Merge remote-tracking branch 'origin/release-v4.6.1'
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / kpp_lsode.f90
blobd7b0e39363f1a2e5d13428b71edb198d333b9951
1 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
2 ! LSODE - Stiff method based on backward differentiation formulas (BDF) !
3 ! By default the code employs the KPP sparse linear algebra routines !
4 ! Compile with -DFULL_ALGEBRA to use full linear algebra (LAPACK) !
5 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
6 ! A. Sandu - version of July 2005
8 MODULE KPP_ROOT_Integrator
10 USE KPP_ROOT_Precision
11 USE KPP_ROOT_Global, ONLY: FIX, RCONST, TIME, ATOL, RTOL
12 USE KPP_ROOT_Parameters, ONLY: NVAR, NSPEC, NFIX, LU_NONZERO
13 USE KPP_ROOT_JacobianSP, ONLY: LU_DIAG
14 USE KPP_ROOT_LinearAlgebra, ONLY: KppDecomp, KppSolve, &
15 Set2zero, WLAMCH
17 IMPLICIT NONE
18 PUBLIC
19 SAVE
21 !~~~> Statistics on the work performed by the LSODE method
22 INTEGER :: Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng
23 INTEGER, PARAMETER :: ifun=1, ijac=2, istp=3, iacc=4, &
24 irej=5, idec=6, isol=7, isng=8, itexit=1, ihexit=2
25 ! SDIRK method coefficients
26 KPP_REAL :: rkAlpha(5,4), rkBeta(5,4), rkD(4,5), &
27 rkGamma, rkA(5,5), rkB(5), rkC(5)
29 ! mz_rs_20050717: TODO: use strings of IERR_NAMES for error messages
30 ! description of the error numbers IERR
31 CHARACTER(LEN=50), PARAMETER, DIMENSION(-8:1) :: IERR_NAMES = (/ &
32 'Matrix is repeatedly singular ', & ! -8
33 'Step size too small ', & ! -7
34 'No of steps exceeds maximum bound ', & ! -6
35 'Improper tolerance values ', & ! -5
36 'FacMin/FacMax/FacRej must be positive ', & ! -4
37 'Hmin/Hmax/Hstart must be positive ', & ! -3
38 'Improper value for maximal no of Newton iterations', & ! -2
39 'Improper value for maximal no of steps ', & ! -1
40 ' ', & ! 0 (not used)
41 'Success ' /) ! 1
43 CONTAINS
45 SUBROUTINE INTEGRATE( TIN, TOUT, &
46 ICNTRL_U, RCNTRL_U, ISTATUS_U, RSTATUS_U, IERR_U )
48 USE KPP_ROOT_Parameters
49 USE KPP_ROOT_Global
50 IMPLICIT NONE
52 KPP_REAL, INTENT(IN) :: TIN ! Start Time
53 KPP_REAL, INTENT(IN) :: TOUT ! End Time
54 ! Optional input parameters and statistics
55 INTEGER, INTENT(IN), OPTIONAL :: ICNTRL_U(20)
56 KPP_REAL, INTENT(IN), OPTIONAL :: RCNTRL_U(20)
57 INTEGER, INTENT(OUT), OPTIONAL :: ISTATUS_U(20)
58 KPP_REAL, INTENT(OUT), OPTIONAL :: RSTATUS_U(20)
59 INTEGER, INTENT(OUT), OPTIONAL :: IERR_U
61 KPP_REAL :: RCNTRL(20), RSTATUS(20)
62 INTEGER :: ICNTRL(20), ISTATUS(20), IERR
63 !!$ INTEGER, SAVE :: Ntotal = 0
65 ICNTRL(:) = 0
66 RCNTRL(:) = 0.0_dp
67 ISTATUS(:) = 0
68 RSTATUS(:) = 0.0_dp
70 ICNTRL(5) = 2 ! maximal order
72 ! If optional parameters are given, and if they are >0,
73 ! then they overwrite default settings.
