length NEQ.
402 C (In the DIMENSION statement above, NEQ can be replaced by
403 C * to make Y and YDOT assumed size arrays.)
404 C Subroutine F should not alter Y(1),...,Y(NEQ).
405 C F must be declared EXTERNAL in the calling program.
407 C Subroutine F may access user-defined real and integer
408 C work arrays RPAR and IPAR, which are to be dimensioned
409 C in the main program.
411 C If quantities computed in the F routine are needed
412 C externally to DVODE, an extra CALL to F should be made
413 C for this purpose, for consistent and accurate results.
414 C If only the derivative dy/dt is needed, use DVINDY instead.
416 C NEQ = The size of the ODE system (number of first order
417 C ordinary differential equations). Used only for input.
418 C NEQ may not be increased during the problem, but
419 C can be decreased (with ISTATE = 3 in the input).
421 C Y = A real array for the vector of dependent variables, of
422 C length NEQ or more. Used for both input and output on the
423 C first CALL (ISTATE = 1), and only for output on other calls.
424 C On the first call, Y must contain the vector of initial
425 C values. In the output, Y contains the computed solution
426 C evaluated at T. If desired, the Y array may be used
427 C for other purposes between calls to the solver.
429 C This array is passed as the Y argument in all calls to
430 C F and JAC.
432 C T = The independent variable. In the input, T is used only on
433 C the first call, as the initial point of the integration.
434 C In the output, after each call, T is the value at which a
435 C computed solution Y is evaluated (usually the same as TOUT).
436 C On an error return, T is the farthest point reached.
438 C TOUT = The next value of t at which a computed solution is desired.
439 C Used only for input.
441 C When starting the problem (ISTATE = 1), TOUT may be equal
442 C to T for one call, then should .ne. T for the next call.
443 C For the initial T, an input value of TOUT .ne. T is used
444 C in order to determine the direction of the integration
445 C (i.e. the algebraic sign of the step sizes) and the rough
446 C scale of the problem. Integration in either direction
447 C (forward or backward in t) is permitted.
449 C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after
450 C the first CALL (i.e. the first CALL with TOUT .ne. T).
451 C Otherwise, TOUT is required on every call.
453 C If ITASK = 1, 3, or 4, the values of TOUT need not be
454 C monotone, but a value of TOUT which backs up is limited
455 C to the current internal t interval, whose endpoints are
456 C TCUR - HU and TCUR. (See optional output, below, for
457 C TCUR and HU.)
459 C ITOL = An indicator for the type of error control. See
460 C description below under AbsTol. Used only for input.
462 C RelTol = A relative error tolerance parameter, either a scalar or
463 C an array of length NEQ. See description below under AbsTol.
464 C Input only.
466 C AbsTol = An absolute error tolerance parameter, either a scalar or
467 C an array of length NEQ. Input only.
469 C The input parameters ITOL, RelTol, and AbsTol determine
470 C the error control performed by the solver. The solver will
471 C control the vector e = (e(i)) of estimated local errors
472 C in Y, according to an inequality of the form
473 C rms-norm of ( e(i)/EWT(i) ) .le. 1,
474 C where EWT(i) = RelTol(i)*abs(Y(i)) + AbsTol(i),
475 C and the rms-norm (root-mean-square norm) here is
476 C rms-norm(v) = sqrt(sum v(i)**2 / NEQ). Here EWT = (EWT(i))
477 C is a vector of weights which must always be positive, and
478 C the values of RelTol and AbsTol should all be non-negative.
479 C The following table gives the types (scalar/array) of
480 C RelTol and AbsTol, and the corresponding form of EWT(i).
482 C ITOL RelTol AbsTol EWT(i)
483 C 1 scalar scalar RelTol*ABS(Y(i)) + AbsTol
484 C 2 scalar array RelTol*ABS(Y(i)) + AbsTol(i)
485 C 3 array scalar RelTol(i)*ABS(Y(i)) + AbsTol
486 C 4 array array RelTol(i)*ABS(Y(i)) + AbsTol(i)
488 C When either of these parameters is a scalar, it need not
489 C be dimensioned in the user's calling program.
491 C If none of the above choices (with ITOL, RelTol, and AbsTol
492 C fixed throughout the problem) is suitable, more general
493 C error controls can be obtained by substituting
494 C user-supplied routines for the setting of EWT and/or for
495 C the norm calculation. See Part iv below.
497 C If global errors are to be estimated by making a repeated
498 C run on the same problem with smaller tolerances, then all
499 C components of RelTol and AbsTol (i.e. of EWT) should be scaled
500 C down uniformly.
502 C ITASK = An index specifying the task to be performed.
503 C Input only. ITASK has the following values and meanings.
504 C 1 means normal computation of output values of y(t) at
505 C t = TOUT (by overshooting and interpolating).
506 C 2 means take one step only and return.
507 C 3 means stop at the first internal mesh point at or
508 C beyond t = TOUT and return.
509 C 4 means normal computation of output values of y(t) at
510 C t = TOUT but without overshooting t = TCRIT.
511 C TCRIT must be input as RWORK(1). TCRIT may be equal to
512 C or beyond TOUT, but not behind it in the direction of
513 C integration. This option is useful if the problem
514 C has a singularity at or beyond t = TCRIT.
515 C 5 means take one step, without passing TCRIT, and return.
516 C TCRIT must be input as RWORK(1).
518 C Note.. If ITASK = 4 or 5 and the solver reaches TCRIT
519 C (within roundoff), it will return T = TCRIT (exactly) to
520 C indicate this (unless ITASK = 4 and TOUT comes before TCRIT,
521 C in which case answers at T = TOUT are returned first).
523 C ISTATE = an index used for input and output to specify the
524 C the state of the calculation.
526 C In the input, the values of ISTATE are as follows.
527 C 1 means this is the first CALL for the problem
528 C (initializations will be done). See note below.
529 C 2 means this is not the first call, and the calculation
530 C is to continue normally, with no change in any input
531 C parameters except possibly TOUT and ITASK.
532 C (If ITOL, RelTol, and/or AbsTol are changed between calls
533 C with ISTATE = 2, the new values will be used but not
534 C tested for legality.)
535 C 3 means this is not the first call, and the
536 C calculation is to continue normally, but with
537 C a change in input parameters other than
538 C TOUT and ITASK. Changes are allowed in
539 C NEQ, ITOL, RelTol, AbsTol, IOPT, LRW, LIW, MF, ML, MU,
540 C and any of the optional input except H0.
541 C (See IWORK description for ML and MU.)
542 C Note.. A preliminary CALL with TOUT = T is not counted
543 C as a first CALL here, as no initialization or checking of
544 C input is done. (Such a CALL is sometimes useful to include
545 C the initial conditions in the output.)
546 C Thus the first CALL for which TOUT .ne. T requires
547 C ISTATE = 1 in the input.
549 C In the output, ISTATE has the following values and meanings.
550 C 1 means nothing was done, as TOUT was equal to T with
551 C ISTATE = 1 in the input.
552 C 2 means the integration was performed successfully.
553 C -1 means an excessive amount of work (more than MXSTEP
554 C steps) was done on this call, before completing the
555 C requested task, but the integration was otherwise
556 C successful as far as T. (MXSTEP is an optional input
557 C and is normally 500.) To continue, the user may
558 C simply reset ISTATE to a value .gt. 1 and CALL again.
559 C (The excess work step counter will be reset to 0.)
560 C In addition, the user may increase MXSTEP to avoid
561 C this error return. (See optional input below.)
562 C -2 means too much accuracy was requested for the precision
563 C of the machine being used. This was detected before
564 C completing the requested task, but the integration
565 C was successful as far as T. To continue, the tolerance
566 C parameters must be reset, and ISTATE must be set
567 C to 3. The optional output TOLSF may be used for this
568 C purpose. (Note.. If this condition is detected before
569 C taking any steps, then an illegal input return
570 C (ISTATE = -3) occurs instead.)
571 C -3 means illegal input was detected, before taking any
572 C integration steps. See written message for details.
573 C Note.. If the solver detects an infinite loop of calls
574 C to the solver with illegal input, it will cause
575 C the run to stop.
576 C -4 means there were repeated error test failures on
577 C one attempted step, before completing the requested
578 C task, but the integration was successful as far as T.
579 C The problem may have a singularity, or the input
580 C may be inappropriate.
581 C -5 means there were repeated convergence test failures on
582 C one attempted step, before completing the requested
583 C task, but the integration was successful as far as T.
584 C This may be caused by an inaccurate Jacobian matrix,
585 C if one is being used.
586 C -6 means EWT(i) became zero for some i during the
587 C integration. Pure relative error control (AbsTol(i)=0.0)
588 C was requested on a variable which has now vanished.
589 C The integration was successful as far as T.
591 C Note.. Since the normal output value of ISTATE is 2,
592 C it does not need to be reset for normal continuation.
593 C Also, since a negative input value of ISTATE will be
594 C regarded as illegal, a negative output value requires the
595 C user to change it, and possibly other input, before
596 C calling the solver again.
598 C IOPT = An integer flag to specify whether or not any optional
599 C input is being used on this call. Input only.
600 C The optional input is listed separately below.
601 C IOPT = 0 means no optional input is being used.
602 C Default values will be used in all cases.
603 C IOPT = 1 means optional input is being used.
605 C RWORK = A real working array (KPP_REAL).
606 C The length of RWORK must be at least
607 C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where
608 C NYH = the initial value of NEQ,
609 C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
610 C smaller value is given as an optional input),
611 C LWM = length of work space for matrix-related data..
612 C LWM = 0 if MITER = 0,
613 C LWM = 2*NEQ**2 + 2 if MITER = 1 or 2, and MF.gt.0,
614 C LWM = NEQ**2 + 2 if MITER = 1 or 2, and MF.lt.0,
615 C LWM = NEQ + 2 if MITER = 3,
616 C LWM = (3*ML+2*MU+2)*NEQ + 2 if MITER = 4 or 5, and MF.gt.0,
617 C LWM = (2*ML+MU+1)*NEQ + 2 if MITER = 4 or 5, and MF.lt.0.
618 C (See the MF description for METH and MITER.)
619 C Thus if MAXORD has its default value and NEQ is constant,
620 C this length is..
621 C 20 + 16*NEQ for MF = 10,
622 C 22 + 16*NEQ + 2*NEQ**2 for MF = 11 or 12,
623 C 22 + 16*NEQ + NEQ**2 for MF = -11 or -12,
624 C 22 + 17*NEQ for MF = 13,
625 C 22 + 18*NEQ + (3*ML+2*MU)*NEQ for MF = 14 or 15,
626 C 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = -14 or -15,
627 C 20 + 9*NEQ for MF = 20,
628 C 22 + 9*NEQ + 2*NEQ**2 for MF = 21 or 22,
629 C 22 + 9*NEQ + NEQ**2 for MF = -21 or -22,
630 C 22 + 10*NEQ for MF = 23,
631 C 22 + 11*NEQ + (3*ML+2*MU)*NEQ for MF = 24 or 25.
632 C 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = -24 or -25.
633 C The first 20 words of RWORK are reserved for conditional
634 C and optional input and optional output.
636 C The following word in RWORK is a conditional input..
637 C RWORK(1) = TCRIT = critical value of t which the solver
638 C is not to overshoot. Required if ITASK is
639 C 4 or 5, and ignored otherwise. (See ITASK.)
641 C LRW = The length of the array RWORK, as declared by the user.
642 C (This will be checked by the solver.)
644 C IWORK = An integer work array. The length of IWORK must be at least
645 C 30 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
646 C 30 + NEQ otherwise (abs(MF) = 11,12,14,15,21,22,24,25).
647 C The first 30 words of IWORK are reserved for conditional and
648 C optional input and optional output.
650 C The following 2 words in IWORK are conditional input..
651 C IWORK(1) = ML These are the lower and upper
652 C IWORK(2) = MU half-bandwidths, respectively, of the
653 C banded Jacobian, excluding the main diagonal.
654 C The band is defined by the matrix locations
655 C (i,j) with i-ML .le. j .le. i+MU. ML and MU
656 C must satisfy 0 .le. ML,MU .le. NEQ-1.
657 C These are required if MITER is 4 or 5, and
658 C ignored otherwise. ML and MU may in fact be
659 C the band parameters for a matrix to which
660 C df/dy is only approximately equal.
662 C LIW = the length of the array IWORK, as declared by the user.
663 C (This will be checked by the solver.)
665 C Note.. The work arrays must not be altered between calls to DVODE
666 C for the same problem, except possibly for the conditional and
667 C optional input, and except for the last 3*NEQ words of RWORK.
668 C The latter space is used for internal scratch space, and so is
669 C available for use by the user outside DVODE between calls, if
670 C desired (but not for use by F or JAC).
672 C JAC = The name of the user-supplied routine (MITER = 1 or 4) to
673 C compute the Jacobian matrix, df/dy, as a function of
674 C the scalar t and the vector y. It is to have the form
675 C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD,
676 C RPAR, IPAR)
677 C KPP_REAL T, Y, PD, RPAR
678 C DIMENSION Y(NEQ), PD(NROWPD, NEQ)
679 C where NEQ, T, Y, ML, MU, and NROWPD are input and the array
680 C PD is to be loaded with partial derivatives (elements of the
681 C Jacobian matrix) in the output. PD must be given a first
682 C dimension of NROWPD. T and Y have the same meaning as in
683 C Subroutine F. (In the DIMENSION statement above, NEQ can
684 C be replaced by * to make Y and PD assumed size arrays.)
685 C In the full matrix case (MITER = 1), ML and MU are
686 C ignored, and the Jacobian is to be loaded into PD in
687 C columnwise manner, with df(i)/dy(j) loaded into PD(i,j).
688 C In the band matrix case (MITER = 4), the elements
689 C within the band are to be loaded into PD in columnwise
690 C manner, with diagonal lines of df/dy loaded into the rows
691 C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j).
692 C ML and MU are the half-bandwidth parameters. (See IWORK).
693 C The locations in PD in the two triangular areas which
694 C correspond to nonexistent matrix elements can be ignored
695 C or loaded arbitrarily, as they are overwritten by DVODE.
696 C JAC need not provide df/dy exactly. A crude
697 C approximation (possibly with a smaller bandwidth) will do.
698 C In either case, PD is preset to zero by the solver,
699 C so that only the nonzero elements need be loaded by JAC.
700 C Each CALL to JAC is preceded by a CALL to F with the same
701 C arguments NEQ, T, and Y. Thus to gain some efficiency,
702 C intermediate quantities shared by both calculations may be
703 C saved in a user COMMON block by F and not recomputed by JAC,
704 C if desired. Also, JAC may alter the Y array, if desired.
705 C JAC must be declared external in the calling program.
706 C Subroutine JAC may access user-defined real and integer
707 C work arrays, RPAR and IPAR, whose dimensions are set by the
708 C user in the main program.
710 C MF = The method flag. Used only for input. The legal values of
711 C MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25,
712 C -11, -12, -14, -15, -21, -22, -24, -25.
713 C MF is a signed two-digit integer, MF = JSV*(10*METH + MITER).
714 C JSV = SIGN(MF) indicates the Jacobian-saving strategy..
715 C JSV = 1 means a copy of the Jacobian is saved for reuse
716 C in the corrector iteration algorithm.
717 C JSV = -1 means a copy of the Jacobian is not saved
718 C (valid only for MITER = 1, 2, 4, or 5).
719 C METH indicates the basic linear multistep method..
720 C METH = 1 means the implicit Adams method.
721 C METH = 2 means the method based on backward
722 C differentiation formulas (BDF-s).
723 C MITER indicates the corrector iteration method..
724 C MITER = 0 means functional iteration (no Jacobian matrix
725 C is involved).
726 C MITER = 1 means chord iteration with a user-supplied
727 C full (NEQ by NEQ) Jacobian.
728 C MITER = 2 means chord iteration with an internally
729 C generated (difference quotient) full Jacobian
730 C (using NEQ extra calls to F per df/dy value).
731 C MITER = 3 means chord iteration with an internally
732 C generated diagonal Jacobian approximation
733 C (using 1 extra CALL to F per df/dy evaluation).
734 C MITER = 4 means chord iteration with a user-supplied
735 C banded Jacobian.
736 C MITER = 5 means chord iteration with an internally
737 C generated banded Jacobian (using ML+MU+1 extra
738 C calls to F per df/dy evaluation).
739 C If MITER = 1 or 4, the user must supply a subroutine JAC
740 C (the name is arbitrary) as described above under JAC.
741 C For other values of MITER, a dummy argument can be used.
743 C RPAR User-specified array used to communicate real parameters
744 C to user-supplied subroutines. If RPAR is a vector, then
745 C it must be dimensioned in the user's main program. If it
746 C is unused or it is a scalar, then it need not be
747 C dimensioned.
749 C IPAR User-specified array used to communicate integer parameter
750 C to user-supplied subroutines. The comments on dimensioning
751 C RPAR apply to IPAR.
752 C-----------------------------------------------------------------------
753 C Optional Input.
755 C The following is a list of the optional input provided for in the
756 C CALL sequence. (See also Part ii.) For each such input variable,
757 C this table lists its name as used in this documentation, its
758 C location in the CALL sequence, its meaning, and the default value.
759 C The use of any of this input requires IOPT = 1, and in that
760 C case all of this input is examined. A value of zero for any
761 C of these optional input variables will cause the default value to be
762 C used. Thus to use a subset of the optional input, simply preload
763 C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and
764 C then set those of interest to nonzero values.
766 C NAME LOCATION MEANING AND DEFAULT VALUE
768 C H0 RWORK(5) The step size to be attempted on the first step.
769 C The default value is determined by the solver.
771 C HMAX RWORK(6) The maximum absolute step size allowed.
772 C The default value is infinite.
774 C HMIN RWORK(7) The minimum absolute step size allowed.
775 C The default value is 0. (This lower bound is not
776 C enforced on the final step before reaching TCRIT
777 C when ITASK = 4 or 5.)
779 C MAXORD IWORK(5) The maximum order to be allowed. The default
780 C value is 12 if METH = 1, and 5 if METH = 2.
781 C If MAXORD exceeds the default value, it will
782 C be reduced to the default value.
783 C If MAXORD is changed during the problem, it may
784 C cause the current order to be reduced.
786 C MXSTEP IWORK(6) Maximum number of (internally defined) steps
787 C allowed during one CALL to the solver.
788 C The default value is 500.
790 C MXHNIL IWORK(7) Maximum number of messages printed (per problem)
791 C warning that T + H = T on a step (H = step size).
792 C This must be positive to result in a non-default
793 C value. The default value is 10.
795 C-----------------------------------------------------------------------
796 C Optional Output.
798 C As optional additional output from DVODE, the variables listed
799 C below are quantities related to the performance of DVODE
800 C which are available to the user. These are communicated by way of
801 C the work arrays, but also have internal mnemonic names as shown.
802 C Except where stated otherwise, all of this output is defined
803 C on any successful return from DVODE, and on any return with
804 C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return
805 C (ISTATE = -3), they will be unchanged from their existing values
806 C (if any), except possibly for TOLSF, LENRW, and LENIW.
807 C On any error return, output relevant to the error will be defined,
808 C as noted below.
810 C NAME LOCATION MEANING
812 C HU RWORK(11) The step size in t last used (successfully).
814 C HCUR RWORK(12) The step size to be attempted on the next step.
816 C TCUR RWORK(13) The current value of the independent variable
817 C which the solver has actually reached, i.e. the
818 C current internal mesh point in t. In the output,
819 C TCUR will always be at least as far from the
820 C initial value of t as the current argument T,
821 C but may be farther (if interpolation was done).
823 C TOLSF RWORK(14) A tolerance scale factor, greater than 1.0,
824 C computed when a request for too much accuracy was
825 C detected (ISTATE = -3 if detected at the start of
826 C the problem, ISTATE = -2 otherwise). If ITOL is
827 C left unaltered but RelTol and AbsTol are uniformly
828 C scaled up by a factor of TOLSF for the next call,
829 C then the solver is deemed likely to succeed.
830 C (The user may also ignore TOLSF and alter the
831 C tolerance parameters in any other way appropriate.)
833 C NST IWORK(11) The number of steps taken for the problem so far.
835 C NFE IWORK(12) The number of f evaluations for the problem so far.
837 C NJE IWORK(13) The number of Jacobian evaluations so far.
839 C NQU IWORK(14) The method order last used (successfully).
841 C NQCUR IWORK(15) The order to be attempted on the next step.
843 C IMXER IWORK(16) The index of the component of largest magnitude in
844 C the weighted local error vector ( e(i)/EWT(i) ),
845 C on an error return with ISTATE = -4 or -5.
847 C LENRW IWORK(17) The length of RWORK actually required.
848 C This is defined on normal returns and on an illegal
849 C input return for insufficient storage.
851 C LENIW IWORK(18) The length of IWORK actually required.
852 C This is defined on normal returns and on an illegal
853 C input return for insufficient storage.
855 C NLU IWORK(19) The number of matrix LU decompositions so far.
857 C NNI IWORK(20) The number of nonlinear (Newton) iterations so far.
859 C NCFN IWORK(21) The number of convergence failures of the nonlinear
860 C solver so far.
862 C NETF IWORK(22) The number of error test failures of the integrator
863 C so far.
865 C The following two arrays are segments of the RWORK array which
866 C may also be of interest to the user as optional output.
867 C For each array, the table below gives its internal name,
868 C its base address in RWORK, and its description.
870 C NAME BASE ADDRESS DESCRIPTION
872 C YH 21 The Nordsieck history array, of size NYH by
873 C (NQCUR + 1), where NYH is the initial value
874 C of NEQ. For j = 0,1,...,NQCUR, column j+1
875 C of YH contains HCUR**j/factorial(j) times
876 C the j-th derivative of the interpolating
877 C polynomial currently representing the
878 C solution, evaluated at t = TCUR.
880 C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated
881 C corrections on each step, scaled in the output
882 C to represent the estimated local error in Y
883 C on the last step. This is the vector e in
884 C the description of the error control. It is
885 C defined only on a successful return from DVODE.
887 C-----------------------------------------------------------------------
888 C Interrupting and Restarting
890 C If the integration of a given problem by DVODE is to be
891 C interrupted and then later continued, such as when restarting
892 C an interrupted run or alternating between two or more ODE problems,
893 C the user should save, following the return from the last DVODE call
894 C prior to the interruption, the contents of the CALL sequence
895 C variables and internal COMMON blocks, and later restore these
896 C values before the next DVODE CALL for that problem. To save
897 C and restore the COMMON blocks, use subroutine DVSRCO, as
898 C described below in part ii.
900 C In addition, if non-default values for either LUN or MFLAG are
901 C desired, an extra CALL to XSETUN and/or XSETF should be made just
902 C before continuing the integration. See Part ii below for details.
904 C-----------------------------------------------------------------------
905 C Part ii. Other Routines Callable.
907 C The following are optional calls which the user may make to
908 C gain additional capabilities in conjunction with DVODE.
909 C (The routines XSETUN and XSETF are designed to conform to the
910 C SLATEC error handling package.)
912 C FORM OF CALL FUNCTION
913 C CALL XSETUN(LUN) Set the logical unit number, LUN, for
914 C output of messages from DVODE, if
915 C the default is not desired.
916 C The default value of LUN is 6.
918 C CALL XSETF(MFLAG) Set a flag to control the printing of
919 C messages by DVODE.
920 C MFLAG = 0 means do not print. (Danger..
921 C This risks losing valuable information.)
922 C MFLAG = 1 means print (the default).
924 C Either of the above calls may be made at
925 C any time and will take effect immediately.
927 C CALL DVSRCO(RSAV,ISAV,JOB) Saves and restores the contents of
928 C the internal COMMON blocks used by
929 C DVODE. (See Part iii below.)
930 C RSAV must be a real array of length 49
931 C or more, and ISAV must be an integer
932 C array of length 40 or more.
933 C JOB=1 means save COMMON into RSAV/ISAV.
934 C JOB=2 means restore COMMON from RSAV/ISAV.
935 C DVSRCO is useful if one is
936 C interrupting a run and restarting
937 C later, or alternating between two or
938 C more problems solved with DVODE.
940 C CALL DVINDY(,,,,,) Provide derivatives of y, of various
941 C (See below.) orders, at a specified point T, if
942 C desired. It may be called only after
943 C a successful return from DVODE.
945 C The detailed instructions for using DVINDY are as follows.
946 C The form of the CALL is..
948 C CALL DVINDY (T, K, RWORK(21), NYH, DKY, IFLAG)
950 C The input parameters are..
952 C T = Value of independent variable where answers are desired
953 C (normally the same as the T last returned by DVODE).
954 C For valid results, T must lie between TCUR - HU and TCUR.
955 C (See optional output for TCUR and HU.)
956 C K = Integer order of the derivative desired. K must satisfy
957 C 0 .le. K .le. NQCUR, where NQCUR is the current order
958 C (see optional output). The capability corresponding
959 C to K = 0, i.e. computing y(T), is already provided
960 C by DVODE directly. Since NQCUR .ge. 1, the first
961 C derivative dy/dt is always available with DVINDY.
962 C RWORK(21) = The base address of the history array YH.
963 C NYH = Column length of YH, equal to the initial value of NEQ.
965 C The output parameters are..
967 C DKY = A real array of length NEQ containing the computed value
968 C of the K-th derivative of y(t).
969 C IFLAG = Integer flag, returned as 0 if K and T were legal,
970 C -1 if K was illegal, and -2 if T was illegal.
971 C On an error return, a message is also written.
972 C-----------------------------------------------------------------------
973 C Part iii. COMMON Blocks.
974 C If DVODE is to be used in an overlay situation, the user
975 C must declare, in the primary overlay, the variables in..
976 C (1) the CALL sequence to DVODE,
977 C (2) the two internal COMMON blocks
978 C /DVOD01/ of length 81 (48 KPP_REAL words
979 C followed by 33 integer words),
980 C /DVOD02/ of length 9 (1 KPP_REAL word
981 C followed by 8 integer words),
983 C If DVODE is used on a system in which the contents of internal
984 C COMMON blocks are not preserved between calls, the user should
985 C declare the above two COMMON blocks in his main program to insure
986 C that their contents are preserved.
988 C-----------------------------------------------------------------------
989 C Part iv. Optionally Replaceable Solver Routines.
991 C Below are descriptions of two routines in the DVODE package which
992 C relate to the measurement of errors. Either routine can be
993 C replaced by a user-supplied version, if desired. However, since such
994 C a replacement may have a major impact on performance, it should be
995 C done only when absolutely necessary, and only with great caution.
996 C (Note.. The means by which the package version of a routine is
997 C superseded by the user's version may be system-dependent.)
999 C (a) DEWSET.
1000 C The following subroutine is called just before each internal
1001 C integration step, and sets the array of error weights, EWT, as
1002 C described under ITOL/RelTol/AbsTol above..
1003 C SUBROUTINE DEWSET (NEQ, ITOL, RelTol, AbsTol, YCUR, EWT)
1004 C where NEQ, ITOL, RelTol, and AbsTol are as in the DVODE CALL sequence,
1005 C YCUR contains the current dependent variable vector, and
1006 C EWT is the array of weights set by DEWSET.
1008 C If the user supplies this subroutine, it must return in EWT(i)
1009 C (i = 1,...,NEQ) a positive quantity suitable for comparison with
1010 C errors in Y(i). The EWT array returned by DEWSET is passed to the
1011 C DVNORM routine (See below.), and also used by DVODE in the computation
1012 C of the optional output IMXER, the diagonal Jacobian approximation,
1013 C and the increments for difference quotient Jacobians.
1015 C In the user-supplied version of DEWSET, it may be desirable to use
1016 C the current values of derivatives of y. Derivatives up to order NQ
1017 C are available from the history array YH, described above under
1018 C Optional Output. In DEWSET, YH is identical to the YCUR array,
1019 C extended to NQ + 1 columns with a column length of NYH and scale
1020 C factors of h**j/factorial(j). On the first CALL for the problem,
1021 C given by NST = 0, NQ is 1 and H is temporarily set to 1.0.
1022 C NYH is the initial value of NEQ. The quantities NQ, H, and NST
1023 C can be obtained by including in DEWSET the statements..
1024 C KPP_REAL RVOD, H, HU
1025 C COMMON /DVOD01/ RVOD(48), IVOD(33)
1026 C COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1027 C NQ = IVOD(28)
1028 C H = RVOD(21)
1029 C Thus, for example, the current value of dy/dt can be obtained as
1030 C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is
1031 C unnecessary when NST = 0).
1033 C (b) DVNORM.
1034 C The following is a real function routine which computes the weighted
1035 C root-mean-square norm of a vector v..
1036 C D = DVNORM (N, V, W)
1037 C where..
1038 C N = the length of the vector,
1039 C V = real array of length N containing the vector,
1040 C W = real array of length N containing weights,
1041 C D = sqrt( (1/N) * sum(V(i)*W(i))**2 ).
1042 C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where
1043 C EWT is as set by subroutine DEWSET.
1045 C If the user supplies this function, it should return a non-negative
1046 C value of DVNORM suitable for use in the error control in DVODE.
1047 C None of the arguments should be altered by DVNORM.
1048 C For example, a user-supplied DVNORM routine might..
1049 C -substitute a max-norm of (V(i)*W(i)) for the rms-norm, or
1050 C -ignore some components of V in the norm, with the effect of
1051 C suppressing the error control on those components of Y.
1052 C-----------------------------------------------------------------------
1053 C Other Routines in the DVODE Package.
1055 C In addition to subroutine DVODE, the DVODE package includes the
1056 C following subroutines and function routines..
1057 C DVHIN computes an approximate step size for the initial step.
1058 C DVINDY computes an interpolated value of the y vector at t = TOUT.
1059 C DVSTEP is the core integrator, which does one step of the
1060 C integration and the associated error control.
1061 C DVSET sets all method coefficients and test constants.
1062 C DVNLSD solves the underlying nonlinear system -- the corrector.
1063 C DVJAC computes and preprocesses the Jacobian matrix J = df/dy
1064 C and the Newton iteration matrix P = I - (h/l1)*J.
1065 C DVSOL manages solution of linear system in chord iteration.
1066 C DVJUST adjusts the history array on a change of order.
1067 C DEWSET sets the error weight vector EWT before each step.
1068 C DVNORM computes the weighted r.m.s. norm of a vector.
1069 C DVSRCO is a user-callable routines to save and restore
1070 C the contents of the internal COMMON blocks.
1071 C DACOPY is a routine to copy one two-dimensional array to another.
1072 C DGEFA and DGESL are routines from LINPACK for solving full
1073 C systems of linear algebraic equations.
1074 C DGBFA and DGBSL are routines from LINPACK for solving banded
1075 C linear systems.
1076 C DAXPY, DSCAL, and DCOPY are basic linear algebra modules (BLAS).
1077 C D1MACH sets the unit roundoff of the machine.
1078 C XERRWD, XSETUN, XSETF, LUNSAV, and MFLGSV handle the printing of all
1079 C error messages and warnings. XERRWD is machine-dependent.
1080 C Note.. DVNORM, D1MACH, LUNSAV, and MFLGSV are function routines.
1081 C All the others are subroutines.
1083 C The intrinsic and external routines used by the DVODE package are..
1084 C ABS, MAX, MIN, REAL, SIGN, SQRT, and WRITE.
1086 C-----------------------------------------------------------------------
1088 C Type declarations for labeled COMMON block DVOD01 --------------------
1090 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1091 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1092 2 RC, RL1, TAU, TQ, TN, UROUND
1093 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1094 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1095 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1096 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1097 4 NSLP, NYH
1099 C Type declarations for labeled COMMON block DVOD02 --------------------
1101 KPP_REAL HU
1102 INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1104 C Type declarations for local variables --------------------------------
1106 EXTERNAL DVNLSD, F, JAC
1107 LOGICAL IHIT
1108 KPP_REAL AbsTolI, BIG, EWTI, FOUR, H0, HMAX, HMX, HUN, ONE,
1109 1 PT2, RH, RelTolI, SIZE, TCRIT, TNEXT, TOLSF, TP, TWO, ZERO
1110 INTEGER I, IER, IFLAG, IMXER, JCO, KGO, LENIW, LENJ, LENP, LENRW,
1111 1 LENWM, LF0, MBAND, ML, MORD, MU, MXHNL0, MXSTP0, NITER, NSLAST
1112 CHARACTER*80 MSG
1114 C Type declaration for function subroutines called ---------------------
1116 KPP_REAL D1MACH, DVNORM
1118 DIMENSION MORD(2)
1119 C-----------------------------------------------------------------------
1120 C The following Fortran-77 declaration is to cause the values of the
1121 C listed (local) variables to be saved between calls to DVODE.
1122 C-----------------------------------------------------------------------
1123 SAVE MORD, MXHNL0, MXSTP0
1124 SAVE ZERO, ONE, TWO, FOUR, PT2, HUN
1125 C-----------------------------------------------------------------------
1126 C The following internal COMMON blocks contain variables which are
1127 C communicated between subroutines in the DVODE package, or which are
1128 C to be saved between calls to DVODE.
1129 C In each block, real variables precede integers.
1130 C The block /DVOD01/ appears in subroutines DVODE, DVINDY, DVSTEP,
1131 C DVSET, DVNLSD, DVJAC, DVSOL, DVJUST and DVSRCO.
1132 C The block /DVOD02/ appears in subroutines DVODE, DVINDY, DVSTEP,
1133 C DVNLSD, DVJAC, and DVSRCO.
1135 C The variables stored in the internal COMMON blocks are as follows..
1137 C ACNRM = Weighted r.m.s. norm of accumulated correction vectors.
1138 C CCMXJ = Threshhold on DRC for updating the Jacobian. (See DRC.)
1139 C CONP = The saved value of TQ(5).
1140 C CRATE = Estimated corrector convergence rate constant.
1141 C DRC = Relative change in H*RL1 since last DVJAC call.
1142 C EL = Real array of integration coefficients. See DVSET.
1143 C ETA = Saved tentative ratio of new to old H.
1144 C ETAMAX = Saved maximum value of ETA to be allowed.
1145 C H = The step size.
1146 C HMIN = The minimum absolute value of the step size H to be used.
1147 C HMXI = Inverse of the maximum absolute value of H to be used.
1148 C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
1149 C HNEW = The step size to be attempted on the next step.
1150 C HSCAL = Stepsize in scaling of YH array.
1151 C PRL1 = The saved value of RL1.
1152 C RC = Ratio of current H*RL1 to value on last DVJAC call.
1153 C RL1 = The reciprocal of the coefficient EL(1).
1154 C TAU = Real vector of past NQ step sizes, length 13.
1155 C TQ = A real vector of length 5 in which DVSET stores constants
1156 C used for the convergence test, the error test, and the
1157 C selection of H at a new order.
1158 C TN = The independent variable, updated on each step taken.
1159 C UROUND = The machine unit roundoff. The smallest positive real number
1160 C such that 1.0 + UROUND .ne. 1.0
1161 C ICF = Integer flag for convergence failure in DVNLSD..
1162 C 0 means no failures.
1163 C 1 means convergence failure with out of date Jacobian
1164 C (recoverable error).
1165 C 2 means convergence failure with current Jacobian or
1166 C singular matrix (unrecoverable error).
1167 C INIT = Saved integer flag indicating whether initialization of the
1168 C problem has been done (INIT = 1) or not.
1169 C IPUP = Saved flag to signal updating of Newton matrix.
1170 C JCUR = Output flag from DVJAC showing Jacobian status..
1171 C JCUR = 0 means J is not current.
1172 C JCUR = 1 means J is current.
1173 C JSTART = Integer flag used as input to DVSTEP..
1174 C 0 means perform the first step.
1175 C 1 means take a new step continuing from the last.
1176 C -1 means take the next step with a new value of MAXORD,
1177 C HMIN, HMXI, N, METH, MITER, and/or matrix parameters.
1178 C On return, DVSTEP sets JSTART = 1.
1179 C JSV = Integer flag for Jacobian saving, = sign(MF).
1180 C KFLAG = A completion code from DVSTEP with the following meanings..
1181 C 0 the step was succesful.
1182 C -1 the requested error could not be achieved.
1183 C -2 corrector convergence could not be achieved.
1184 C -3, -4 fatal error in VNLS (can not occur here).
1185 C KUTH = Input flag to DVSTEP showing whether H was reduced by the
1186 C driver. KUTH = 1 if H was reduced, = 0 otherwise.
1187 C L = Integer variable, NQ + 1, current order plus one.
1188 C LMAX = MAXORD + 1 (used for dimensioning).
1189 C LOCJS = A pointer to the saved Jacobian, whose storage starts at
1190 C WM(LOCJS), if JSV = 1.
1191 C LYH, LEWT, LACOR, LSAVF, LWM, LIWM = Saved integer pointers
1192 C to segments of RWORK and IWORK.
1193 C MAXORD = The maximum order of integration method to be allowed.
1194 C METH/MITER = The method flags. See MF.
1195 C MSBJ = The maximum number of steps between J evaluations, = 50.
1196 C MXHNIL = Saved value of optional input MXHNIL.
1197 C MXSTEP = Saved value of optional input MXSTEP.
1198 C N = The number of first-order ODEs, = NEQ.
1199 C NEWH = Saved integer to flag change of H.
1200 C NEWQ = The method order to be used on the next step.
1201 C NHNIL = Saved counter for occurrences of T + H = T.
1202 C NQ = Integer variable, the current integration method order.
1203 C NQNYH = Saved value of NQ*NYH.
1204 C NQWAIT = A counter controlling the frequency of order changes.
1205 C An order change is about to be considered if NQWAIT = 1.
1206 C NSLJ = The number of steps taken as of the last Jacobian update.
1207 C NSLP = Saved value of NST as of last Newton matrix update.
1208 C NYH = Saved value of the initial value of NEQ.
1209 C HU = The step size in t last used.
1210 C NCFN = Number of nonlinear convergence failures so far.
1211 C NETF = The number of error test failures of the integrator so far.
1212 C NFE = The number of f evaluations for the problem so far.
1213 C NJE = The number of Jacobian evaluations so far.
1214 C NLU = The number of matrix LU decompositions so far.
1215 C NNI = Number of nonlinear iterations so far.
1216 C NQU = The method order last used.
1217 C NST = The number of steps taken for the problem so far.
1218 C-----------------------------------------------------------------------
1219 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1220 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1221 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
1222 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1223 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1224 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1225 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1226 7 NSLP, NYH
1227 COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1230 DATA MORD(1) /12/, MORD(2) /5/, MXSTP0 /500/, MXHNL0 /10/