74 IF (PRESENT(ICNTRL_U)) THEN
75 WHERE(ICNTRL_U(:) > 0) ICNTRL(:) = ICNTRL_U(:)
76 END IF
77 IF (PRESENT(RCNTRL_U)) THEN
78 WHERE(RCNTRL_U(:) > 0) RCNTRL(:) = RCNTRL_U(:)
79 END IF
81 CALL KppLsode( TIN,TOUT,VAR,RTOL,ATOL, &
82 RCNTRL,ICNTRL,RSTATUS,ISTATUS,IERR )
84 ! mz_rs_20050716: IERR and ISTATUS are returned to the user who then
85 ! decides what to do about it, i.e. either stop the run or ignore it.
86 !!$ IF (IERR < 0) THEN
87 !!$ PRINT*,'LSODE: Unsuccessful exit at T=',TIN,' (IERR=',IERR,')'
88 !!$ STOP
89 !!$ ENDIF
90 !!$ Ntotal = Ntotal + ISTATUS(3)
91 !!$ PRINT*,'Nsteps = ', ISTATUS(3),' (',Ntotal,')'
93 STEPMIN = RSTATUS(ihexit) ! Save last step
95 ! if optional parameters are given for output they to return information
96 IF (PRESENT(ISTATUS_U)) ISTATUS_U(:) = ISTATUS(1:20)
97 IF (PRESENT(RSTATUS_U)) RSTATUS_U(:) = RSTATUS(1:20)
98 IF (PRESENT(IERR_U)) IERR_U = IERR
100 END SUBROUTINE INTEGRATE
102 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
103 SUBROUTINE KppLsode( TIN,TOUT,Y,RelTol,AbsTol, &
104 RCNTRL,ICNTRL,RSTATUS,ISTATUS,IERR )
105 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
107 !~~~> INPUT PARAMETERS:
109 ! Note: For input parameters equal to zero the default values of the
110 ! corresponding variables are used.
112 ! Note: For input parameters equal to zero the default values of the
113 ! corresponding variables are used.
114 !~~~>
115 ! ICNTRL(1) = not used
117 ! ICNTRL(2) = 0: AbsTol, RelTol are NVAR-dimensional vectors
118 ! = 1: AbsTol, RelTol are scalars
120 ! ICNTRL(3) = not used
122 ! ICNTRL(4) -> maximum number of integration steps
123 ! For ICNTRL(4)=0 the default value of 100000 is used
125 ! ICNTRL(5) -> maximum order of the integration formula allowed
127 !~~~> Real parameters
129 ! RCNTRL(1) -> Hmin, lower bound for the integration step size
130 ! It is strongly recommended to keep Hmin = ZERO
131 ! RCNTRL(2) -> Hmax, upper bound for the integration step size
132 ! RCNTRL(3) -> Hstart, starting value for the integration step size
134 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
136 !~~~> OUTPUT PARAMETERS:
138 ! Note: each call to Rosenbrock adds the current no. of fcn calls
139 ! to previous value of ISTATUS(1), and similar for the other params.
140 ! Set ISTATUS(1:10) = 0 before call to avoid this accumulation.
142 ! ISTATUS(1) = No. of function calls
143 ! ISTATUS(2) = No. of jacobian calls
144 ! ISTATUS(3) = No. of steps
146 ! RSTATUS(1) -> Texit, the time corresponding to the
147 ! computed Y upon return
148 ! RSTATUS(2) -> Hexit, last predicted step before exit
149 ! For multiple restarts, use Hexit as Hstart in the following run
151 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
153 IMPLICIT NONE
154 KPP_REAL :: Y(NVAR), AbsTol(NVAR), RelTol(NVAR), TIN, TOUT
155 KPP_REAL :: RCNTRL(20), RSTATUS(20)
156 INTEGER :: ICNTRL(20), ISTATUS(20)
157 INTEGER, PARAMETER :: LRW = 25 + 9*NVAR+2*NVAR*NVAR, &
158 LIW = 32 + NVAR
159 KPP_REAL :: RWORK(LRW), RPAR(1)
160 INTEGER :: IWORK(LIW), IPAR(1), ITOL, ITASK, &
161 IERR, IOPT, MF
163 !~~~> NORMAL COMPUTATION
164 ITASK = 1
165 IERR = 1
166 IOPT = 1 ! 0=no/1=use optional input
168 RWORK(1:30) = 0.0d0
169 IWORK(1:30) = 0
171 IF (ICNTRL(2)==0) THEN
172 ITOL = 4 ! Abs/RelTol are both vectors
173 ELSE
174 ITOL = 1 ! Abs/RelTol are both scalars
175 END IF
176 IWORK(6) = ICNTRL(4) ! max number of internal steps
177 IWORK(5) = ICNTRL(5) ! maximal order
179 MF = 21 !~~~> stiff case, analytic full Jacobian