1231 DATA ZERO /0.0D0/, ONE /1.0D0/, TWO /2.0D0/, FOUR /4.0D0/,
1232 1 PT2 /0.2D0/, HUN /100.0D0/
1233 C-----------------------------------------------------------------------
1234 C Block A.
1235 C This code block is executed on every call.
1236 C It tests ISTATE and ITASK for legality and branches appropriately.
1237 C If ISTATE .gt. 1 but the flag INIT shows that initialization has
1238 C not yet been done, an error return occurs.
1239 C If ISTATE = 1 and TOUT = T, return immediately.
1240 C-----------------------------------------------------------------------
1241 IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
1242 IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
1243 IF (ISTATE .EQ. 1) GO TO 10
1244 IF (INIT .NE. 1) GO TO 603
1245 IF (ISTATE .EQ. 2) GO TO 200
1246 GO TO 20
1247 10 INIT = 0
1248 IF (TOUT .EQ. T) RETURN
1249 C-----------------------------------------------------------------------
1250 C Block B.
1251 C The next code block is executed for the initial CALL (ISTATE = 1),
1252 C or for a continuation CALL with parameter changes (ISTATE = 3).
1253 C It contains checking of all input and various initializations.
1255 C First check legality of the non-optional input NEQ, ITOL, IOPT,
1256 C MF, ML, and MU.
1257 C-----------------------------------------------------------------------
1258 20 IF (NEQ .LE. 0) GO TO 604
1259 IF (ISTATE .EQ. 1) GO TO 25
1260 IF (NEQ .GT. N) GO TO 605
1261 25 N = NEQ
1262 IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606
1263 IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607
1264 JSV = SIGN(1,MF)
1265 MF = ABS(MF)
1266 METH = MF/10
1267 MITER = MF - 10*METH
1268 IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608
1269 IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608
1270 IF (MITER .LE. 3) GO TO 30
1271 ML = IWORK(1)
1272 MU = IWORK(2)
1273 IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609
1274 IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610
1275 30 CONTINUE
1276 C Next process and check the optional input. ---------------------------
1277 IF (IOPT .EQ. 1) GO TO 40
1278 MAXORD = MORD(METH)
1279 MXSTEP = MXSTP0
1280 MXHNIL = MXHNL0
1281 IF (ISTATE .EQ. 1) H0 = ZERO
1282 HMXI = ZERO
1283 HMIN = ZERO
1284 GO TO 60
1285 40 MAXORD = IWORK(5)
1286 IF (MAXORD .LT. 0) GO TO 611
1287 IF (MAXORD .EQ. 0) MAXORD = 100
1288 MAXORD = MIN(MAXORD,MORD(METH))
1289 MXSTEP = IWORK(6)
1290 IF (MXSTEP .LT. 0) GO TO 612
1291 IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0
1292 MXHNIL = IWORK(7)
1293 IF (MXHNIL .LT. 0) GO TO 613
1294 IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0
1295 IF (ISTATE .NE. 1) GO TO 50
1296 H0 = RWORK(5)
1297 IF ((TOUT - T)*H0 .LT. ZERO) GO TO 614
1298 50 HMAX = RWORK(6)
1299 IF (HMAX .LT. ZERO) GO TO 615
1300 HMXI = ZERO
1301 IF (HMAX .GT. ZERO) HMXI = ONE/HMAX
1302 HMIN = RWORK(7)
1303 IF (HMIN .LT. ZERO) GO TO 616
1304 C-----------------------------------------------------------------------
1305 C Set work array pointers and check lengths LRW and LIW.
1306 C Pointers to segments of RWORK and IWORK are named by prefixing L to
1307 C the name of the segment. E.g., the segment YH starts at RWORK(LYH).
1308 C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR.
1309 C Within WM, LOCJS is the location of the saved Jacobian (JSV .gt. 0).
1310 C-----------------------------------------------------------------------
1311 60 LYH = 21
1312 IF (ISTATE .EQ. 1) NYH = N
1313 LWM = LYH + (MAXORD + 1)*NYH
1314 JCO = MAX(0,JSV)
1315 IF (MITER .EQ. 0) LENWM = 0
1316 IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN
1317 LENWM = 2 + (1 + JCO)*N*N
1318 LOCJS = N*N + 3
1319 ENDIF
1320 IF (MITER .EQ. 3) LENWM = 2 + N
1321 IF (MITER .EQ. 4 .OR. MITER .EQ. 5) THEN
1322 MBAND = ML + MU + 1
1323 LENP = (MBAND + ML)*N
1324 LENJ = MBAND*N
1325 LENWM = 2 + LENP + JCO*LENJ
1326 LOCJS = LENP + 3
1327 ENDIF
1328 LEWT = LWM + LENWM
1329 LSAVF = LEWT + N
1330 LACOR = LSAVF + N
1331 LENRW = LACOR + N - 1
1332 IWORK(17) = LENRW
1333 LIWM = 1
1334 LENIW = 30 + N
1335 IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 30
1336 IWORK(18) = LENIW
1337 IF (LENRW .GT. LRW) GO TO 617
1338 IF (LENIW .GT. LIW) GO TO 618
1339 C Check RelTol and AbsTol for legality. ------------------------------------
1340 RelTolI = RelTol(1)
1341 AbsTolI = AbsTol(1)
1342 DO 70 I = 1,N
1343 IF (ITOL .GE. 3) RelTolI = RelTol(I)
1344 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) AbsTolI = AbsTol(I)
1345 IF (RelTolI .LT. ZERO) GO TO 619
1346 IF (AbsTolI .LT. ZERO) GO TO 620
1347 70 CONTINUE
1348 IF (ISTATE .EQ. 1) GO TO 100
1349 C If ISTATE = 3, set flag to signal parameter changes to DVSTEP. -------
1350 JSTART = -1
1351 IF (NQ .LE. MAXORD) GO TO 90
1352 C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. ---------
1353 CALL DCOPY (N, RWORK(LWM), 1, RWORK(LSAVF), 1)
1354 C Reload WM(1) = RWORK(LWM), since LWM may have changed. ---------------
1355 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1356 C-----------------------------------------------------------------------
1357 C Block C.
1358 C The next block is for the initial CALL only (ISTATE = 1).
1359 C It contains all remaining initializations, the initial CALL to F,
1360 C and the calculation of the initial step size.
1361 C The error weights in EWT are inverted after being loaded.
1362 C-----------------------------------------------------------------------
1363 100 UROUND = D1MACH(4)
1364 TN = T
1365 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110
1366 TCRIT = RWORK(1)
1367 IF ((TCRIT - TOUT)*(TOUT - T) .LT. ZERO) GO TO 625
1368 IF (H0 .NE. ZERO .AND. (T + H0 - TCRIT)*H0 .GT. ZERO)
1369 1 H0 = TCRIT - T
1370 110 JSTART = 0
1371 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1372 CCMXJ = PT2
1373 MSBJ = 50
1374 NHNIL = 0
1375 NST = 0
1376 NJE = 0
1377 NNI = 0
1378 NCFN = 0
1379 NETF = 0
1380 NLU = 0
1381 NSLJ = 0
1382 NSLAST = 0
1383 HU = ZERO
1384 NQU = 0
1385 C Initial CALL to F. (LF0 points to YH(*,2).) -------------------------
1386 LF0 = LYH + NYH
1387 CALL F (N, T, Y, RWORK(LF0))
1388 NFE = 1
1389 C Load the initial value vector in YH. ---------------------------------
1390 CALL DCOPY (N, Y, 1, RWORK(LYH), 1)
1391 C Load and invert the EWT array. (H is temporarily set to 1.0.) -------
1392 NQ = 1
1393 H = ONE
1394 CALL DEWSET (N, ITOL, RelTol, AbsTol, RWORK(LYH), RWORK(LEWT))
1395 DO 120 I = 1,N
1396 IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 621
1397 120 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
1398 IF (H0 .NE. ZERO) GO TO 180
1399 C Call DVHIN to set initial step size H0 to be attempted. --------------
1400 CALL DVHIN (N, T, RWORK(LYH), RWORK(LF0), F, RPAR, IPAR, TOUT,
1401 1 UROUND, RWORK(LEWT), ITOL, AbsTol, Y, RWORK(LACOR), H0,
1402 2 NITER, IER)
1403 NFE = NFE + NITER
1404 IF (IER .NE. 0) GO TO 622
1405 C Adjust H0 if necessary to meet HMAX bound. ---------------------------
1406 180 RH = ABS(H0)*HMXI
1407 IF (RH .GT. ONE) H0 = H0/RH
1408 C Load H with H0 and scale YH(*,2) by H0. ------------------------------
1409 H = H0
1410 CALL DSCAL (N, H0, RWORK(LF0), 1)
1411 GO TO 270
1412 C-----------------------------------------------------------------------
1413 C Block D.
1414 C The next code block is for continuation calls only (ISTATE = 2 or 3)
1415 C and is to check stop conditions before taking a step.
1416 C-----------------------------------------------------------------------
1417 200 NSLAST = NST
1418 KUTH = 0
1419 GO TO (210, 250, 220, 230, 240), ITASK
1420 210 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1421 CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1422 IF (IFLAG .NE. 0) GO TO 627
1423 T = TOUT
1424 GO TO 420
1425 220 TP = TN - HU*(ONE + HUN*UROUND)
1426 IF ((TP - TOUT)*H .GT. ZERO) GO TO 623
1427 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1428 GO TO 400
1429 230 TCRIT = RWORK(1)
1430 IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
1431 IF ((TCRIT - TOUT)*H .LT. ZERO) GO TO 625
1432 IF ((TN - TOUT)*H .LT. ZERO) GO TO 245
1433 CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1434 IF (IFLAG .NE. 0) GO TO 627
1435 T = TOUT
1436 GO TO 420
1437 240 TCRIT = RWORK(1)
1438 IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
1439 245 HMX = ABS(TN) + ABS(H)
1440 IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
1441 IF (IHIT) GO TO 400
1442 TNEXT = TN + HNEW*(ONE + FOUR*UROUND)
1443 IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
1444 H = (TCRIT - TN)*(ONE - FOUR*UROUND)
1445 KUTH = 1
1446 C-----------------------------------------------------------------------
1447 C Block E.
1448 C The next block is normally executed for all calls and contains
1449 C the CALL to the one-step core integrator DVSTEP.
1451 C This is a looping point for the integration steps.
1453 C First check for too many steps being taken, update EWT (if not at
1454 C start of problem), check for too much accuracy being requested, and
1455 C check for H below the roundoff level in T.
1456 C-----------------------------------------------------------------------
1457 250 CONTINUE
1458 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500
1459 CALL DEWSET (N, ITOL, RelTol, AbsTol, RWORK(LYH), RWORK(LEWT))
1460 DO 260 I = 1,N
1461 IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 510
1462 260 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
1463 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT))
1464 IF (TOLSF .LE. ONE) GO TO 280
1465 TOLSF = TOLSF*TWO
1466 IF (NST .EQ. 0) GO TO 626
1467 GO TO 520
1468 280 IF ((TN + H) .NE. TN) GO TO 290
1469 NHNIL = NHNIL + 1
1470 IF (NHNIL .GT. MXHNIL) GO TO 290
1471 MSG = 'DVODE-- Warning..internal T (=R1) and H (=R2) are'
1472 CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 0, ZERO, ZERO)
1473 MSG=' such that in the machine, T + H = T on the next step '
1474 CALL XERRWD (MSG, 60, 101, 1, 0, 0, 0, 0, ZERO, ZERO)
1475 MSG = ' (H = step size). solver will continue anyway'
1476 CALL XERRWD (MSG, 50, 101, 1, 0, 0, 0, 2, TN, H)
1477 IF (NHNIL .LT. MXHNIL) GO TO 290
1478 MSG = 'DVODE-- Above warning has been issued I1 times. '
1479 CALL XERRWD (MSG, 50, 102, 1, 0, 0, 0, 0, ZERO, ZERO)
1480 MSG = ' it will not be issued again for this problem'
1481 CALL XERRWD (MSG, 50, 102, 1, 1, MXHNIL, 0, 0, ZERO, ZERO)
1482 290 CONTINUE
1483 C-----------------------------------------------------------------------
1484 C CALL DVSTEP (Y, YH, NYH, YH, EWT, SAVF, VSAV, ACOR,
1485 C WM, IWM, F, JAC, F, DVNLSD, RPAR, IPAR)
1486 C-----------------------------------------------------------------------
1487 CALL DVSTEP (Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT),
1488 1 RWORK(LSAVF), Y, RWORK(LACOR), RWORK(LWM), IWORK(LIWM),
1489 2 F, JAC, F, DVNLSD, RPAR, IPAR)
1490 KGO = 1 - KFLAG
1491 C Branch on KFLAG. Note..In this version, KFLAG can not be set to -3.
1492 C KFLAG .eq. 0, -1, -2
1493 GO TO (300, 530, 540), KGO
1494 C-----------------------------------------------------------------------
1495 C Block F.
1496 C The following block handles the case of a successful return from the
1497 C core integrator (KFLAG = 0). Test for stop conditions.
1498 C-----------------------------------------------------------------------
1499 300 INIT = 1
1500 KUTH = 0
1501 GO TO (310, 400, 330, 340, 350), ITASK
1502 C ITASK = 1. If TOUT has been reached, interpolate. -------------------
1503 310 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1504 CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1505 T = TOUT
1506 GO TO 420
1507 C ITASK = 3. Jump to exit if TOUT was reached. ------------------------
1508 330 IF ((TN - TOUT)*H .GE. ZERO) GO TO 400
1509 GO TO 250
1510 C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary.
1511 340 IF ((TN - TOUT)*H .LT. ZERO) GO TO 345
1512 CALL DVINDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1513 T = TOUT
1514 GO TO 420
1515 345 HMX = ABS(TN) + ABS(H)
1516 IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
1517 IF (IHIT) GO TO 400
1518 TNEXT = TN + HNEW*(ONE + FOUR*UROUND)
1519 IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
1520 H = (TCRIT - TN)*(ONE - FOUR*UROUND)
1521 KUTH = 1
1522 GO TO 250
1523 C ITASK = 5. See if TCRIT was reached and jump to exit. ---------------
1524 350 HMX = ABS(TN) + ABS(H)
1525 IHIT = ABS(TN - TCRIT) .LE. HUN*UROUND*HMX
1526 C-----------------------------------------------------------------------
1527 C Block G.
1528 C The following block handles all successful returns from DVODE.
1529 C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly.
1530 C ISTATE is set to 2, and the optional output is loaded into the work
1531 C arrays before returning.
1532 C-----------------------------------------------------------------------
1533 400 CONTINUE
1534 CALL DCOPY (N, RWORK(LYH), 1, Y, 1)
1535 T = TN
1536 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
1537 IF (IHIT) T = TCRIT
1538 420 ISTATE = 2
1539 RWORK(11) = HU
1540 RWORK(12) = HNEW
1541 RWORK(13) = TN
1542 IWORK(11) = NST
1543 IWORK(12) = NFE
1544 IWORK(13) = NJE
1545 IWORK(14) = NQU
1546 IWORK(15) = NEWQ
1547 IWORK(19) = NLU
1548 IWORK(20) = NNI
1549 IWORK(21) = NCFN
1550 IWORK(22) = NETF
1551 RETURN
1552 C-----------------------------------------------------------------------
1553 C Block H.
1554 C The following block handles all unsuccessful returns other than
1555 C those for illegal input. First the error message routine is called.
1556 C if there was an error test or convergence test failure, IMXER is set.
1557 C Then Y is loaded from YH, T is set to TN, and the illegal input
1558 C The optional output is loaded into the work arrays before returning.
1559 C-----------------------------------------------------------------------
1560 C The maximum number of steps was taken before reaching TOUT. ----------
1561 500 MSG = 'DVODE-- At current T (=R1), MXSTEP (=I1) steps '
1562 CALL XERRWD (MSG, 50, 201, 1, 0, 0, 0, 0, ZERO, ZERO)
1563 MSG = ' taken on this CALL before reaching TOUT '
1564 CALL XERRWD (MSG, 50, 201, 1, 1, MXSTEP, 0, 1, TN, ZERO)
1565 ISTATE = -1
1566 GO TO 580
1567 C EWT(i) .le. 0.0 for some i (not at start of problem). ----------------
1568 510 EWTI = RWORK(LEWT+I-1)
1569 MSG = 'DVODE-- At T (=R1), EWT(I1) has become R2 .le. 0.'
1570 CALL XERRWD (MSG, 50, 202, 1, 1, I, 0, 2, TN, EWTI)
1571 ISTATE = -6
1572 GO TO 580
1573 C Too much accuracy requested for machine precision. -------------------
1574 520 MSG = 'DVODE-- At T (=R1), too much accuracy requested '
1575 CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 0, ZERO, ZERO)
1576 MSG = ' for precision of machine.. see TOLSF (=R2) '
1577 CALL XERRWD (MSG, 50, 203, 1, 0, 0, 0, 2, TN, TOLSF)
1578 RWORK(14) = TOLSF
1579 ISTATE = -2
1580 GO TO 580
1581 C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. -----
1582 530 MSG = 'DVODE-- At T(=R1) and step size H(=R2), the error'
1583 CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 0, ZERO, ZERO)
1584 MSG = ' test failed repeatedly or with abs(H) = HMIN'
1585 CALL XERRWD (MSG, 50, 204, 1, 0, 0, 0, 2, TN, H)
1586 ISTATE = -4
1587 GO TO 560
1588 C KFLAG = -2. Convergence failed repeatedly or with abs(H) = HMIN. ----
1589 540 MSG = 'DVODE-- At T (=R1) and step size H (=R2), the '
1590 CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO)
1591 MSG = ' corrector convergence failed repeatedly '
1592 CALL XERRWD (MSG, 50, 205, 1, 0, 0, 0, 0, ZERO, ZERO)
1593 MSG = ' or with abs(H) = HMIN '
1594 CALL XERRWD (MSG, 30, 205, 1, 0, 0, 0, 2, TN, H)
1595 ISTATE = -5
1596 C Compute IMXER if relevant. -------------------------------------------
1597 560 BIG = ZERO
1598 IMXER = 1
1599 DO 570 I = 1,N
1600 SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1))
1601 IF (BIG .GE. SIZE) GO TO 570
1602 BIG = SIZE
1603 IMXER = I
1604 570 CONTINUE
1605 IWORK(16) = IMXER
1606 C Set Y vector, T, and optional output. --------------------------------
1607 580 CONTINUE
1608 CALL DCOPY (N, RWORK(LYH), 1, Y, 1)
1609 T = TN
1610 RWORK(11) = HU
1611 RWORK(12) = H
1612 RWORK(13) = TN
1613 IWORK(11) = NST
1614 IWORK(12) = NFE
1615 IWORK(13) = NJE
1616 IWORK(14) = NQU
1617 IWORK(15) = NQ
1618 IWORK(19) = NLU
1619 IWORK(20) = NNI
1620 IWORK(21) = NCFN
1621 IWORK(22) = NETF
1622 RETURN
1623 C-----------------------------------------------------------------------
1624 C Block I.
1625 C The following block handles all error returns due to illegal input
1626 C (ISTATE = -3), as detected before calling the core integrator.
1627 C First the error message routine is called. If the illegal input
1628 C is a negative ISTATE, the run is aborted (apparent infinite loop).
1629 C-----------------------------------------------------------------------
1630 601 MSG = 'DVODE-- ISTATE (=I1) illegal '
1631 CALL XERRWD (MSG, 30, 1, 1, 1, ISTATE, 0, 0, ZERO, ZERO)
1632 IF (ISTATE .LT. 0) GO TO 800
1633 GO TO 700
1634 602 MSG = 'DVODE-- ITASK (=I1) illegal '
1635 CALL XERRWD (MSG, 30, 2, 1, 1, ITASK, 0, 0, ZERO, ZERO)
1636 GO TO 700
1637 603 MSG='DVODE-- ISTATE (=I1) .gt. 1 but DVODE not initialized '
1638 CALL XERRWD (MSG, 60, 3, 1, 1, ISTATE, 0, 0, ZERO, ZERO)
1639 GO TO 700
1640 604 MSG = 'DVODE-- NEQ (=I1) .lt. 1 '
1641 CALL XERRWD (MSG, 30, 4, 1, 1, NEQ, 0, 0, ZERO, ZERO)
1642 GO TO 700
1643 605 MSG = 'DVODE-- ISTATE = 3 and NEQ increased (I1 to I2) '
1644 CALL XERRWD (MSG, 50, 5, 1, 2, N, NEQ, 0, ZERO, ZERO)
1645 GO TO 700
1646 606 MSG = 'DVODE-- ITOL (=I1) illegal '
1647 CALL XERRWD (MSG, 30, 6, 1, 1, ITOL, 0, 0, ZERO, ZERO)
1648 GO TO 700
1649 607 MSG = 'DVODE-- IOPT (=I1) illegal '
1650 CALL XERRWD (MSG, 30, 7, 1, 1, IOPT, 0, 0, ZERO, ZERO)
1651 GO TO 700
1652 608 MSG = 'DVODE-- MF (=I1) illegal '
1653 CALL XERRWD (MSG, 30, 8, 1, 1, MF, 0, 0, ZERO, ZERO)
1654 GO TO 700
1655 609 MSG = 'DVODE-- ML (=I1) illegal.. .lt.0 or .ge.NEQ (=I2)'
1656 CALL XERRWD (MSG, 50, 9, 1, 2, ML, NEQ, 0, ZERO, ZERO)
1657 GO TO 700
1658 610 MSG = 'DVODE-- MU (=I1) illegal.. .lt.0 or .ge.NEQ (=I2)'
1659 CALL XERRWD (MSG, 50, 10, 1, 2, MU, NEQ, 0, ZERO, ZERO)
1660 GO TO 700
1661 611 MSG = 'DVODE-- MAXORD (=I1) .lt. 0 '
1662 CALL XERRWD (MSG, 30, 11, 1, 1, MAXORD, 0, 0, ZERO, ZERO)
1663 GO TO 700
1664 612 MSG = 'DVODE-- MXSTEP (=I1) .lt. 0 '
1665 CALL XERRWD (MSG, 30, 12, 1, 1, MXSTEP, 0, 0, ZERO, ZERO)
1666 GO TO 700
1667 613 MSG = 'DVODE-- MXHNIL (=I1) .lt. 0 '
1668 CALL XERRWD (MSG, 30, 13, 1, 1, MXHNIL, 0, 0, ZERO, ZERO)
1669 GO TO 700
1670 614 MSG = 'DVODE-- TOUT (=R1) behind T (=R2) '
1671 CALL XERRWD (MSG, 40, 14, 1, 0, 0, 0, 2, TOUT, T)
1672 MSG = ' integration direction is given by H0 (=R1) '
1673 CALL XERRWD (MSG, 50, 14, 1, 0, 0, 0, 1, H0, ZERO)
1674 GO TO 700
1675 615 MSG = 'DVODE-- HMAX (=R1) .lt. 0.0 '
1676 CALL XERRWD (MSG, 30, 15, 1, 0, 0, 0, 1, HMAX, ZERO)
1677 GO TO 700
1678 616 MSG = 'DVODE-- HMIN (=R1) .lt. 0.0 '
1679 CALL XERRWD (MSG, 30, 16, 1, 0, 0, 0, 1, HMIN, ZERO)
1680 GO TO 700
1681 617 CONTINUE
1682 MSG='DVODE-- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)'
1683 CALL XERRWD (MSG, 60, 17, 1, 2, LENRW, LRW, 0, ZERO, ZERO)
1684 GO TO 700
1685 618 CONTINUE
1686 MSG='DVODE-- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)'
1687 CALL XERRWD (MSG, 60, 18, 1, 2, LENIW, LIW, 0, ZERO, ZERO)
1688 GO TO 700
1689 619 MSG = 'DVODE-- RelTol(I1) is R1 .lt. 0.0 '
1690 CALL XERRWD (MSG, 40, 19, 1, 1, I, 0, 1, RelTolI, ZERO)
1691 GO TO 700
1692 620 MSG = 'DVODE-- AbsTol(I1) is R1 .lt. 0.0 '
1693 CALL XERRWD (MSG, 40, 20, 1, 1, I, 0, 1, AbsTolI, ZERO)
1694 GO TO 700
1695 621 EWTI = RWORK(LEWT+I-1)
1696 MSG = 'DVODE-- EWT(I1) is R1 .le. 0.0 '
1697 CALL XERRWD (MSG, 40, 21, 1, 1, I, 0, 1, EWTI, ZERO)
1698 GO TO 700
1699 622 CONTINUE
1700 MSG='DVODE-- TOUT (=R1) too close to T(=R2) to start integration'
1701 CALL XERRWD (MSG, 60, 22, 1, 0, 0, 0, 2, TOUT, T)
1702 GO TO 700
1703 623 CONTINUE
1704 MSG='DVODE-- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) '
1705 CALL XERRWD (MSG, 60, 23, 1, 1, ITASK, 0, 2, TOUT, TP)
1706 GO TO 700
1707 624 CONTINUE
1708 MSG='DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) '
1709 CALL XERRWD (MSG, 60, 24, 1, 0, 0, 0, 2, TCRIT, TN)
1710 GO TO 700
1711 625 CONTINUE
1712 MSG='DVODE-- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) '
1713 CALL XERRWD (MSG, 60, 25, 1, 0, 0, 0, 2, TCRIT, TOUT)
1714 GO TO 700
1715 626 MSG = 'DVODE-- At start of problem, too much accuracy '
1716 CALL XERRWD (MSG, 50, 26, 1, 0, 0, 0, 0, ZERO, ZERO)
1717 MSG=' requested for precision of machine.. see TOLSF (=R1) '
1718 CALL XERRWD (MSG, 60, 26, 1, 0, 0, 0, 1, TOLSF, ZERO)
1719 RWORK(14) = TOLSF
1720 GO TO 700
1721 627 MSG='DVODE-- Trouble from DVINDY. ITASK = I1, TOUT = R1. '
1722 CALL XERRWD (MSG, 60, 27, 1, 1, ITASK, 0, 1, TOUT, ZERO)
1724 700 CONTINUE
1725 ISTATE = -3
1726 RETURN
1728 800 MSG = 'DVODE-- Run aborted.. apparent infinite loop '
1729 CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, ZERO, ZERO)
1730 RETURN
1731 C----------------------- End of Subroutine DVODE -----------------------
1733 *DECK DVHIN
1734 SUBROUTINE DVHIN (N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND,
1735 1 EWT, ITOL, AbsTol, Y, TEMP, H0, NITER, IER)
1736 EXTERNAL F
1737 KPP_REAL T0, Y0, YDOT, RPAR, TOUT, UROUND, EWT, AbsTol, Y,
1738 1 TEMP, H0
1739 INTEGER N, IPAR, ITOL, NITER, IER
1740 DIMENSION Y0(*), YDOT(*), EWT(*), AbsTol(*), Y(*),
1741 1 TEMP(*), RPAR(*), IPAR(*)
1742 C-----------------------------------------------------------------------
1743 C Call sequence input -- N, T0, Y0, YDOT, F, RPAR, IPAR, TOUT, UROUND,
1744 C EWT, ITOL, AbsTol, Y, TEMP
1745 C Call sequence output -- H0, NITER, IER
1746 C COMMON block variables accessed -- None
1748 C Subroutines called by DVHIN.. F
1749 C Function routines called by DVHIN.. DVNORM
1750 C-----------------------------------------------------------------------
1751 C This routine computes the step size, H0, to be attempted on the
1752 C first step, when the user has not supplied a value for this.
1754 C First we check that TOUT - T0 differs significantly from zero. Then
1755 C an iteration is done to approximate the initial second derivative
1756 C and this is used to define h from w.r.m.s.norm(h**2 * yddot / 2) = 1.
1757 C A bias factor of 1/2 is applied to the resulting h.
1758 C The sign of H0 is inferred from the initial values of TOUT and T0.
1760 C Communication with DVHIN is done with the following variables..
1762 C N = Size of ODE system, input.
1763 C T0 = Initial value of independent variable, input.
1764 C Y0 = Vector of initial conditions, input.
1765 C YDOT = Vector of initial first derivatives, input.
1766 C F = Name of subroutine for right-hand side f(t,y), input.
1767 C RPAR, IPAR = Dummy names for user's real and integer work arrays.
1768 C TOUT = First output value of independent variable
1769 C UROUND = Machine unit roundoff
1770 C EWT, ITOL, AbsTol = Error weights and tolerance parameters
1771 C as described in the driver routine, input.
1772 C Y, TEMP = Work arrays of length N.
1773 C H0 = Step size to be attempted, output.
1774 C NITER = Number of iterations (and of f evaluations) to compute H0,
1775 C output.
1776 C IER = The error flag, returned with the value
1777 C IER = 0 if no trouble occurred, or
1778 C IER = -1 if TOUT and T0 are considered too close to proceed.
1779 C-----------------------------------------------------------------------
1781 C Type declarations for local variables --------------------------------
1783 KPP_REAL AFI, AbsTolI, DELYI, HALF, HG, HLB, HNEW, HRAT,
1784 1 HUB, HUN, PT1, T1, TDIST, TROUND, TWO, YDDNRM
1785 INTEGER I, ITER
1788 C Type declaration for function subroutines called ---------------------
1790 KPP_REAL DVNORM
1791 C-----------------------------------------------------------------------
1792 C The following Fortran-77 declaration is to cause the values of the
1793 C listed (local) variables to be saved between calls to this integrator.
1794 C-----------------------------------------------------------------------
1795 SAVE HALF, HUN, PT1, TWO
1796 DATA HALF /0.5D0/, HUN /100.0D0/, PT1 /0.1D0/, TWO /2.0D0/
1798 NITER = 0
1799 TDIST = ABS(TOUT - T0)
1800 TROUND = UROUND*MAX(ABS(T0),ABS(TOUT))
1801 IF (TDIST .LT. TWO*TROUND) GO TO 100
1803 C Set a lower bound on h based on the roundoff level in T0 and TOUT. ---
1804 HLB = HUN*TROUND
1805 C Set an upper bound on h based on TOUT-T0 and the initial Y and YDOT. -
1806 HUB = PT1*TDIST
1807 AbsTolI = AbsTol(1)
1808 DO 10 I = 1, N
1809 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) AbsTolI = AbsTol(I)
1810 DELYI = PT1*ABS(Y0(I)) + AbsTolI
1811 AFI = ABS(YDOT(I))
1812 IF (AFI*HUB .GT. DELYI) HUB = DELYI/AFI
1813 10 CONTINUE
1815 C Set initial guess for h as geometric mean of upper and lower bounds. -
1816 ITER = 0
1817 HG = SQRT(HLB*HUB)
1818 C If the bounds have crossed, exit with the mean value. ----------------
1819 IF (HUB .LT. HLB) THEN
1820 H0 = HG
1821 GO TO 90
1822 ENDIF
1824 C Looping point for iteration. -----------------------------------------
1825 50 CONTINUE
1826 C Estimate the second derivative as a difference quotient in f. --------
1827 T1 = T0 + HG
1828 DO 60 I = 1, N
1829 60 Y(I) = Y0(I) + HG*YDOT(I)
1830 CALL F (N, T1, Y, TEMP)
1831 DO 70 I = 1, N
1832 70 TEMP(I) = (TEMP(I) - YDOT(I))/HG
1833 YDDNRM = DVNORM (N, TEMP, EWT)
1834 C Get the corresponding new value of h. --------------------------------
1835 IF (YDDNRM*HUB*HUB .GT. TWO) THEN
1836 HNEW = SQRT(TWO/YDDNRM)
1837 ELSE
1838 HNEW = SQRT(HG*HUB)
1839 ENDIF
1840 ITER = ITER + 1
1841 C-----------------------------------------------------------------------
1842 C Test the stopping conditions.
1843 C Stop if the new and previous h values differ by a factor of .lt. 2.
1844 C Stop if four iterations have been done. Also, stop with previous h
1845 C if HNEW/HG .gt. 2 after first iteration, as this probably means that
1846 C the second derivative value is bad because of cancellation error.
1847 C-----------------------------------------------------------------------
1848 IF (ITER .GE. 4) GO TO 80
1849 HRAT = HNEW/HG
1850 C AICI
1851 IF ( (HRAT .GT. HALF) .AND. (HRAT .LT. TWO) ) GO TO 80
1852 IF ( (ITER .GE. 2) .AND. (HNEW .GT. TWO*HG) ) THEN
1853 HNEW = HG
1854 GO TO 80
1855 ENDIF
1856 HG = HNEW
1857 GO TO 50
1859 C Iteration done. Apply bounds, bias factor, and sign. Then exit. ----
1860 80 H0 = HNEW*HALF
1861 IF (H0 .LT. HLB) H0 = HLB
1862 IF (H0 .GT. HUB) H0 = HUB
1863 90 H0 = SIGN(H0, TOUT - T0)
1864 NITER = ITER
1865 IER = 0
1866 RETURN
1867 C Error return for TOUT - T0 too small. --------------------------------
1868 100 IER = -1
1869 RETURN
1870 C----------------------- End of Subroutine DVHIN -----------------------
1872 *DECK DVINDY
1873 SUBROUTINE DVINDY (T, K, YH, LDYH, DKY, IFLAG)
1874 KPP_REAL T, YH, DKY
1875 INTEGER K, LDYH, IFLAG
1876 DIMENSION YH(LDYH,*), DKY(*)
1877 C-----------------------------------------------------------------------
1878 C Call sequence input -- T, K, YH, LDYH
1879 C Call sequence output -- DKY, IFLAG
1880 C COMMON block variables accessed..
1881 C /DVOD01/ -- H, TN, UROUND, L, N, NQ
1882 C /DVOD02/ -- HU
1884 C Subroutines called by DVINDY.. DSCAL, XERRWD
1885 C Function routines called by DVINDY.. None
1886 C-----------------------------------------------------------------------
1887 C DVINDY computes interpolated values of the K-th derivative of the
1888 C dependent variable vector y, and stores it in DKY. This routine
1889 C is called within the package with K = 0 and T = TOUT, but may
1890 C also be called by the user for any K up to the current order.
1891 C (See detailed instructions in the usage documentation.)
1892 C-----------------------------------------------------------------------
1893 C The computed values in DKY are gotten by interpolation using the
1894 C Nordsieck history array YH. This array corresponds uniquely to a
1895 C vector-valued polynomial of degree NQCUR or less, and DKY is set
1896 C to the K-th derivative of this polynomial at T.
1897 C The formula for DKY is..
1899 C DKY(i) = sum c(j,K) * (T - TN)**(j-K) * H**(-j) * YH(i,j+1)
1900 C j=K
1901 C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, TN = TCUR, H = HCUR.
1902 C The quantities NQ = NQCUR, L = NQ+1, N, TN, and H are
1903 C communicated by COMMON. The above sum is done in reverse order.
1904 C IFLAG is returned negative if either K or T is out of bounds.
1906 C Discussion above and comments in driver explain all variables.
1907 C-----------------------------------------------------------------------
1909 C Type declarations for labeled COMMON block DVOD01 --------------------
1911 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
1912 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1913 2 RC, RL1, TAU, TQ, TN, UROUND
1914 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1915 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1916 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1917 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1918 4 NSLP, NYH
1920 C Type declarations for labeled COMMON block DVOD02 --------------------
1922 KPP_REAL HU
1923 INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1925 C Type declarations for local variables --------------------------------
1927 KPP_REAL C, HUN, R, S, TFUZZ, TN1, TP, ZERO
1928 INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1
1929 CHARACTER*80 MSG
1930 C-----------------------------------------------------------------------
1931 C The following Fortran-77 declaration is to cause the values of the
1932 C listed (local) variables to be saved between calls to this integrator.
1933 C-----------------------------------------------------------------------
1934 SAVE HUN, ZERO
1936 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
1937 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
1938 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
1939 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
1940 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1941 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
1942 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
1943 7 NSLP, NYH
1944 COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
1946 DATA HUN /100.0D0/, ZERO /0.0D0/
1948 IFLAG = 0
1949 IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80
1950 TFUZZ = HUN*UROUND*(TN + HU)
1951 TP = TN - HU - TFUZZ
1952 TN1 = TN + TFUZZ
1953 IF ((T-TP)*(T-TN1) .GT. ZERO) GO TO 90
1955 S = (T - TN)/H
1956 IC = 1
1957 IF (K .EQ. 0) GO TO 15
1958 JJ1 = L - K
1959 DO 10 JJ = JJ1, NQ
1960 10 IC = IC*JJ
1961 15 C = REAL(IC)
1962 DO 20 I = 1, N
1963 20 DKY(I) = C*YH(I,L)
1964 IF (K .EQ. NQ) GO TO 55
1965 JB2 = NQ - K
1966 DO 50 JB = 1, JB2
1967 J = NQ - JB
1968 JP1 = J + 1
1969 IC = 1
1970 IF (K .EQ. 0) GO TO 35
1971 JJ1 = JP1 - K
1972 DO 30 JJ = JJ1, J
1973 30 IC = IC*JJ
1974 35 C = REAL(IC)
1975 DO 40 I = 1, N
1976 40 DKY(I) = C*YH(I,JP1) + S*DKY(I)
1977 50 CONTINUE
1978 IF (K .EQ. 0) RETURN
1979 55 R = H**(-K)
1980 CALL DSCAL (N, R, DKY, 1)
1981 RETURN
1983 80 MSG = 'DVINDY-- K (=I1) illegal '
1984 CALL XERRWD (MSG, 30, 51, 1, 1, K, 0, 0, ZERO, ZERO)
1985 IFLAG = -1
1986 RETURN
1987 90 MSG = 'DVINDY-- T (=R1) illegal '
1988 CALL XERRWD (MSG, 30, 52, 1, 0, 0, 0, 1, T, ZERO)
1989 MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) '
1990 CALL XERRWD (MSG, 60, 52, 1, 0, 0, 0, 2, TP, TN)
1991 IFLAG = -2
1992 RETURN
1993 C----------------------- End of Subroutine DVINDY ----------------------
1995 *DECK DVSTEP
1996 SUBROUTINE DVSTEP (Y, YH, LDYH, YH1, EWT, SAVF, VSAV, ACOR,
1997 1 WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR)
1998 EXTERNAL F, JAC, PSOL, VNLS
1999 KPP_REAL Y, YH, YH1, EWT, SAVF, VSAV, ACOR, WM, RPAR
2000 INTEGER LDYH, IWM, IPAR
2001 DIMENSION Y(*), YH(LDYH,*), YH1(*), EWT(*), SAVF(*), VSAV(*),
2002 1 ACOR(*), WM(*), IWM(*), RPAR(*), IPAR(*)