181 RWORK(5) = RCNTRL(3) ! Hstart
182 RWORK(6) = RCNTRL(2) ! Hmax
183 RWORK(7) = RCNTRL(1) ! Hmin
185 CALL DLSODE ( FUN_CHEM, NVAR, Y, TIN, TOUT, ITOL, RelTol, AbsTol, ITASK,&
186 IERR, IOPT, RWORK, LRW, IWORK, LIW, JAC_CHEM, MF)
188 ISTATUS(1) = IWORK(12) ! Number of function evaluations
189 ISTATUS(2) = IWORK(13) ! Number of Jacobian evaluations
190 ISTATUS(3) = IWORK(11) ! Number of steps
192 RSTATUS(1) = TOUT ! mz_rs_20050717
193 RSTATUS(2) = RWORK(11) ! mz_rs_20050717
195 END SUBROUTINE KppLsode
196 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
199 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
200 !DECK DLSODE
201 SUBROUTINE DLSODE (F, NEQ, Y, T, TOUT, ITOL, RelTol, AbsTol, ITASK, &
202 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
203 EXTERNAL F, JAC
204 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, LIW, IWORK(LIW), MF
205 KPP_REAL Y(*), T, TOUT, RelTol(*), AbsTol(*), RWORK(LRW)
206 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
207 !***BEGIN PROLOGUE DLSODE
208 !***PURPOSE Livermore Solver for Ordinary Differential Equations.
209 ! DLSODE solves the initial-value problem for stiff or
210 ! nonstiff systems of first-order ODE's,
211 ! dy/dt = f(t,y), or, in component form,
212 ! dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(N)), i=1,...,N.
213 !***CATEGORY I1A
214 !***TYPE KPP_REAL (SLSODE-S, DLSODE-D)
215 !***KEYWORDS ORDINARY DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEM,
216 ! STIFF, NONSTIFF
217 !***AUTHOR Hindmarsh, Alan C., (LLNL)
218 ! Center for Applied Scientific Computing, L-561
219 ! Lawrence Livermore National Laboratory
220 ! Livermore, CA 94551.
221 !***DESCRIPTION
223 ! NOTE: The "Usage" and "Arguments" sections treat only a subset of
224 ! available options, in condensed fashion. The options
225 ! covered and the information supplied will support most
226 ! standard uses of DLSODE.
228 ! For more sophisticated uses, full details on all options are
229 ! given in the concluding section, headed "Long Description."
230 ! A synopsis of the DLSODE Long Description is provided at the
231 ! beginning of that section; general topics covered are:
232 ! - Elements of the call sequence; optional input and output
233 ! - Optional supplemental routines in the DLSODE package
234 ! - internal COMMON block
236 ! *Usage:
237 ! Communication between the user and the DLSODE package, for normal
238 ! situations, is summarized here. This summary describes a subset
239 ! of the available options. See "Long Description" for complete
240 ! details, including optional communication, nonstandard options,
241 ! and instructions for special situations.
243 ! A sample program is given in the "Examples" section.
245 ! Refer to the argument descriptions for the definitions of the
246 ! quantities that appear in the following sample declarations.
248 ! For MF = 10,
249 ! PARAMETER (LRW = 20 + 16*NEQ, LIW = 20)
250 ! For MF = 21 or 22,
251 ! PARAMETER (LRW = 22 + 9*NEQ + NEQ**2, LIW = 20 + NEQ)
252 ! For MF = 24 or 25,
253 ! PARAMETER (LRW = 22 + 10*NEQ + (2*ML+MU)*NEQ,
254 ! * LIW = 20 + NEQ)
256 ! EXTERNAL F, JAC
257 ! INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK(LIW),
258 ! * LIW, MF
259 ! KPP_REAL Y(NEQ), T, TOUT, RelTol, AbsTol(ntol), RWORK(LRW)
261 ! CALL DLSODE (F, NEQ, Y, T, TOUT, ITOL, RelTol, AbsTol, ITASK,
262 ! * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
264 ! *Arguments:
265 ! F :EXT Name of subroutine for right-hand-side vector f.
266 ! This name must be declared EXTERNAL in calling
267 ! program. The form of F must be:
269 ! SUBROUTINE F (NEQ, T, Y, YDOT)
270 ! INTEGER NEQ
271 ! KPP_REAL T, Y(*), YDOT(*)
273 ! The inputs are NEQ, T, Y. F is to set
275 ! YDOT(i) = f(i,T,Y(1),Y(2),...,Y(NEQ)),
276 ! i = 1, ..., NEQ .
278 ! NEQ :IN Number of first-order ODE's.
280 ! Y :INOUT Array of values of the y(t) vector, of length NEQ.
281 ! Input: For the first call, Y should contain the
282 ! values of y(t) at t = T. (Y is an input
283 ! variable only if ISTATE = 1.)
284 ! Output: On return, Y will contain the values at the
285 ! new t-value.
287 ! T :INOUT Value of the independent variable. On return it
288 ! will be the current value of t (normally TOUT).
290 ! TOUT :IN Next point where output is desired (.NE. T).
292 ! ITOL :IN 1 or 2 according as AbsTol (below) is a scalar or
293 ! an array.
295 ! RelTol :IN Relative tolerance parameter (scalar).
297 ! AbsTol :IN Absolute tolerance parameter (scalar or array).
298 ! If ITOL = 1, AbsTol need not be dimensioned.
299 ! If ITOL = 2, AbsTol must be dimensioned at least NEQ.
301 ! The estimated local error in Y(i) will be controlled
302 ! so as to be roughly less (in magnitude) than
304 ! EWT(i) = RelTol*ABS(Y(i)) + AbsTol if ITOL = 1, or
305 ! EWT(i) = RelTol*ABS(Y(i)) + AbsTol(i) if ITOL = 2.
307 ! Thus the local error test passes if, in each
308 ! component, either the absolute error is less than
309 ! AbsTol (or AbsTol(i)), or the relative error is less
310 ! than RelTol.
312 ! Use RelTol = 0.0 for pure absolute error control, and
313 ! use AbsTol = 0.0 (or AbsTol(i) = 0.0) for pure relative
314 ! error control. Caution: Actual (global) errors may
315 ! exceed these local tolerances, so choose them
316 ! conservatively.
318 ! ITASK :IN Flag indicating the task DLSODE is to perform.
319 ! Use ITASK = 1 for normal computation of output
320 ! values of y at t = TOUT.
322 ! ISTATE:INOUT Index used for input and output to specify the state
323 ! of the calculation.
324 ! Input:
325 ! 1 This is the first call for a problem.
326 ! 2 This is a subsequent call.
327 ! Output:
328 ! 1 Nothing was done, because TOUT was equal to T.
329 ! 2 DLSODE was successful (otherwise, negative).
330 ! Note that ISTATE need not be modified after a
331 ! successful return.
332 ! -1 Excess work done on this call (perhaps wrong
333 ! MF).
334 ! -2 Excess accuracy requested (tolerances too
335 ! small).
336 ! -3 Illegal input detected (see printed message).
337 ! -4 Repeated error test failures (check all
338 ! inputs).
339 ! -5 Repeated convergence failures (perhaps bad
340 ! Jacobian supplied or wrong choice of MF or
341 ! tolerances).
342 ! -6 Error weight became zero during problem
343 ! (solution component i vanished, and AbsTol or
344 ! AbsTol(i) = 0.).
346 ! IOPT :IN Flag indicating whether optional inputs are used:
347 ! 0 No.
348 ! 1 Yes. (See "Optional inputs" under "Long
349 ! Description," Part 1.)
351 ! RWORK :WORK Real work array of length at least:
352 ! 20 + 16*NEQ for MF = 10,
353 ! 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
354 ! 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.
356 ! LRW :IN Declared length of RWORK (in user's DIMENSION
357 ! statement).
359 ! IWORK :WORK Integer work array of length at least:
360 ! 20 for MF = 10,
361 ! 20 + NEQ for MF = 21, 22, 24, or 25.