2004 C-----------------------------------------------------------------------
2005 C Call sequence input -- Y, YH, LDYH, YH1, EWT, SAVF, VSAV,
2006 C ACOR, WM, IWM, F, JAC, PSOL, VNLS, RPAR, IPAR
2007 C Call sequence output -- YH, ACOR, WM, IWM
2008 C COMMON block variables accessed..
2009 C /DVOD01/ ACNRM, EL(13), H, HMIN, HMXI, HNEW, HSCAL, RC, TAU(13),
2010 C TQ(5), TN, JCUR, JSTART, KFLAG, KUTH,
2011 C L, LMAX, MAXORD, MITER, N, NEWQ, NQ, NQWAIT
2012 C /DVOD02/ HU, NCFN, NETF, NFE, NQU, NST
2014 C Subroutines called by DVSTEP.. F, DAXPY, DCOPY, DSCAL,
2015 C DVJUST, VNLS, DVSET
2016 C Function routines called by DVSTEP.. DVNORM
2017 C-----------------------------------------------------------------------
2018 C DVSTEP performs one step of the integration of an initial value
2019 C problem for a system of ordinary differential equations.
2020 C DVSTEP calls subroutine VNLS for the solution of the nonlinear system
2021 C arising in the time step. Thus it is independent of the problem
2022 C Jacobian structure and the type of nonlinear system solution method.
2023 C DVSTEP returns a completion flag KFLAG (in COMMON).
2024 C A return with KFLAG = -1 or -2 means either ABS(H) = HMIN or 10
2025 C consecutive failures occurred. On a return with KFLAG negative,
2026 C the values of TN and the YH array are as of the beginning of the last
2027 C step, and H is the last step size attempted.
2029 C Communication with DVSTEP is done with the following variables..
2031 C Y = An array of length N used for the dependent variable vector.
2032 C YH = An LDYH by LMAX array containing the dependent variables
2033 C and their approximate scaled derivatives, where
2034 C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
2035 C j-th derivative of y(i), scaled by H**j/factorial(j)
2036 C (j = 0,1,...,NQ). On entry for the first step, the first
2037 C two columns of YH must be set from the initial values.
2038 C LDYH = A constant integer .ge. N, the first dimension of YH.
2039 C N is the number of ODEs in the system.
2040 C YH1 = A one-dimensional array occupying the same space as YH.
2041 C EWT = An array of length N containing multiplicative weights
2042 C for local error measurements. Local errors in y(i) are
2043 C compared to 1.0/EWT(i) in various error tests.
2044 C SAVF = An array of working storage, of length N.
2045 C also used for input of YH(*,MAXORD+2) when JSTART = -1
2046 C and MAXORD .lt. the current order NQ.
2047 C VSAV = A work array of length N passed to subroutine VNLS.
2048 C ACOR = A work array of length N, used for the accumulated
2049 C corrections. On a successful return, ACOR(i) contains
2050 C the estimated one-step local error in y(i).
2051 C WM,IWM = Real and integer work arrays associated with matrix
2052 C operations in VNLS.
2053 C F = Dummy name for the user supplied subroutine for f.
2054 C JAC = Dummy name for the user supplied Jacobian subroutine.
2055 C PSOL = Dummy name for the subroutine passed to VNLS, for
2056 C possible use there.
2057 C VNLS = Dummy name for the nonlinear system solving subroutine,
2058 C whose real name is dependent on the method used.
2059 C RPAR, IPAR = Dummy names for user's real and integer work arrays.
2060 C-----------------------------------------------------------------------
2062 C Type declarations for labeled COMMON block DVOD01 --------------------
2064 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2065 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2066 2 RC, RL1, TAU, TQ, TN, UROUND
2067 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2068 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2069 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2070 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2071 4 NSLP, NYH
2073 C Type declarations for labeled COMMON block DVOD02 --------------------
2075 KPP_REAL HU
2076 INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2078 C Type declarations for local variables --------------------------------
2080 KPP_REAL ADDON, BIAS1,BIAS2,BIAS3, CNQUOT, DDN, DSM, DUP,
2081 1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF,
2082 2 ETAQ, ETAQM1, ETAQP1, FLOTL, ONE, ONEPSM,
2083 3 R, THRESH, TOLD, ZERO
2084 INTEGER I, I1, I2, IBACK, J, JB, KFC, KFH, MXNCF, NCF, NFLAG
2086 C Type declaration for function subroutines called ---------------------
2088 KPP_REAL DVNORM
2089 C-----------------------------------------------------------------------
2090 C The following Fortran-77 declaration is to cause the values of the
2091 C listed (local) variables to be saved between calls to this integrator.
2092 C-----------------------------------------------------------------------
2093 SAVE ADDON, BIAS1, BIAS2, BIAS3,
2094 1 ETACF, ETAMIN, ETAMX1, ETAMX2, ETAMX3, ETAMXF,
2095 2 KFC, KFH, MXNCF, ONEPSM, THRESH, ONE, ZERO
2096 C-----------------------------------------------------------------------
2097 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2098 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2099 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2100 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2101 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2102 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2103 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2104 7 NSLP, NYH
2105 COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2107 DATA KFC/-3/, KFH/-7/, MXNCF/10/
2108 DATA ADDON /1.0D-6/, BIAS1 /6.0D0/, BIAS2 /6.0D0/,
2109 1 BIAS3 /10.0D0/, ETACF /0.25D0/, ETAMIN /0.1D0/,
2110 2 ETAMXF /0.2D0/, ETAMX1 /1.0D4/, ETAMX2 /10.0D1/,
2111 3 ETAMX3 /10.0D1/, ONEPSM /1.00001D0/, THRESH /1.5D0/
2113 DATA ONE/1.0D0/, ZERO/0.0D0/
2115 ETAQ = ETAMX1
2116 ETAQM1 = ETAMX1
2117 ETAQP1 = ETAMX1
2118 KFLAG = 0
2119 TOLD = TN
2120 NCF = 0
2121 JCUR = 0
2122 NFLAG = 0
2123 IF (JSTART .GT. 0) GO TO 20
2124 IF (JSTART .EQ. -1) GO TO 100
2125 C-----------------------------------------------------------------------
2126 C On the first call, the order is set to 1, and other variables are
2127 C initialized. ETAMAX is the maximum ratio by which H can be increased
2128 C in a single step. It is normally 1.5, but is larger during the
2129 C first 10 steps to compensate for the small initial H. If a failure
2130 C occurs (in corrector convergence or error test), ETAMAX is set to 1
2131 C for the next increase.
2132 C-----------------------------------------------------------------------
2133 LMAX = MAXORD + 1
2134 NQ = 1
2135 L = 2
2136 NQNYH = NQ*LDYH
2137 TAU(1) = H
2138 PRL1 = ONE
2139 RC = ZERO
2140 ETAMAX = ETAMX1
2141 NQWAIT = 2
2142 HSCAL = H
2143 GO TO 200
2144 C-----------------------------------------------------------------------
2145 C Take preliminary actions on a normal continuation step (JSTART.GT.0).
2146 C If the driver changed H, then ETA must be reset and NEWH set to 1.
2147 C If a change of order was dictated on the previous step, then
2148 C it is done here and appropriate adjustments in the history are made.
2149 C On an order decrease, the history array is adjusted by DVJUST.
2150 C On an order increase, the history array is augmented by a column.
2151 C On a change of step size H, the history array YH is rescaled.
2152 C-----------------------------------------------------------------------
2153 20 CONTINUE
2154 IF (KUTH .EQ. 1) THEN
2155 ETA = MIN(ETA,H/HSCAL)
2156 NEWH = 1
2157 ENDIF
2158 50 IF (NEWH .EQ. 0) GO TO 200
2159 IF (NEWQ .EQ. NQ) GO TO 150
2160 IF (NEWQ .LT. NQ) THEN
2161 CALL DVJUST (YH, LDYH, -1)
2162 NQ = NEWQ
2163 L = NQ + 1
2164 NQWAIT = L
2165 GO TO 150
2166 ENDIF
2167 IF (NEWQ .GT. NQ) THEN
2168 CALL DVJUST (YH, LDYH, 1)
2169 NQ = NEWQ
2170 L = NQ + 1
2171 NQWAIT = L
2172 GO TO 150
2173 ENDIF
2174 C-----------------------------------------------------------------------
2175 C The following block handles preliminaries needed when JSTART = -1.
2176 C If N was reduced, zero out part of YH to avoid undefined references.
2177 C If MAXORD was reduced to a value less than the tentative order NEWQ,
2178 C then NQ is set to MAXORD, and a new H ratio ETA is chosen.
2179 C Otherwise, we take the same preliminary actions as for JSTART .gt. 0.
2180 C In any case, NQWAIT is reset to L = NQ + 1 to prevent further
2181 C changes in order for that many steps.
2182 C The new H ratio ETA is limited by the input H if KUTH = 1,
2183 C by HMIN if KUTH = 0, and by HMXI in any case.
2184 C Finally, the history array YH is rescaled.
2185 C-----------------------------------------------------------------------
2186 100 CONTINUE
2187 LMAX = MAXORD + 1
2188 IF (N .EQ. LDYH) GO TO 120
2189 I1 = 1 + (NEWQ + 1)*LDYH
2190 I2 = (MAXORD + 1)*LDYH
2191 IF (I1 .GT. I2) GO TO 120
2192 DO 110 I = I1, I2
2193 110 YH1(I) = ZERO
2194 120 IF (NEWQ .LE. MAXORD) GO TO 140
2195 FLOTL = REAL(LMAX)
2196 IF (MAXORD .LT. NQ-1) THEN
2197 DDN = DVNORM (N, SAVF, EWT)/TQ(1)
2198 ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON)
2199 ENDIF
2200 IF (MAXORD .EQ. NQ .AND. NEWQ .EQ. NQ+1) ETA = ETAQ
2201 IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ+1) THEN
2202 ETA = ETAQM1
2203 CALL DVJUST (YH, LDYH, -1)
2204 ENDIF
2205 IF (MAXORD .EQ. NQ-1 .AND. NEWQ .EQ. NQ) THEN
2206 DDN = DVNORM (N, SAVF, EWT)/TQ(1)
2207 ETA = ONE/((BIAS1*DDN)**(ONE/FLOTL) + ADDON)
2208 CALL DVJUST (YH, LDYH, -1)
2209 ENDIF
2210 ETA = MIN(ETA,ONE)
2211 NQ = MAXORD
2212 L = LMAX
2213 140 IF (KUTH .EQ. 1) ETA = MIN(ETA,ABS(H/HSCAL))
2214 IF (KUTH .EQ. 0) ETA = MAX(ETA,HMIN/ABS(HSCAL))
2215 ETA = ETA/MAX(ONE,ABS(HSCAL)*HMXI*ETA)
2216 NEWH = 1
2217 NQWAIT = L
2218 IF (NEWQ .LE. MAXORD) GO TO 50
2219 C Rescale the history array for a change in H by a factor of ETA. ------
2220 150 R = ONE
2221 DO 180 J = 2, L
2222 R = R*ETA
2223 CALL DSCAL (N, R, YH(1,J), 1 )
2224 180 CONTINUE
2225 H = HSCAL*ETA
2226 HSCAL = H
2227 RC = RC*ETA
2228 NQNYH = NQ*LDYH
2229 C-----------------------------------------------------------------------
2230 C This section computes the predicted values by effectively
2231 C multiplying the YH array by the Pascal triangle matrix.
2232 C DVSET is called to calculate all integration coefficients.
2233 C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1.
2234 C-----------------------------------------------------------------------
2235 200 TN = TN + H
2236 I1 = NQNYH + 1
2237 DO 220 JB = 1, NQ
2238 I1 = I1 - LDYH
2239 DO 210 I = I1, NQNYH
2240 210 YH1(I) = YH1(I) + YH1(I+LDYH)
2241 220 CONTINUE
2242 CALL DVSET
2243 RL1 = ONE/EL(2)
2244 RC = RC*(RL1/PRL1)
2245 PRL1 = RL1
2247 C Call the nonlinear system solver. ------------------------------------
2249 CALL VNLS (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM,
2250 1 F, JAC, PSOL, NFLAG, RPAR, IPAR)
2252 IF ((NFLAG .EQ. 0).OR.(H.LE.1.2*HMIN)) GO TO 450
2253 C-----------------------------------------------------------------------
2254 C The VNLS routine failed to achieve convergence (NFLAG .NE. 0).
2255 C The YH array is retracted to its values before prediction.
2256 C The step size H is reduced and the step is retried, if possible.
2257 C Otherwise, an error exit is taken.
2258 C-----------------------------------------------------------------------
2259 NCF = NCF + 1
2260 NCFN = NCFN + 1
2261 ETAMAX = ONE
2262 TN = TOLD
2263 I1 = NQNYH + 1
2264 DO 430 JB = 1, NQ
2265 I1 = I1 - LDYH
2266 DO 420 I = I1, NQNYH
2267 420 YH1(I) = YH1(I) - YH1(I+LDYH)
2268 430 CONTINUE
2269 IF (NFLAG .LT. -1) GO TO 680
2270 IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 670
2271 IF (NCF .EQ. MXNCF) GO TO 670
2272 ETA = ETACF
2273 ETA = MAX(ETA,HMIN/ABS(H))
2274 NFLAG = -1
2275 GO TO 150
2276 C-----------------------------------------------------------------------
2277 C The corrector has converged (NFLAG = 0). The local error test is
2278 C made and control passes to statement 500 if it fails.
2279 C-----------------------------------------------------------------------
2280 450 CONTINUE
2281 DSM = ACNRM/TQ(2)
2282 IF ( (DSM .GT. ONE).and.(H.GT.HMIN) ) GO TO 500
2283 C-----------------------------------------------------------------------
2284 C After a successful step, update the YH and TAU arrays and decrement
2285 C NQWAIT. If NQWAIT is then 1 and NQ .lt. MAXORD, then ACOR is saved
2286 C for use in a possible order increase on the next step.
2287 C If ETAMAX = 1 (a failure occurred this step), keep NQWAIT .ge. 2.
2288 C-----------------------------------------------------------------------
2289 KFLAG = 0
2290 NST = NST + 1
2291 HU = H
2292 NQU = NQ
2293 DO 470 IBACK = 1, NQ
2294 I = L - IBACK
2295 470 TAU(I+1) = TAU(I)
2296 TAU(1) = H
2297 DO 480 J = 1, L
2298 CALL DAXPY (N, EL(J), ACOR, 1, YH(1,J), 1 )
2299 480 CONTINUE
2300 NQWAIT = NQWAIT - 1
2301 IF ((L .EQ. LMAX) .OR. (NQWAIT .NE. 1)) GO TO 490
2302 CALL DCOPY (N, ACOR, 1, YH(1,LMAX), 1 )
2303 CONP = TQ(5)
2304 490 IF (ETAMAX .NE. ONE) GO TO 560
2305 IF (NQWAIT .LT. 2) NQWAIT = 2
2306 NEWQ = NQ
2307 NEWH = 0
2308 ETA = ONE
2309 HNEW = H
2310 GO TO 690
2311 C-----------------------------------------------------------------------
2312 C The error test failed. KFLAG keeps track of multiple failures.
2313 C Restore TN and the YH array to their previous values, and prepare
2314 C to try the step again. Compute the optimum step size for the
2315 C same order. After repeated failures, H is forced to decrease
2316 C more rapidly.
2317 C-----------------------------------------------------------------------
2318 500 KFLAG = KFLAG - 1
2319 NETF = NETF + 1
2320 NFLAG = -2
2321 TN = TOLD
2322 I1 = NQNYH + 1
2323 DO 520 JB = 1, NQ
2324 I1 = I1 - LDYH
2325 DO 510 I = I1, NQNYH
2326 510 YH1(I) = YH1(I) - YH1(I+LDYH)
2327 520 CONTINUE
2328 IF (ABS(H) .LE. HMIN*ONEPSM) GO TO 660
2329 ETAMAX = ONE
2330 IF (KFLAG .LE. KFC) GO TO 530
2331 C Compute ratio of new H to current H at the current order. ------------
2332 FLOTL = REAL(L)
2333 ETA = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON)
2334 ETA = MAX(ETA,HMIN/ABS(H),ETAMIN)
2335 IF ((KFLAG .LE. -2) .AND. (ETA .GT. ETAMXF)) ETA = ETAMXF
2336 GO TO 150
2337 C-----------------------------------------------------------------------
2338 C Control reaches this section if 3 or more consecutive failures
2339 C have occurred. It is assumed that the elements of the YH array
2340 C have accumulated errors of the wrong order. The order is reduced
2341 C by one, if possible. Then H is reduced by a factor of 0.1 and
2342 C the step is retried. After a total of 7 consecutive failures,
2343 C an exit is taken with KFLAG = -1.
2344 C-----------------------------------------------------------------------
2345 530 IF (KFLAG .EQ. KFH) GO TO 660
2346 IF (NQ .EQ. 1) GO TO 540
2347 ETA = MAX(ETAMIN,HMIN/ABS(H))
2348 CALL DVJUST (YH, LDYH, -1)
2349 L = NQ
2350 NQ = NQ - 1
2351 NQWAIT = L
2352 GO TO 150
2353 540 ETA = MAX(ETAMIN,HMIN/ABS(H))
2354 H = H*ETA
2355 HSCAL = H
2356 TAU(1) = H
2357 CALL F (N, TN, Y, SAVF)
2358 NFE = NFE + 1
2359 DO 550 I = 1, N
2360 550 YH(I,2) = H*SAVF(I)
2361 NQWAIT = 10
2362 GO TO 200
2363 C-----------------------------------------------------------------------
2364 C If NQWAIT = 0, an increase or decrease in order by one is considered.
2365 C Factors ETAQ, ETAQM1, ETAQP1 are computed by which H could
2366 C be multiplied at order q, q-1, or q+1, respectively.
2367 C The largest of these is determined, and the new order and
2368 C step size set accordingly.
2369 C A change of H or NQ is made only if H increases by at least a
2370 C factor of THRESH. If an order change is considered and rejected,
2371 C then NQWAIT is set to 2 (reconsider it after 2 steps).
2372 C-----------------------------------------------------------------------
2373 C Compute ratio of new H to current H at the current order. ------------
2374 560 FLOTL = REAL(L)
2375 ETAQ = ONE/((BIAS2*DSM)**(ONE/FLOTL) + ADDON)
2376 IF (NQWAIT .NE. 0) GO TO 600
2377 NQWAIT = 2
2378 ETAQM1 = ZERO
2379 IF (NQ .EQ. 1) GO TO 570
2380 C Compute ratio of new H to current H at the current order less one. ---
2381 DDN = DVNORM (N, YH(1,L), EWT)/TQ(1)
2382 ETAQM1 = ONE/((BIAS1*DDN)**(ONE/(FLOTL - ONE)) + ADDON)
2383 570 ETAQP1 = ZERO
2384 IF (L .EQ. LMAX) GO TO 580
2385 C Compute ratio of new H to current H at current order plus one. -------
2386 CNQUOT = (TQ(5)/CONP)*(H/TAU(2))**L
2387 DO 575 I = 1, N
2388 575 SAVF(I) = ACOR(I) - CNQUOT*YH(I,LMAX)
2389 DUP = DVNORM (N, SAVF, EWT)/TQ(3)
2390 ETAQP1 = ONE/((BIAS3*DUP)**(ONE/(FLOTL + ONE)) + ADDON)
2391 580 IF (ETAQ .GE. ETAQP1) GO TO 590
2392 IF (ETAQP1 .GT. ETAQM1) GO TO 620
2393 GO TO 610
2394 590 IF (ETAQ .LT. ETAQM1) GO TO 610
2395 600 ETA = ETAQ
2396 NEWQ = NQ
2397 GO TO 630
2398 610 ETA = ETAQM1
2399 NEWQ = NQ - 1
2400 GO TO 630
2401 620 ETA = ETAQP1
2402 NEWQ = NQ + 1
2403 CALL DCOPY (N, ACOR, 1, YH(1,LMAX), 1)
2404 C Test tentative new H against THRESH, ETAMAX, and HMXI, then exit. ----
2405 630 IF (ETA .LT. THRESH .OR. ETAMAX .EQ. ONE) GO TO 640
2406 ETA = MIN(ETA,ETAMAX)
2407 ETA = ETA/MAX(ONE,ABS(H)*HMXI*ETA)
2408 NEWH = 1
2409 HNEW = H*ETA
2410 GO TO 690
2411 640 NEWQ = NQ
2412 NEWH = 0
2413 ETA = ONE
2414 HNEW = H
2415 GO TO 690
2416 C-----------------------------------------------------------------------
2417 C All returns are made through this section.
2418 C On a successful return, ETAMAX is reset and ACOR is scaled.
2419 C-----------------------------------------------------------------------
2420 660 KFLAG = -1
2421 GO TO 720
2422 670 KFLAG = -2
2423 GO TO 720
2424 680 IF (NFLAG .EQ. -2) KFLAG = -3
2425 IF (NFLAG .EQ. -3) KFLAG = -4
2426 GO TO 720
2427 690 ETAMAX = ETAMX3
2428 IF (NST .LE. 10) ETAMAX = ETAMX2
2429 700 R = ONE/TQ(2)
2430 CALL DSCAL (N, R, ACOR, 1)
2431 720 JSTART = 1
2432 RETURN
2433 C----------------------- End of Subroutine DVSTEP ----------------------
2435 *DECK DVSET
2436 SUBROUTINE DVSET
2437 C-----------------------------------------------------------------------
2438 C Call sequence communication.. None
2439 C COMMON block variables accessed..
2440 C /DVOD01/ -- EL(13), H, TAU(13), TQ(5), L(= NQ + 1),
2441 C METH, NQ, NQWAIT
2443 C Subroutines called by DVSET.. None
2444 C Function routines called by DVSET.. None
2445 C-----------------------------------------------------------------------
2446 C DVSET is called by DVSTEP and sets coefficients for use there.
2448 C For each order NQ, the coefficients in EL are calculated by use of
2449 C the generating polynomial lambda(x), with coefficients EL(i).
2450 C lambda(x) = EL(1) + EL(2)*x + ... + EL(NQ+1)*(x**NQ).
2451 C For the backward differentiation formulas,
2452 C NQ-1
2453 C lambda(x) = (1 + x/xi*(NQ)) * product (1 + x/xi(i) ) .
2454 C i = 1
2455 C For the Adams formulas,
2456 C NQ-1
2457 C (d/dx) lambda(x) = c * product (1 + x/xi(i) ) ,
2458 C i = 1
2459 C lambda(-1) = 0, lambda(0) = 1,
2460 C where c is a normalization constant.
2461 C In both cases, xi(i) is defined by
2462 C H*xi(i) = t sub n - t sub (n-i)
2463 C = H + TAU(1) + TAU(2) + ... TAU(i-1).
2466 C In addition to variables described previously, communication
2467 C with DVSET uses the following..
2468 C TAU = A vector of length 13 containing the past NQ values
2469 C of H.
2470 C EL = A vector of length 13 in which vset stores the
2471 C coefficients for the corrector formula.
2472 C TQ = A vector of length 5 in which vset stores constants
2473 C used for the convergence test, the error test, and the
2474 C selection of H at a new order.
2475 C METH = The basic method indicator.
2476 C NQ = The current order.
2477 C L = NQ + 1, the length of the vector stored in EL, and
2478 C the number of columns of the YH array being used.
2479 C NQWAIT = A counter controlling the frequency of order changes.
2480 C An order change is about to be considered if NQWAIT = 1.
2481 C-----------------------------------------------------------------------
2483 C Type declarations for labeled COMMON block DVOD01 --------------------
2485 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2486 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2487 2 RC, RL1, TAU, TQ, TN, UROUND
2488 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2489 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2490 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2491 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2492 4 NSLP, NYH
2494 C Type declarations for local variables --------------------------------
2496 KPP_REAL AHATN0, ALPH0, CNQM1, CORTES, CSUM, ELP, EM,
2497 1 EM0, FLOTI, FLOTL, FLOTNQ, HSUM, ONE, RXI, RXIS, S, SIX,
2498 2 T1, T2, T3, T4, T5, T6, TWO, XI, ZERO
2499 INTEGER I, IBACK, J, JP1, NQM1, NQM2
2501 DIMENSION EM(13)
2502 C-----------------------------------------------------------------------
2503 C The following Fortran-77 declaration is to cause the values of the
2504 C listed (local) variables to be saved between calls to this integrator.
2505 C-----------------------------------------------------------------------
2506 SAVE CORTES, ONE, SIX, TWO, ZERO
2508 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2509 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2510 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2511 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2512 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2513 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2514 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2515 7 NSLP, NYH
2517 DATA CORTES /0.1D0/
2518 DATA ONE /1.0D0/, SIX /6.0D0/, TWO /2.0D0/, ZERO /0.0D0/
2520 FLOTL = REAL(L)
2521 NQM1 = NQ - 1
2522 NQM2 = NQ - 2
2523 GO TO (100, 200), METH
2525 C Set coefficients for Adams methods. ----------------------------------
2526 100 IF (NQ .NE. 1) GO TO 110
2527 EL(1) = ONE
2528 EL(2) = ONE
2529 TQ(1) = ONE
2530 TQ(2) = TWO
2531 TQ(3) = SIX*TQ(2)
2532 TQ(5) = ONE
2533 GO TO 300
2534 110 HSUM = H
2535 EM(1) = ONE
2536 FLOTNQ = FLOTL - ONE
2537 DO 115 I = 2, L
2538 115 EM(I) = ZERO
2539 DO 150 J = 1, NQM1
2540 IF ((J .NE. NQM1) .OR. (NQWAIT .NE. 1)) GO TO 130
2541 S = ONE
2542 CSUM = ZERO
2543 DO 120 I = 1, NQM1
2544 CSUM = CSUM + S*EM(I)/REAL(I+1)
2545 120 S = -S
2546 TQ(1) = EM(NQM1)/(FLOTNQ*CSUM)
2547 130 RXI = H/HSUM
2548 DO 140 IBACK = 1, J
2549 I = (J + 2) - IBACK
2550 140 EM(I) = EM(I) + EM(I-1)*RXI
2551 HSUM = HSUM + TAU(J)
2552 150 CONTINUE
2553 C Compute integral from -1 to 0 of polynomial and of x times it. -------
2554 S = ONE
2555 EM0 = ZERO
2556 CSUM = ZERO
2557 DO 160 I = 1, NQ
2558 FLOTI = REAL(I)
2559 EM0 = EM0 + S*EM(I)/FLOTI
2560 CSUM = CSUM + S*EM(I)/(FLOTI+ONE)
2561 160 S = -S
2562 C In EL, form coefficients of normalized integrated polynomial. --------
2563 S = ONE/EM0
2564 EL(1) = ONE
2565 DO 170 I = 1, NQ
2566 170 EL(I+1) = S*EM(I)/REAL(I)
2567 XI = HSUM/H
2568 TQ(2) = XI*EM0/CSUM
2569 TQ(5) = XI/EL(L)
2570 IF (NQWAIT .NE. 1) GO TO 300
2571 C For higher order control constant, multiply polynomial by 1+x/xi(q). -
2572 RXI = ONE/XI
2573 DO 180 IBACK = 1, NQ
2574 I = (L + 1) - IBACK
2575 180 EM(I) = EM(I) + EM(I-1)*RXI
2576 C Compute integral of polynomial. --------------------------------------
2577 S = ONE
2578 CSUM = ZERO
2579 DO 190 I = 1, L
2580 CSUM = CSUM + S*EM(I)/REAL(I+1)
2581 190 S = -S
2582 TQ(3) = FLOTL*EM0/CSUM
2583 GO TO 300
2585 C Set coefficients for BDF methods. ------------------------------------
2586 200 DO 210 I = 3, L
2587 210 EL(I) = ZERO
2588 EL(1) = ONE
2589 EL(2) = ONE
2590 ALPH0 = -ONE
2591 AHATN0 = -ONE
2592 HSUM = H
2593 RXI = ONE
2594 RXIS = ONE
2595 IF (NQ .EQ. 1) GO TO 240
2596 DO 230 J = 1, NQM2
2597 C In EL, construct coefficients of (1+x/xi(1))*...*(1+x/xi(j+1)). ------
2598 HSUM = HSUM + TAU(J)
2599 RXI = H/HSUM
2600 JP1 = J + 1
2601 ALPH0 = ALPH0 - ONE/REAL(JP1)
2602 DO 220 IBACK = 1, JP1
2603 I = (J + 3) - IBACK
2604 220 EL(I) = EL(I) + EL(I-1)*RXI
2605 230 CONTINUE
2606 ALPH0 = ALPH0 - ONE/REAL(NQ)
2607 RXIS = -EL(2) - ALPH0
2608 HSUM = HSUM + TAU(NQM1)
2609 RXI = H/HSUM
2610 AHATN0 = -EL(2) - RXI
2611 DO 235 IBACK = 1, NQ
2612 I = (NQ + 2) - IBACK
2613 235 EL(I) = EL(I) + EL(I-1)*RXIS
2614 240 T1 = ONE - AHATN0 + ALPH0
2615 T2 = ONE + REAL(NQ)*T1
2616 TQ(2) = ABS(ALPH0*T2/T1)
2617 TQ(5) = ABS(T2/(EL(L)*RXI/RXIS))
2618 IF (NQWAIT .NE. 1) GO TO 300
2619 CNQM1 = RXIS/EL(L)
2620 T3 = ALPH0 + ONE/REAL(NQ)
2621 T4 = AHATN0 + RXI
2622 ELP = T3/(ONE - T4 + T3)
2623 TQ(1) = ABS(ELP/CNQM1)
2624 HSUM = HSUM + TAU(NQ)
2625 RXI = H/HSUM
2626 T5 = ALPH0 - ONE/REAL(NQ+1)
2627 T6 = AHATN0 - RXI
2628 ELP = T2/(ONE - T6 + T5)
2629 TQ(3) = ABS(ELP*RXI*(FLOTL + ONE)*T5)
2630 300 TQ(4) = CORTES*TQ(2)
2631 RETURN
2632 C----------------------- End of Subroutine DVSET -----------------------
2634 *DECK DVJUST
2635 SUBROUTINE DVJUST (YH, LDYH, IORD)
2636 KPP_REAL YH
2637 INTEGER LDYH, IORD
2638 DIMENSION YH(LDYH,*)
2639 C-----------------------------------------------------------------------
2640 C Call sequence input -- YH, LDYH, IORD
2641 C Call sequence output -- YH
2642 C COMMON block input -- NQ, METH, LMAX, HSCAL, TAU(13), N
2643 C COMMON block variables accessed..
2644 C /DVOD01/ -- HSCAL, TAU(13), LMAX, METH, N, NQ,
2646 C Subroutines called by DVJUST.. DAXPY
2647 C Function routines called by DVJUST.. None
2648 C-----------------------------------------------------------------------
2649 C This subroutine adjusts the YH array on reduction of order,
2650 C and also when the order is increased for the stiff option (METH = 2).
2651 C Communication with DVJUST uses the following..
2652 C IORD = An integer flag used when METH = 2 to indicate an order
2653 C increase (IORD = +1) or an order decrease (IORD = -1).
2654 C HSCAL = Step size H used in scaling of Nordsieck array YH.
2655 C (If IORD = +1, DVJUST assumes that HSCAL = TAU(1).)
2656 C See References 1 and 2 for details.
2657 C-----------------------------------------------------------------------
2659 C Type declarations for labeled COMMON block DVOD01 --------------------
2661 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2662 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2663 2 RC, RL1, TAU, TQ, TN, UROUND
2664 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2665 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2666 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2667 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2668 4 NSLP, NYH
2670 C Type declarations for local variables --------------------------------
2672 KPP_REAL ALPH0, ALPH1, HSUM, ONE, PROD, T1, XI,XIOLD, ZERO
2673 INTEGER I, IBACK, J, JP1, LP1, NQM1, NQM2, NQP1
2674 C-----------------------------------------------------------------------
2675 C The following Fortran-77 declaration is to cause the values of the
2676 C listed (local) variables to be saved between calls to this integrator.
2677 C-----------------------------------------------------------------------
2678 SAVE ONE, ZERO
2680 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2681 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2682 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2683 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2684 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2685 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2686 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2687 7 NSLP, NYH
2689 DATA ONE /1.0D0/, ZERO /0.0D0/
2691 IF ((NQ .EQ. 2) .AND. (IORD .NE. 1)) RETURN
2692 NQM1 = NQ - 1
2693 NQM2 = NQ - 2
2694 GO TO (100, 200), METH
2695 C-----------------------------------------------------------------------
2696 C Nonstiff option...
2697 C Check to see if the order is being increased or decreased.
2698 C-----------------------------------------------------------------------
2699 100 CONTINUE
2700 IF (IORD .EQ. 1) GO TO 180
2701 C Order decrease. ------------------------------------------------------
2702 DO 110 J = 1, LMAX
2703 110 EL(J) = ZERO
2704 EL(2) = ONE
2705 HSUM = ZERO
2706 DO 130 J = 1, NQM2
2707 C Construct coefficients of x*(x+xi(1))*...*(x+xi(j)). -----------------
2708 HSUM = HSUM + TAU(J)
2709 XI = HSUM/HSCAL
2710 JP1 = J + 1
2711 DO 120 IBACK = 1, JP1
2712 I = (J + 3) - IBACK
2713 120 EL(I) = EL(I)*XI + EL(I-1)
2714 130 CONTINUE
2715 C Construct coefficients of integrated polynomial. ---------------------
2716 DO 140 J = 2, NQM1
2717 140 EL(J+1) = REAL(NQ)*EL(J)/REAL(J)
2718 C Subtract correction terms from YH array. -----------------------------
2719 DO 170 J = 3, NQ
2720 DO 160 I = 1, N
2721 160 YH(I,J) = YH(I,J) - YH(I,L)*EL(J)
2722 170 CONTINUE
2723 RETURN
2724 C Order increase. ------------------------------------------------------
2725 C Zero out next column in YH array. ------------------------------------
2726 180 CONTINUE
2727 LP1 = L + 1
2728 DO 190 I = 1, N
2729 190 YH(I,LP1) = ZERO
2730 RETURN
2731 C-----------------------------------------------------------------------
2732 C Stiff option...
2733 C Check to see if the order is being increased or decreased.
2734 C-----------------------------------------------------------------------
2735 200 CONTINUE
2736 IF (IORD .EQ. 1) GO TO 300
2737 C Order decrease. ------------------------------------------------------
2738 DO 210 J = 1, LMAX
2739 210 EL(J) = ZERO
2740 EL(3) = ONE
2741 HSUM = ZERO
2742 DO 230 J = 1,NQM2
2743 C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). ---------------
2744 HSUM = HSUM + TAU(J)
2745 XI = HSUM/HSCAL
2746 JP1 = J + 1
2747 DO 220 IBACK = 1, JP1
2748 I = (J + 4) - IBACK
2749 220 EL(I) = EL(I)*XI + EL(I-1)
2750 230 CONTINUE
2751 C Subtract correction terms from YH array. -----------------------------
2752 DO 250 J = 3,NQ
2753 DO 240 I = 1, N
2754 240 YH(I,J) = YH(I,J) - YH(I,L)*EL(J)
2755 250 CONTINUE
2756 RETURN
2757 C Order increase. ------------------------------------------------------
2758 300 DO 310 J = 1, LMAX
2759 310 EL(J) = ZERO
2760 EL(3) = ONE
2761 ALPH0 = -ONE
2762 ALPH1 = ONE
2763 PROD = ONE
2764 XIOLD = ONE
2765 HSUM = HSCAL
2766 IF (NQ .EQ. 1) GO TO 340
2767 DO 330 J = 1, NQM1
2768 C Construct coefficients of x*x*(x+xi(1))*...*(x+xi(j)). ---------------
2769 JP1 = J + 1
2770 HSUM = HSUM + TAU(JP1)
2771 XI = HSUM/HSCAL
2772 PROD = PROD*XI
2773 ALPH0 = ALPH0 - ONE/REAL(JP1)
2774 ALPH1 = ALPH1 + ONE/XI
2775 DO 320 IBACK = 1, JP1
2776 I = (J + 4) - IBACK
2777 320 EL(I) = EL(I)*XIOLD + EL(I-1)
2778 XIOLD = XI
2779 330 CONTINUE
2780 340 CONTINUE
2781 T1 = (-ALPH0 - ALPH1)/PROD
2782 C Load column L + 1 in YH array. ---------------------------------------
2783 LP1 = L + 1
2784 DO 350 I = 1, N
2785 350 YH(I,LP1) = T1*YH(I,LMAX)
2786 C Add correction terms to YH array. ------------------------------------
2787 NQP1 = NQ + 1
2788 DO 370 J = 3, NQP1
2789 CALL DAXPY (N, EL(J), YH(1,LP1), 1, YH(1,J), 1 )
2790 370 CONTINUE
2791 RETURN
2792 C----------------------- End of Subroutine DVJUST ----------------------
2794 *DECK DVNLSD
2795 SUBROUTINE DVNLSD (Y, YH, LDYH, VSAV, SAVF, EWT, ACOR, IWM, WM,
2796 1 F, JAC, PDUM, NFLAG, RPAR, IPAR)
2797 EXTERNAL F, JAC, PDUM
2798 KPP_REAL Y, YH, VSAV, SAVF, EWT, ACOR, WM, RPAR
2799 INTEGER LDYH, IWM, NFLAG, IPAR
2800 DIMENSION Y(*), YH(LDYH,*), VSAV(*), SAVF(*), EWT(*), ACOR(*),
2801 1 IWM(*), WM(*), RPAR(*), IPAR(*)
2803 C-----------------------------------------------------------------------
2804 C Call sequence input -- Y, YH, LDYH, SAVF, EWT, ACOR, IWM, WM,
2805 C F, JAC, NFLAG, RPAR, IPAR
2806 C Call sequence output -- YH, ACOR, WM, IWM, NFLAG
2807 C COMMON block variables accessed..
2808 C /DVOD01/ ACNRM, CRATE, DRC, H, RC, RL1, TQ(5), TN, ICF,
2809 C JCUR, METH, MITER, N, NSLP
2810 C /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2812 C Subroutines called by DVNLSD.. F, DAXPY, DCOPY, DSCAL, DVJAC, DVSOL
2813 C Function routines called by DVNLSD.. DVNORM
2814 C-----------------------------------------------------------------------
2815 C Subroutine DVNLSD is a nonlinear system solver, which uses functional
2816 C iteration or a chord (modified Newton) method. For the chord method
2817 C direct linear algebraic system solvers are used. Subroutine DVNLSD
2818 C then handles the corrector phase of this integration package.
2820 C Communication with DVNLSD is done with the following variables. (For
2821 C more details, please see the comments in the driver subroutine.)
2823 C Y = The dependent variable, a vector of length N, input.
2824 C YH = The Nordsieck (Taylor) array, LDYH by LMAX, input
2825 C and output. On input, it contains predicted values.
2826 C LDYH = A constant .ge. N, the first dimension of YH, input.
2827 C VSAV = Unused work array.
2828 C SAVF = A work array of length N.
2829 C EWT = An error weight vector of length N, input.
2830 C ACOR = A work array of length N, used for the accumulated
2831 C corrections to the predicted y vector.
2832 C WM,IWM = Real and integer work arrays associated with matrix
2833 C operations in chord iteration (MITER .ne. 0).
2834 C F = Dummy name for user supplied routine for f.
2835 C JAC = Dummy name for user supplied Jacobian routine.
2836 C PDUM = Unused dummy subroutine name. Included for uniformity
2837 C over collection of integrators.
2838 C NFLAG = Input/output flag, with values and meanings as follows..
2839 C INPUT
2840 C 0 first CALL for this time step.
2841 C -1 convergence failure in previous CALL to DVNLSD.
2842 C -2 error test failure in DVSTEP.
2843 C OUTPUT
2844 C 0 successful completion of nonlinear solver.
2845 C -1 convergence failure or singular matrix.
2846 C -2 unrecoverable error in matrix preprocessing
2847 C (cannot occur here).
2848 C -3 unrecoverable error in solution (cannot occur
2849 C here).
2850 C RPAR, IPAR = Dummy names for user's real and integer work arrays.
2852 C IPUP = Own variable flag with values and meanings as follows..
2853 C 0, do not update the Newton matrix.
2854 C MITER .ne. 0, update Newton matrix, because it is the
2855 C initial step, order was changed, the error
2856 C test failed, or an update is indicated by
2857 C the scalar RC or step counter NST.
2859 C For more details, see comments in driver subroutine.
2860 C-----------------------------------------------------------------------
2861 C Type declarations for labeled COMMON block DVOD01 --------------------
2863 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
2864 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2865 2 RC, RL1, TAU, TQ, TN, UROUND
2866 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2867 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2868 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2869 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2870 4 NSLP, NYH
2872 C Type declarations for labeled COMMON block DVOD02 --------------------
2874 KPP_REAL HU
2875 INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2877 C Type declarations for local variables --------------------------------