363 ! If MF = 24 or 25, input in IWORK(1),IWORK(2) the
364 ! lower and upper Jacobian half-bandwidths ML,MU.
366 ! On return, IWORK contains information that may be
367 ! of interest to the user:
369 ! Name Location Meaning
370 ! ----- --------- -----------------------------------------
371 ! NST IWORK(11) Number of steps taken for the problem so
372 ! far.
373 ! NFE IWORK(12) Number of f evaluations for the problem
374 ! so far.
375 ! NJE IWORK(13) Number of Jacobian evaluations (and of
376 ! matrix LU decompositions) for the problem
377 ! so far.
378 ! NQU IWORK(14) Method order last used (successfully).
379 ! LENRW IWORK(17) Length of RWORK actually required. This
380 ! is defined on normal returns and on an
381 ! illegal input return for insufficient
382 ! storage.
383 ! LENIW IWORK(18) Length of IWORK actually required. This
384 ! is defined on normal returns and on an
385 ! illegal input return for insufficient
386 ! storage.
388 ! LIW :IN Declared length of IWORK (in user's DIMENSION
389 ! statement).
391 ! JAC :EXT Name of subroutine for Jacobian matrix (MF =
392 ! 21 or 24). If used, this name must be declared
393 ! EXTERNAL in calling program. If not used, pass a
394 ! dummy name. The form of JAC must be:
396 ! SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
397 ! INTEGER NEQ, ML, MU, NROWPD
398 ! KPP_REAL T, Y(*), PD(NROWPD,*)
400 ! See item c, under "Description" below for more
401 ! information about JAC.
403 ! MF :IN Method flag. Standard values are:
404 ! 10 Nonstiff (Adams) method, no Jacobian used.
405 ! 21 Stiff (BDF) method, user-supplied full Jacobian.
406 ! 22 Stiff method, internally generated full
407 ! Jacobian.
408 ! 24 Stiff method, user-supplied banded Jacobian.
409 ! 25 Stiff method, internally generated banded
410 ! Jacobian.
412 ! *Description:
413 ! DLSODE solves the initial value problem for stiff or nonstiff
414 ! systems of first-order ODE's,
416 ! dy/dt = f(t,y) ,
418 ! or, in component form,
420 ! dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ))
421 ! (i = 1, ..., NEQ) .
423 ! DLSODE is a package based on the GEAR and GEARB packages, and on
424 ! the October 23, 1978, version of the tentative ODEPACK user
425 ! interface standard, with minor modifications.
427 ! The steps in solving such a problem are as follows.
429 ! a. First write a subroutine of the form
431 ! SUBROUTINE F (NEQ, T, Y, YDOT)
432 ! INTEGER NEQ
433 ! KPP_REAL T, Y(*), YDOT(*)
435 ! which supplies the vector function f by loading YDOT(i) with
436 ! f(i).
438 ! b. Next determine (or guess) whether or not the problem is stiff.
439 ! Stiffness occurs when the Jacobian matrix df/dy has an
440 ! eigenvalue whose real part is negative and large in magnitude
441 ! compared to the reciprocal of the t span of interest. If the
442 ! problem is nonstiff, use method flag MF = 10. If it is stiff,
443 ! there are four standard choices for MF, and DLSODE requires the
444 ! Jacobian matrix in some form. This matrix is regarded either
445 ! as full (MF = 21 or 22), or banded (MF = 24 or 25). In the
446 ! banded case, DLSODE requires two half-bandwidth parameters ML
447 ! and MU. These are, respectively, the widths of the lower and
448 ! upper parts of the band, excluding the main diagonal. Thus the
449 ! band consists of the locations (i,j) with
451 ! i - ML <= j <= i + MU ,
453 ! and the full bandwidth is ML + MU + 1 .
455 ! c. If the problem is stiff, you are encouraged to supply the
456 ! Jacobian directly (MF = 21 or 24), but if this is not feasible,
457 ! DLSODE will compute it internally by difference quotients (MF =
458 ! 22 or 25). If you are supplying the Jacobian, write a
459 ! subroutine of the form
461 ! SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
462 ! INTEGER NEQ, ML, MU, NRWOPD
463 ! KPP_REAL T, Y(*), PD(NROWPD,*)
465 ! which provides df/dy by loading PD as follows:
466 ! - For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
467 ! the partial derivative of f(i) with respect to y(j). (Ignore
468 ! the ML and MU arguments in this case.)