2879 KPP_REAL CCMAX, CRDOWN, CSCALE, DCON, DEL, DELP, ONE,
2880 1 RDIV, TWO, ZERO
2881 INTEGER I, IERPJ, IERSL, M, MAXCOR, MSBP
2883 C Type declaration for function subroutines called ---------------------
2885 KPP_REAL DVNORM, STEPCUT
2886 C-----------------------------------------------------------------------
2887 C The following Fortran-77 declaration is to cause the values of the
2888 C listed (local) variables to be saved between calls to this integrator.
2889 C-----------------------------------------------------------------------
2890 SAVE CCMAX, CRDOWN, MAXCOR, MSBP, RDIV, ONE, TWO, ZERO
2892 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
2893 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
2894 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
2895 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
2896 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
2897 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
2898 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
2899 7 NSLP, NYH
2900 COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
2902 COMMON /VERWER/ IVERWER, IBEGIN, STEPCUT
2903 DATA CCMAX /0.3D0/, CRDOWN /0.3D0/, MAXCOR /3/, MSBP /20/,
2904 1 RDIV /2.0D0/
2905 DATA ONE /1.0D0/, TWO /2.0D0/, ZERO /0.0D0/
2906 C-----------------------------------------------------------------------
2907 C On the first step, on a change of method order, or after a
2908 C nonlinear convergence failure with NFLAG = -2, set IPUP = MITER
2909 C to force a Jacobian update when MITER .ne. 0.
2910 C-----------------------------------------------------------------------
2911 if ( (h.lt.stepcut).and.(IBEGIN.eq.1) ) then
2912 c if (h.lt.stepcut) then
2913 iverwer = 1
2914 else
2915 ibegin = 0
2916 iverwer = 0
2917 end if
2918 IF (JSTART .EQ. 0) NSLP = 0
2919 IF (NFLAG .EQ. 0) ICF = 0
2920 IF (NFLAG .EQ. -2) IPUP = MITER
2921 IF ( (JSTART .EQ. 0) .OR. (JSTART .EQ. -1) ) IPUP = MITER
2922 C If this is functional iteration, set CRATE .eq. 1 and drop to 220
2923 IF (MITER .EQ. 0) THEN
2924 CRATE = ONE
2925 GO TO 220
2926 ENDIF
2927 C-----------------------------------------------------------------------
2928 C RC is the ratio of new to old values of the coefficient H/EL(2)=h/l1.
2929 C When RC differs from 1 by more than CCMAX, IPUP is set to MITER
2930 C to force DVJAC to be called, if a Jacobian is involved.
2931 C In any case, DVJAC is called at least every MSBP steps.
2932 C-----------------------------------------------------------------------
2933 DRC = ABS(RC-ONE)
2934 IF (DRC .GT. CCMAX .OR. NST .GE. NSLP+MSBP) IPUP = MITER
2935 C-----------------------------------------------------------------------
2936 C Up to MAXCOR corrector iterations are taken. A convergence test is
2937 C made on the r.m.s. norm of each correction, weighted by the error
2938 C weight vector EWT. The sum of the corrections is accumulated in the
2939 C vector ACOR(i). The YH array is not altered in the corrector loop.
2940 C-----------------------------------------------------------------------
2941 220 M = 0
2942 DELP = ZERO
2943 CALL DCOPY (N, YH(1,1), 1, Y, 1 )
2944 CALL F (N, TN, Y, SAVF)
2945 NFE = NFE + 1
2946 IF (IPUP .LE. 0) GO TO 250
2947 C-----------------------------------------------------------------------
2948 C If indicated, the matrix P = I - h*rl1*J is reevaluated and
2949 C preprocessed before starting the corrector iteration. IPUP is set
2950 C to 0 as an indicator that this has been done.
2951 C-----------------------------------------------------------------------
2952 IF (IVERWER.EQ.0) THEN
2953 CALL DVJAC (Y, YH, LDYH, EWT, ACOR, SAVF, WM, IWM, F, JAC, IERPJ,
2954 1 RPAR, IPAR)
2955 ELSE
2956 IERPJ = 0
2957 END IF
2958 IPUP = 0
2959 RC = ONE
2960 DRC = ZERO
2961 CRATE = ONE
2962 NSLP = NST
2963 C If matrix is singular, take error return to force cut in step size. --
2964 IF (IERPJ .NE. 0) GO TO 430
2965 250 DO 260 I = 1,N
2966 260 ACOR(I) = ZERO
2967 C This is a looping point for the corrector iteration. -----------------
2968 270 IF (MITER .NE. 0) GO TO 350
2969 C-----------------------------------------------------------------------
2970 C In the case of functional iteration, update Y directly from
2971 C the result of the last function evaluation.
2972 C-----------------------------------------------------------------------
2973 DO 280 I = 1,N
2974 280 SAVF(I) = RL1*(H*SAVF(I) - YH(I,2))
2975 DO 290 I = 1,N
2976 290 Y(I) = SAVF(I) - ACOR(I)
2977 DEL = DVNORM (N, Y, EWT)
2978 DO 300 I = 1,N
2979 300 Y(I) = YH(I,1) + SAVF(I)
2980 CALL DCOPY (N, SAVF, 1, ACOR, 1)
2981 GO TO 400
2982 C-----------------------------------------------------------------------
2983 C In the case of the chord method, compute the corrector error,
2984 C and solve the linear system with that as right-hand side and
2985 C P as coefficient matrix. The correction is scaled by the factor
2986 C 2/(1+RC) to account for changes in h*rl1 since the last DVJAC call.
2987 C-----------------------------------------------------------------------
2988 350 continue
2989 if (IVERWER.EQ.1) then
2990 CRATE = 1
2991 DO I = 1,N
2992 Y(I) = SAVF(I) - ACOR(I)
2993 end do
2994 DEL = DVNORM (N, Y, EWT)
2995 DO I = 1,N
2996 Y(I) = YH(I,1) + SAVF(I)
2997 end do
2998 CALL DCOPY (N, SAVF, 1, ACOR, 1)
2999 GO TO 400
3000 end if
3001 DO 360 I = 1,N
3002 360 Y(I) = (RL1*H)*SAVF(I) - (RL1*YH(I,2) + ACOR(I))
3003 CALL DVSOL (WM, IWM, Y, IERSL)
3004 NNI = NNI + 1
3005 IF (IERSL .GT. 0) GO TO 410
3006 IF (METH .EQ. 2 .AND. RC .NE. ONE) THEN
3007 CSCALE = TWO/(ONE + RC)
3008 CALL DSCAL (N, CSCALE, Y, 1)
3009 ENDIF
3010 DEL = DVNORM (N, Y, EWT)
3011 CALL DAXPY (N, ONE, Y, 1, ACOR, 1)
3012 DO 380 I = 1,N
3013 380 Y(I) = YH(I,1) + ACOR(I)
3014 C-----------------------------------------------------------------------
3015 C Test for convergence. If M .gt. 0, an estimate of the convergence
3016 C rate constant is stored in CRATE, and this is used in the test.
3017 C-----------------------------------------------------------------------
3018 400 IF (M .NE. 0) CRATE = MAX(CRDOWN*CRATE,DEL/DELP)
3019 DCON = DEL*MIN(ONE,CRATE)/TQ(4)
3020 IF (DCON .LE. ONE) GO TO 450
3021 M = M + 1
3022 IF (M .EQ. MAXCOR) GO TO 410
3023 IF (M .GE. 2 .AND. DEL .GT. RDIV*DELP) GO TO 410
3024 DELP = DEL
3025 CALL F (N, TN, Y, SAVF)
3026 NFE = NFE + 1
3027 GO TO 270
3029 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
3030 ICF = 1
3031 IPUP = MITER
3032 GO TO 220
3034 430 CONTINUE
3035 NFLAG = -1
3036 ICF = 2
3037 IPUP = MITER
3038 RETURN
3040 C Return for successful step. ------------------------------------------
3041 450 NFLAG = 0
3042 JCUR = 0
3043 ICF = 0
3044 IF (M .EQ. 0) ACNRM = DEL
3045 IF (M .GT. 0) ACNRM = DVNORM (N, ACOR, EWT)
3046 RETURN
3047 C----------------------- End of Subroutine DVNLSD ----------------------
3050 *DECK DVJAC
3051 SUBROUTINE DVJAC (Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM, FUN, JAC,
3052 1 IERPJ, RPAR, IPAR)
3053 C IMPLICIT KPP_REAL (A-H, O-Z)
3054 INCLUDE 'KPP_ROOT_Parameters.h'
3055 INCLUDE 'KPP_ROOT_Sparse.h'
3056 EXTERNAL FUN, JAC
3057 KPP_REAL Y, YH, EWT, FTEM, SAVF, WM, RPAR
3058 INTEGER LDYH, IWM, IERPJ, IPAR
3059 DIMENSION Y(*), YH(LDYH,*), EWT(*), FTEM(*), SAVF(*),
3060 1 WM(*), IWM(*), RPAR(*), IPAR(*)
3062 C-----------------------------------------------------------------------
3063 C Call sequence input -- Y, YH, LDYH, EWT, FTEM, SAVF, WM, IWM,
3064 C FUN, JAC, RPAR, IPAR
3065 C Call sequence output -- WM, IWM, IERPJ
3066 C COMMON block variables accessed..
3067 C /DVOD01/ CCMXJ, DRC, H, RL1, TN, UROUND, ICF, JCUR, LOCJS,
3068 C MSBJ, NSLJ
3069 C /DVOD02/ NFE, NST, NJE, NLU
3071 C Subroutines called by DVJAC.. FUN, JAC, DACOPY, DCOPY, DGBFA, DGEFA,
3072 C DSCAL
3073 C Function routines called by DVJAC.. DVNORM
3074 C-----------------------------------------------------------------------
3075 C DVJAC is called by DVSTEP to compute and process the matrix
3076 C P = I - h*rl1*J , where J is an approximation to the Jacobian.
3077 C Here J is computed by the user-supplied routine JAC if
3078 C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5.
3079 C If MITER = 3, a diagonal approximation to J is used.
3080 C If JSV = -1, J is computed from scratch in all cases.
3081 C If JSV = 1 and MITER = 1, 2, 4, or 5, and if the saved value of J is
3082 C considered acceptable, then P is constructed from the saved J.
3083 C J is stored in wm and replaced by P. If MITER .ne. 3, P is then
3084 C subjected to LU decomposition in preparation for later solution
3085 C of linear systems with P as coefficient matrix. This is done
3086 C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5.
3088 C Communication with DVJAC is done with the following variables. (For
3089 C more details, please see the comments in the driver subroutine.)
3090 C Y = Vector containing predicted values on entry.
3091 C YH = The Nordsieck array, an LDYH by LMAX array, input.
3092 C LDYH = A constant .ge. N, the first dimension of YH, input.
3093 C EWT = An error weight vector of length N.
3094 C SAVF = Array containing f evaluated at predicted y, input.
3095 C WM = Real work space for matrices. In the output, it containS
3096 C the inverse diagonal matrix if MITER = 3 and the LU
3097 C decomposition of P if MITER is 1, 2 , 4, or 5.
3098 C Storage of matrix elements starts at WM(3).
3099 C Storage of the saved Jacobian starts at WM(LOCJS).
3100 C WM also contains the following matrix-related data..
3101 C WM(1) = SQRT(UROUND), used in numerical Jacobian step.
3102 C WM(2) = H*RL1, saved for later use if MITER = 3.
3103 C IWM = Integer work space containing pivot information,
3104 C starting at IWM(31), if MITER is 1, 2, 4, or 5.
3105 C IWM also contains band parameters ML = IWM(1) and
3106 C MU = IWM(2) if MITER is 4 or 5.
3107 C FUN = Dummy name for the user supplied subroutine for f.
3108 C JAC = Dummy name for the user supplied Jacobian subroutine.
3109 C RPAR, IPAR = Dummy names for user's real and integer work arrays.
3110 C RL1 = 1/EL(2) (input).
3111 C IERPJ = Output error flag, = 0 if no trouble, 1 if the P
3112 C matrix is found to be singular.
3113 C JCUR = Output flag to indicate whether the Jacobian matrix
3114 C (or approximation) is now current.
3115 C JCUR = 0 means J is not current.
3116 C JCUR = 1 means J is current.
3117 C-----------------------------------------------------------------------
3119 C Type declarations for labeled COMMON block DVOD01 --------------------
3121 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
3122 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3123 2 RC, RL1, TAU, TQ, TN, UROUND
3124 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3125 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3126 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3127 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3128 4 NSLP, NYH
3130 C Type declarations for labeled COMMON block DVOD02 --------------------
3132 KPP_REAL HU
3133 INTEGER NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
3135 C Type declarations for local variables --------------------------------
3137 KPP_REAL CON, DI, FAC, HRL1, ONE, PT1, R, R0, SRUR, THOU,
3138 1 YI, YJ, YJJ, ZERO
3139 INTEGER I, I1, I2, IER, II, J, J1, JJ, JOK, LENP, MBA, MBAND,
3140 1 MEB1, MEBAND, ML, ML3, MU, NP1
3142 C Type declaration for function subroutines called ---------------------
3144 KPP_REAL DVNORM
3145 C-----------------------------------------------------------------------
3146 C The following Fortran-77 declaration is to cause the values of the
3147 C listed (local) variables to be saved between calls to this subroutine.
3148 C-----------------------------------------------------------------------
3149 SAVE ONE, PT1, THOU, ZERO
3150 C-----------------------------------------------------------------------
3151 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
3152 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3153 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3154 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3155 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3156 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3157 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3158 7 NSLP, NYH
3159 COMMON /DVOD02/ HU, NCFN, NETF, NFE, NJE, NLU, NNI, NQU, NST
3161 DATA ONE /1.0D0/, THOU /1000.0D0/, ZERO /0.0D0/, PT1 /0.1D0/
3163 IER = 0
3164 IERPJ = 0
3165 HRL1 = H*RL1
3166 C See whether J should be evaluated (JOK = -1) or not (JOK = 1). -------
3167 JOK = JSV
3168 IF (JSV .EQ. 1) THEN
3169 IF (NST .EQ. 0 .OR. NST .GT. NSLJ+MSBJ) JOK = -1
3170 IF (ICF .EQ. 1 .AND. DRC .LT. CCMXJ) JOK = -1
3171 IF (ICF .EQ. 2) JOK = -1
3172 ENDIF
3173 C End of setting JOK. --------------------------------------------------
3175 IF (JOK .EQ. -1 .AND. MITER .EQ. 1) THEN
3176 C If JOK = -1 and MITER = 1, CALL JAC to evaluate Jacobian. ------------
3177 NJE = NJE + 1
3178 NSLJ = NST
3179 JCUR = 1
3180 LENP = LU_NONZERO
3181 DO 110 I = 1,LENP
3182 110 WM(I+2) = ZERO
3184 c CALL Update_SUN(TN)
3185 c CALL Update_RCONST()
3186 CALL JAC (N, TN, Y, WM(3))
3187 IF (JSV .EQ. 1) CALL DCOPY (LENP, WM(3), 1, WM(LOCJS), 1)
3188 ENDIF
3190 IF (JOK .EQ. -1 .AND. MITER .EQ. 2) THEN
3191 C If MITER = 2, make N calls to FUN to approximate the Jacobian. ---------
3192 NJE = NJE + 1
3193 NSLJ = NST
3194 JCUR = 1
3195 FAC = DVNORM (N, SAVF, EWT)
3196 R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC
3197 IF (R0 .EQ. ZERO) R0 = ONE
3198 SRUR = WM(1)
3199 J1 = 2
3200 DO 230 J = 1,N
3201 YJ = Y(J)
3202 R = MAX(SRUR*ABS(YJ),R0/EWT(J))
3203 Y(J) = Y(J) + R
3204 FAC = ONE/R
3205 CALL FUN (N, TN, Y, FTEM)
3206 DO 220 I = 1,N
3207 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
3208 Y(J) = YJ
3209 J1 = J1 + N
3210 230 CONTINUE
3211 NFE = NFE + N
3212 LENP = LU_NONZERO
3213 IF (JSV .EQ. 1) CALL DCOPY (LENP, WM(3), 1, WM(LOCJS), 1)
3214 ENDIF
3216 IF (JOK .EQ. 1 .AND. (MITER .EQ. 1 .OR. MITER .EQ. 2)) THEN
3217 JCUR = 0
3218 LENP = LU_NONZERO
3219 CALL DCOPY (LENP, WM(LOCJS), 1, WM(3), 1)
3220 ENDIF
3222 IF (MITER .EQ. 1 .OR. MITER .EQ. 2) THEN
3223 C Multiply Jacobian by scalar, add identity, and do LU decomposition. --
3224 CON = -HRL1
3225 CALL DSCAL (LENP, CON, WM(3), 1)
3226 J = 3
3227 NP1 = N + 1
3228 DO 250 I = 1,N
3229 WM(2+LU_DIAG(i)) = WM(2+LU_DIAG(i)) + ONE
3230 250 CONTINUE
3231 NLU = NLU + 1
3232 C CALL DGEFA (WM(3), N, N, IWM(31), IER)
3233 CALL KppDecomp ( WM(3), IER)
3234 IF (IER .NE. 0) IERPJ = 1
3235 RETURN
3236 ENDIF
3237 C End of code block for MITER = 1 or 2. --------------------------------
3239 IF (MITER .EQ. 3) THEN
3240 C If MITER = 3, construct a diagonal approximation to J and P. ---------
3241 NJE = NJE + 1
3242 JCUR = 1
3243 WM(2) = HRL1
3244 R = RL1*PT1
3245 DO 310 I = 1,N
3246 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
3247 CALL FUN (N, TN, Y, WM(3))
3248 NFE = NFE + 1
3249 DO 320 I = 1,N
3250 R0 = H*SAVF(I) - YH(I,2)
3251 DI = PT1*R0 - H*(WM(I+2) - SAVF(I))
3252 WM(I+2) = ONE
3253 IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320
3254 IF (ABS(DI) .EQ. ZERO) GO TO 330
3255 WM(I+2) = PT1*R0/DI
3256 320 CONTINUE
3257 RETURN
3258 330 IERPJ = 1
3259 RETURN
3260 ENDIF
3261 C End of code block for MITER = 3. -------------------------------------
3263 C Set constants for MITER = 4 or 5. ------------------------------------
3264 ML = IWM(1)
3265 MU = IWM(2)
3266 ML3 = ML + 3
3267 MBAND = ML + MU + 1
3268 MEBAND = MBAND + ML
3269 LENP = MEBAND*N
3271 IF (JOK .EQ. -1 .AND. MITER .EQ. 4) THEN
3272 C If JOK = -1 and MITER = 4, CALL JAC to evaluate Jacobian. ------------
3273 NJE = NJE + 1
3274 NSLJ = NST
3275 JCUR = 1
3276 DO 410 I = 1,LENP
3277 410 WM(I+2) = ZERO
3279 c CALL Update_SUN(TN)
3280 c CALL Update_RCONST()
3281 CALL JAC (N, TN, Y, WM(ML3))
3282 IF (JSV .EQ. 1)
3283 1 CALL DACOPY (MBAND, N, WM(ML3), MEBAND, WM(LOCJS), MBAND)
3284 ENDIF
3286 IF (JOK .EQ. -1 .AND. MITER .EQ. 5) THEN
3287 C If MITER = 5, make N calls to FUN to approximate the Jacobian. ---------
3288 NJE = NJE + 1
3289 NSLJ = NST
3290 JCUR = 1
3291 MBA = MIN(MBAND,N)
3292 MEB1 = MEBAND - 1
3293 SRUR = WM(1)
3294 FAC = DVNORM (N, SAVF, EWT)
3295 R0 = THOU*ABS(H)*UROUND*REAL(N)*FAC
3296 IF (R0 .EQ. ZERO) R0 = ONE
3297 DO 560 J = 1,MBA
3298 DO 530 I = J,N,MBAND
3299 YI = Y(I)
3300 R = MAX(SRUR*ABS(YI),R0/EWT(I))
3301 530 Y(I) = Y(I) + R
3302 CALL FUN (N, TN, Y, FTEM)
3303 DO 550 JJ = J,N,MBAND
3304 Y(JJ) = YH(JJ,1)
3305 YJJ = Y(JJ)
3306 R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ))
3307 FAC = ONE/R
3308 I1 = MAX(JJ-MU,1)
3309 I2 = MIN(JJ+ML,N)
3310 II = JJ*MEB1 - ML + 2
3311 DO 540 I = I1,I2
3312 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC
3313 550 CONTINUE
3314 560 CONTINUE
3315 NFE = NFE + MBA
3316 IF (JSV .EQ. 1)
3317 1 CALL DACOPY (MBAND, N, WM(ML3), MEBAND, WM(LOCJS), MBAND)
3318 ENDIF
3320 IF (JOK .EQ. 1) THEN
3321 JCUR = 0
3322 CALL DACOPY (MBAND, N, WM(LOCJS), MBAND, WM(ML3), MEBAND)
3323 ENDIF
3325 C Multiply Jacobian by scalar, add identity, and do LU decomposition.
3326 CON = -HRL1
3327 CALL DSCAL (LENP, CON, WM(3), 1 )
3328 II = MBAND + 2
3329 DO 580 I = 1,N
3330 WM(II) = WM(II) + ONE
3331 580 II = II + MEBAND
3332 NLU = NLU + 1
3333 C CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(31), IER)
3334 IF (IER .NE. 0) IERPJ = 1
3335 RETURN
3336 C End of code block for MITER = 4 or 5. --------------------------------
3338 C----------------------- End of Subroutine DVJAC -----------------------
3340 *DECK DACOPY
3341 SUBROUTINE DACOPY (NROW, NCOL, A, NROWA, B, NROWB)
3342 KPP_REAL A, B
3343 INTEGER NROW, NCOL, NROWA, NROWB
3344 DIMENSION A(NROWA,NCOL), B(NROWB,NCOL)
3345 C-----------------------------------------------------------------------
3346 C Call sequence input -- NROW, NCOL, A, NROWA, NROWB
3347 C Call sequence output -- B
3348 C COMMON block variables accessed -- None
3350 C Subroutines called by DACOPY.. DCOPY
3351 C Function routines called by DACOPY.. None
3352 C-----------------------------------------------------------------------
3353 C This routine copies one rectangular array, A, to another, B,
3354 C where A and B may have different row dimensions, NROWA and NROWB.
3355 C The data copied consists of NROW rows and NCOL columns.
3356 C-----------------------------------------------------------------------
3357 INTEGER IC
3359 DO 20 IC = 1,NCOL
3360 CALL DCOPY (NROW, A(1,IC), 1, B(1,IC), 1)
3361 20 CONTINUE
3363 RETURN
3364 C----------------------- End of Subroutine DACOPY ----------------------
3366 *DECK DVSOL
3367 SUBROUTINE DVSOL (WM, IWM, X, IERSL)
3368 KPP_REAL WM, X
3369 INTEGER IWM, IERSL
3370 DIMENSION WM(*), IWM(*), X(*)
3371 C-----------------------------------------------------------------------
3372 C Call sequence input -- WM, IWM, X
3373 C Call sequence output -- X, IERSL
3374 C COMMON block variables accessed..
3375 C /DVOD01/ -- H, RL1, MITER, N
3377 C Subroutines called by DVSOL.. DGESL, DGBSL
3378 C Function routines called by DVSOL.. None
3379 C-----------------------------------------------------------------------
3380 C This routine manages the solution of the linear system arising from
3381 C a chord iteration. It is called if MITER .ne. 0.
3382 C If MITER is 1 or 2, it calls DGESL to accomplish this.
3383 C If MITER = 3 it updates the coefficient H*RL1 in the diagonal
3384 C matrix, and then computes the solution.
3385 C If MITER is 4 or 5, it calls DGBSL.
3386 C Communication with DVSOL uses the following variables..
3387 C WM = Real work space containing the inverse diagonal matrix if
3388 C MITER = 3 and the LU decomposition of the matrix otherwise.
3389 C Storage of matrix elements starts at WM(3).
3390 C WM also contains the following matrix-related data..
3391 C WM(1) = SQRT(UROUND) (not used here),
3392 C WM(2) = HRL1, the previous value of H*RL1, used if MITER = 3.
3393 C IWM = Integer work space containing pivot information, starting at
3394 C IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band
3395 C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
3396 C X = The right-hand side vector on input, and the solution vector
3397 C on output, of length N.
3398 C IERSL = Output flag. IERSL = 0 if no trouble occurred.
3399 C IERSL = 1 if a singular matrix arose with MITER = 3.
3400 C-----------------------------------------------------------------------
3402 C Type declarations for labeled COMMON block DVOD01 --------------------
3404 KPP_REAL ACNRM, CCMXJ, CONP, CRATE, DRC, EL,
3405 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3406 2 RC, RL1, TAU, TQ, TN, UROUND
3407 INTEGER ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3408 1 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3409 2 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3410 3 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3411 4 NSLP, NYH
3413 C Type declarations for local variables --------------------------------
3415 INTEGER I, MEBAND, ML, MU
3416 KPP_REAL DI, HRL1, ONE, PHRL1, R, ZERO
3417 C-----------------------------------------------------------------------
3418 C The following Fortran-77 declaration is to cause the values of the
3419 C listed (local) variables to be saved between calls to this integrator.
3420 C-----------------------------------------------------------------------
3421 SAVE ONE, ZERO
3423 COMMON /DVOD01/ ACNRM, CCMXJ, CONP, CRATE, DRC, EL(13),
3424 1 ETA, ETAMAX, H, HMIN, HMXI, HNEW, HSCAL, PRL1,
3425 2 RC, RL1, TAU(13), TQ(5), TN, UROUND,
3426 3 ICF, INIT, IPUP, JCUR, JSTART, JSV, KFLAG, KUTH,
3427 4 L, LMAX, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3428 5 LOCJS, MAXORD, METH, MITER, MSBJ, MXHNIL, MXSTEP,
3429 6 N, NEWH, NEWQ, NHNIL, NQ, NQNYH, NQWAIT, NSLJ,
3430 7 NSLP, NYH
3432 DATA ONE /1.0D0/, ZERO /0.0D0/
3434 IERSL = 0
3435 GO TO (100, 100, 300, 400, 400), MITER
3436 C 100 CALL DGESL (WM(3), N, N, IWM(31), X, 0)
3437 100 CALL KppSolve (WM(3), X)
3438 RETURN
3440 300 PHRL1 = WM(2)
3441 HRL1 = H*RL1
3442 WM(2) = HRL1
3443 IF (HRL1 .EQ. PHRL1) GO TO 330
3444 R = HRL1/PHRL1
3445 DO 320 I = 1,N
3446 DI = ONE - R*(ONE - ONE/WM(I+2))
3447 IF (ABS(DI) .EQ. ZERO) GO TO 390
3448 320 WM(I+2) = ONE/DI
3450 330 DO 340 I = 1,N
3451 340 X(I) = WM(I+2)*X(I)
3452 RETURN
3453 390 IERSL = 1
3454 RETURN
3456 400 ML = IWM(1)
3457 MU = IWM(2)
3458 MEBAND = 2*ML + MU + 1
3459 CALL KppSolve (WM(3), X)
3460 RETURN
3461 C----------------------- End of Subroutine DVSOL -----------------------
3463 *DECK DVSRCO
3464 SUBROUTINE DVSRCO (RSAV, ISAV, JOB)
3465 KPP_REAL RSAV
3466 INTEGER ISAV, JOB
3467 DIMENSION RSAV(*), ISAV(*)
3468 C-----------------------------------------------------------------------
3469 C Call sequence input -- RSAV, ISAV, JOB
3470 C Call sequence output -- RSAV, ISAV
3471 C COMMON block variables accessed -- All of /DVOD01/ and /DVOD02/
3473 C Subroutines/functions called by DVSRCO.. None
3474 C-----------------------------------------------------------------------
3475 C This routine saves or restores (depending on JOB) the contents of the
3476 C COMMON blocks DVOD01 and DVOD02, which are used internally by DVODE.
3478 C RSAV = real array of length 49 or more.
3479 C ISAV = integer array of length 41 or more.
3480 C JOB = flag indicating to save or restore the COMMON blocks..
3481 C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV).
3482 C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV).
3483 C A CALL with JOB = 2 presumes a prior CALL with JOB = 1.
3484 C-----------------------------------------------------------------------
3485 KPP_REAL RVOD1, RVOD2
3486 INTEGER IVOD1, IVOD2
3487 INTEGER I, LENIV1, LENIV2, LENRV1, LENRV2
3488 C-----------------------------------------------------------------------
3489 C The following Fortran-77 declaration is to cause the values of the
3490 C listed (local) variables to be saved between calls to this integrator.
3491 C-----------------------------------------------------------------------
3492 SAVE LENRV1, LENIV1, LENRV2, LENIV2
3494 COMMON /DVOD01/ RVOD1(48), IVOD1(33)
3495 COMMON /DVOD02/ RVOD2(1), IVOD2(8)
3496 DATA LENRV1/48/, LENIV1/33/, LENRV2/1/, LENIV2/8/
3498 IF (JOB .EQ. 2) GO TO 100
3499 DO 10 I = 1,LENRV1
3500 10 RSAV(I) = RVOD1(I)
3501 DO 15 I = 1,LENRV2
3502 15 RSAV(LENRV1+I) = RVOD2(I)
3504 DO 20 I = 1,LENIV1
3505 20 ISAV(I) = IVOD1(I)
3506 DO 25 I = 1,LENIV2
3507 25 ISAV(LENIV1+I) = IVOD2(I)
3509 RETURN
3511 100 CONTINUE
3512 DO 110 I = 1,LENRV1
3513 110 RVOD1(I) = RSAV(I)
3514 DO 115 I = 1,LENRV2
3515 115 RVOD2(I) = RSAV(LENRV1+I)
3517 DO 120 I = 1,LENIV1
3518 120 IVOD1(I) = ISAV(I)
3519 DO 125 I = 1,LENIV2
3520 125 IVOD2(I) = ISAV(LENIV1+I)
3522 RETURN
3523 C----------------------- End of Subroutine DVSRCO ----------------------
3525 *DECK DEWSET
3526 SUBROUTINE DEWSET (N, ITOL, RelTol, AbsTol, YCUR, EWT)
3527 KPP_REAL RelTol, AbsTol, YCUR, EWT
3528 INTEGER N, ITOL
3529 DIMENSION RelTol(*), AbsTol(*), YCUR(N), EWT(N)
3530 C-----------------------------------------------------------------------
3531 C Call sequence input -- N, ITOL, RelTol, AbsTol, YCUR
3532 C Call sequence output -- EWT
3533 C COMMON block variables accessed -- None
3535 C Subroutines/functions called by DEWSET.. None
3536 C-----------------------------------------------------------------------
3537 C This subroutine sets the error weight vector EWT according to
3538 C EWT(i) = RelTol(i)*abs(YCUR(i)) + AbsTol(i), i = 1,...,N,
3539 C with the subscript on RelTol and/or AbsTol possibly replaced by 1 above,
3540 C depending on the value of ITOL.
3541 C-----------------------------------------------------------------------
3542 INTEGER I
3544 GO TO (10, 20, 30, 40), ITOL
3545 10 CONTINUE
3546 DO 15 I = 1, N
3547 15 EWT(I) = RelTol(1)*ABS(YCUR(I)) + AbsTol(1)
3548 RETURN
3549 20 CONTINUE
3550 DO 25 I = 1, N
3551 25 EWT(I) = RelTol(1)*ABS(YCUR(I)) + AbsTol(I)
3552 RETURN
3553 30 CONTINUE
3554 DO 35 I = 1, N
3555 35 EWT(I) = RelTol(I)*ABS(YCUR(I)) + AbsTol(1)
3556 RETURN
3557 40 CONTINUE
3558 DO 45 I = 1, N
3559 45 EWT(I) = RelTol(I)*ABS(YCUR(I)) + AbsTol(I)
3560 RETURN
3561 C----------------------- End of Subroutine DEWSET ----------------------
3563 *DECK DVNORM
3564 KPP_REAL FUNCTION DVNORM (N, V, W)
3565 KPP_REAL V, W
3566 INTEGER N
3567 DIMENSION V(N), W(N)
3568 C-----------------------------------------------------------------------
3569 C Call sequence input -- N, V, W
3570 C Call sequence output -- None
3571 C COMMON block variables accessed -- None
3573 C Subroutines/functions called by DVNORM.. None
3574 C-----------------------------------------------------------------------
3575 C This function routine computes the weighted root-mean-square norm
3576 C of the vector of length N contained in the array V, with weights
3577 C contained in the array W of length N..
3578 C DVNORM = sqrt( (1/N) * sum( V(i)*W(i) )**2 )
3580 C LOOP UNROLLING BY ADRIAN SANDU, AUG 2, 1995
3582 C-----------------------------------------------------------------------
3583 KPP_REAL SUM
3584 INTEGER I
3586 SUM = 0.0D0
3588 20 m = mod(n,7)
3589 if( m .eq. 0 ) go to 40
3590 do 30 i = 1,m
3591 SUM = SUM + (V(I)*W(I))**2
3592 30 continue
3593 if( n .lt. 7 ) return
3594 40 mp1 = m + 1
3595 do 50 i = mp1,n,7
3596 SUM = SUM + (V(I)*W(I))**2
3597 SUM = SUM + (V(I + 1)*W(I + 1))**2
3598 SUM = SUM + (V(I + 2)*W(I + 2))**2
3599 SUM = SUM + (V(I + 3)*W(I + 3))**2
3600 SUM = SUM + (V(I + 4)*W(I + 4))**2
3601 SUM = SUM + (V(I + 5)*W(I + 5))**2
3602 SUM = SUM + (V(I + 6)*W(I + 6))**2
3603 50 continue
3605 DVNORM = SQRT(SUM/REAL(N))
3606 RETURN
3607 C----------------------- End of Function DVNORM ------------------------
3610 *DECK D1MACH
3611 KPP_REAL FUNCTION D1MACH (IDUM)
3612 INTEGER IDUM
3613 C-----------------------------------------------------------------------
3614 C This routine computes the unit roundoff of the machine.
3615 C This is defined as the smallest positive machine number
3616 C u such that 1.0 + u .ne. 1.0
3618 C Subroutines/functions called by D1MACH.. None
3619 C-----------------------------------------------------------------------
3620 KPP_REAL U, COMP
3621 U = 1.0D0
3622 10 U = U*0.5D0
3623 COMP = 1.0D0 + U
3624 IF (COMP .NE. 1.0D0) GO TO 10
3625 D1MACH = U*2.0D0
3626 RETURN
3627 C----------------------- End of Function D1MACH ------------------------
3629 *DECK XERRWD
3630 SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
3631 KPP_REAL R1, R2
3632 INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR
3633 CHARACTER*1 MSG(NMES)
3634 C-----------------------------------------------------------------------
3635 C Subroutines XERRWD, XSETF, XSETUN, and the two function routines
3636 C MFLGSV and LUNSAV, as given here, constitute a simplified version of
3637 C the SLATEC error handling package.
3638 C Written by A. C. Hindmarsh and P. N. Brown at LLNL.
3639 C Version of 13 April, 1989.
3640 C This version is in KPP_REAL.
3642 C All arguments are input arguments.
3644 C MSG = The message (character array).
3645 C NMES = The length of MSG (number of characters).
3646 C NERR = The error number (not used).
3647 C LEVEL = The error level..
3648 C 0 or 1 means recoverable (control returns to caller).
3649 C 2 means fatal (run is aborted--see note below).
3650 C NI = Number of integers (0, 1, or 2) to be printed with message.
3651 C I1,I2 = Integers to be printed, depending on NI.
3652 C NR = Number of reals (0, 1, or 2) to be printed with message.
3653 C R1,R2 = Reals to be printed, depending on NR.
3655 C Note.. this routine is machine-dependent and specialized for use
3656 C in limited context, in the following ways..
3657 C 1. The argument MSG is assumed to be of type CHARACTER, and
3658 C the message is printed with a format of (1X,80A1).
3659 C 2. The message is assumed to take only one line.
3660 C Multi-line messages are generated by repeated calls.
3661 C 3. If LEVEL = 2, control passes to the statement STOP
3662 C to abort the run. This statement may be machine-dependent.
3663 C 4. R1 and R2 are assumed to be in KPP_REAL and are printed
3664 C in D21.13 format.
3666 C For a different default logical unit number, change the data
3667 C statement in function routine LUNSAV.
3668 C For a different run-abort command, change the statement following
3669 C statement 100 at the end.
3670 C-----------------------------------------------------------------------
3671 C Subroutines called by XERRWD.. None
3672 C Function routines called by XERRWD.. MFLGSV, LUNSAV
3673 C-----------------------------------------------------------------------
3675 INTEGER I, LUNIT, LUNSAV, MESFLG, MFLGSV
3677 C Get message print flag and logical unit number. ----------------------
3678 MESFLG = MFLGSV (0,.FALSE.)
3679 LUNIT = LUNSAV (0,.FALSE.)
3680 IF (MESFLG .EQ. 0) GO TO 100
3681 C Write the message. ---------------------------------------------------
3682 WRITE (LUNIT,10) (MSG(I),I=1,NMES)
3683 10 FORMAT(1X,80A1)
3684 IF (NI .EQ. 1) WRITE (LUNIT, 20) I1
3685 20 FORMAT(6X,'In above message, I1 =',I10)
3686 IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2
3687 30 FORMAT(6X,'In above message, I1 =',I10,3X,'I2 =',I10)
3688 IF (NR .EQ. 1) WRITE (LUNIT, 40) R1
3689 40 FORMAT(6X,'In above message, R1 =',D21.13)
3690 IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2
3691 50 FORMAT(6X,'In above, R1 =',D21.13,3X,'R2 =',D21.13)
3692 C Abort the run if LEVEL = 2. ------------------------------------------
3693 100 IF (LEVEL .NE. 2) RETURN
3694 STOP
3695 C----------------------- End of Subroutine XERRWD ----------------------
3697 *DECK XSETF
3698 SUBROUTINE XSETF (MFLAG)
3699 C-----------------------------------------------------------------------
3700 C This routine resets the print control flag MFLAG.
3702 C Subroutines called by XSETF.. None
3703 C Function routines called by XSETF.. MFLGSV
3704 C-----------------------------------------------------------------------
3705 INTEGER MFLAG, JUNK, MFLGSV
3707 IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = MFLGSV (MFLAG,.TRUE.)
3708 RETURN
3709 C----------------------- End of Subroutine XSETF -----------------------
3711 *DECK XSETUN
3712 SUBROUTINE XSETUN (LUN)
3713 C-----------------------------------------------------------------------
3714 C This routine resets the logical unit number for messages.
3716 C Subroutines called by XSETUN.. None
3717 C Function routines called by XSETUN.. LUNSAV
3718 C-----------------------------------------------------------------------
3719 INTEGER LUN, JUNK, LUNSAV
3721 IF (LUN .GT. 0) JUNK = LUNSAV (LUN,.TRUE.)
3722 RETURN
3723 C----------------------- End of Subroutine XSETUN ----------------------
3725 *DECK MFLGSV
3726 INTEGER FUNCTION MFLGSV (IVALUE, ISET)
3727 LOGICAL ISET
3728 INTEGER IVALUE
3729 C-----------------------------------------------------------------------
3730 C MFLGSV saves and recalls the parameter MESFLG which controls the
3731 C printing of the error messages.
3733 C Saved local variable..
3735 C MESFLG = Print control flag..
3736 C 1 means print all messages (the default).
3737 C 0 means no printing.
3739 C On input..
3741 C IVALUE = The value to be set for the MESFLG parameter,
3742 C if ISET is .TRUE. .
3744 C ISET = Logical flag to indicate whether to read or write.
3745 C If ISET=.TRUE., the MESFLG parameter will be given
3746 C the value IVALUE. If ISET=.FALSE., the MESFLG
3747 C parameter will be unchanged, and IVALUE is a dummy
3748 C parameter.
3750 C On return..
3752 C The (old) value of the MESFLG parameter will be returned
3753 C in the function value, MFLGSV.
3755 C This is a modification of the SLATEC library routine J4SAVE.
3757 C Subroutines/functions called by MFLGSV.. None
3758 C-----------------------------------------------------------------------
3759 INTEGER MESFLG
3760 C-----------------------------------------------------------------------
3761 C The following Fortran-77 declaration is to cause the values of the
3762 C listed (local) variables to be saved between calls to this integrator.
3763 C-----------------------------------------------------------------------
3764 SAVE MESFLG
3765 DATA MESFLG/1/
3767 MFLGSV = MESFLG
3768 IF (ISET) MESFLG = IVALUE
3769 RETURN
3770 C----------------------- End of Function MFLGSV ------------------------
3772 *DECK LUNSAV
3773 INTEGER FUNCTION LUNSAV (IVALUE, ISET)
3774 LOGICAL ISET
3775 INTEGER IVALUE
3776 C-----------------------------------------------------------------------
3777 C LUNSAV saves and recalls the parameter LUNIT which is the logical
3778 C unit number to which error messages are printed.
3780 C Saved local variable..
3782 C LUNIT = Logical unit number for messages.
3783 C The default is 6 (machine-dependent).
3785 C On input..
3787 C IVALUE = The value to be set for the LUNIT parameter,
3788 C if ISET is .TRUE. .
3790 C ISET = Logical flag to indicate whether to read or write.
3791 C If ISET=.TRUE., the LUNIT parameter will be given
3792 C the value IVALUE. If ISET=.FALSE., the LUNIT
3793 C parameter will be unchanged, and IVALUE is a dummy
3794 C parameter.
3796 C On return..
3798 C The (old) value of the LUNIT parameter will be returned
3799 C in the function value, LUNSAV.
3801 C This is a modification of the SLATEC library routine J4SAVE.
3803 C Subroutines/functions called by LUNSAV.. None
3804 C-----------------------------------------------------------------------
3805 INTEGER LUNIT
3806 C-----------------------------------------------------------------------
3807 C The following Fortran-77 declaration is to cause the values of the
3808 C listed (local) variables to be saved between calls to this integrator.
3809 C-----------------------------------------------------------------------
3810 SAVE LUNIT
3811 DATA LUNIT/6/
3813 LUNSAV = LUNIT
3814 IF (ISET) LUNIT = IVALUE
3815 RETURN
3816 C----------------------- End of Function LUNSAV ------------------------
3819 SUBROUTINE VODE_FSPLIT_VAR(N, T, Y, PR)
3820 INCLUDE 'KPP_ROOT_Parameters.h'
3821 INCLUDE 'KPP_ROOT_Global.h'
3822 INTEGER N
3823 REAL*8 Told, T
3824 REAL*8 Y(NVAR), PR(NVAR)
3826 Told = TIME
3827 TIME = T
3828 CALL Update_SUN()
3829 CALL Update_RCONST()
3830 CALL Fun( Y, FIX, RCONST, PR )
3831 TIME = Told
3832 RETURN
3835 SUBROUTINE VODE_Jac_SP(N, T, Y, J)
3836 INCLUDE 'KPP_ROOT_Parameters.h'
3837 INCLUDE 'KPP_ROOT_Global.h'
3838 INTEGER N
3839 REAL*8 Told, T
3840 REAL*8 Y(NVAR), J(LU_NONZERO)
3842 Told = TIME
3843 TIME = T
3844 CALL Update_SUN()
3845 CALL Update_RCONST()
3846 CALL Jac_SP( Y, FIX, RCONST, J )
3847 TIME = Told
3848 RETURN