469 ! - For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
470 ! df(i)/dy(j); i.e., load the diagonal lines of df/dy into the
471 ! rows of PD from the top down.
472 ! - In either case, only nonzero elements need be loaded.
474 ! d. Write a main program that calls subroutine DLSODE once for each
475 ! point at which answers are desired. This should also provide
476 ! for possible use of logical unit 6 for output of error messages
477 ! by DLSODE.
479 ! Before the first call to DLSODE, set ISTATE = 1, set Y and T to
480 ! the initial values, and set TOUT to the first output point. To
481 ! continue the integration after a successful return, simply
482 ! reset TOUT and call DLSODE again. No other parameters need be
483 ! reset.
485 ! *Examples:
486 ! The following is a simple example problem, with the coding needed
487 ! for its solution by DLSODE. The problem is from chemical kinetics,
488 ! and consists of the following three rate equations:
490 ! dy1/dt = -.04*y1 + 1.E4*y2*y3
491 ! dy2/dt = .04*y1 - 1.E4*y2*y3 - 3.E7*y2**2
492 ! dy3/dt = 3.E7*y2**2
494 ! on the interval from t = 0.0 to t = 4.E10, with initial conditions
495 ! y1 = 1.0, y2 = y3 = 0. The problem is stiff.
497 ! The following coding solves this problem with DLSODE, using
498 ! MF = 21 and printing results at t = .4, 4., ..., 4.E10. It uses
499 ! ITOL = 2 and AbsTol much smaller for y2 than for y1 or y3 because y2
500 ! has much smaller values. At the end of the run, statistical
501 ! quantities of interest are printed.
503 ! EXTERNAL FEX, JEX
504 ! INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL, IWORK(23), LIW, LRW,
505 ! * MF, NEQ
506 ! KPP_REAL AbsTol(3), RelTol, RWORK(58), T, TOUT, Y(3)
507 ! NEQ = 3
508 ! Y(1) = 1.D0
509 ! Y(2) = 0.D0
510 ! Y(3) = 0.D0
511 ! T = 0.D0
512 ! TOUT = .4D0
513 ! ITOL = 2
514 ! RelTol = 1.D-4
515 ! AbsTol(1) = 1.D-6
516 ! AbsTol(2) = 1.D-10
517 ! AbsTol(3) = 1.D-6
518 ! ITASK = 1
519 ! ISTATE = 1
520 ! IOPT = 0
521 ! LRW = 58
522 ! LIW = 23
523 ! MF = 21
524 ! DO 40 IOUT = 1,12
525 ! CALL DLSODE (FEX, NEQ, Y, T, TOUT, ITOL, RelTol, AbsTol, ITASK,
526 ! * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF)
527 ! WRITE(6,20) T, Y(1), Y(2), Y(3)
528 ! 20 FORMAT(' At t =',D12.4,' y =',3D14.6)
529 ! IF (ISTATE .LT. 0) GO TO 80
530 ! 40 TOUT = TOUT*10.D0
531 ! WRITE(6,60) IWORK(11), IWORK(12), IWORK(13)
532 ! 60 FORMAT(/' No. steps =',i4,', No. f-s =',i4,', No. J-s =',i4)
533 ! STOP
534 ! 80 WRITE(6,90) ISTATE
535 ! 90 FORMAT(///' Error halt.. ISTATE =',I3)
536 ! STOP
537 ! END
539 ! SUBROUTINE FEX (NEQ, T, Y, YDOT)
540 ! INTEGER NEQ
541 ! KPP_REAL T, Y(3), YDOT(3)
542 ! YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)
543 ! YDOT(3) = 3.D7*Y(2)*Y(2)
544 ! YDOT(2) = -YDOT(1) - YDOT(3)
545 ! RETURN
546 ! END
548 ! SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD)
549 ! INTEGER NEQ, ML, MU, NRPD
550 ! KPP_REAL T, Y(3), PD(NRPD,3)
551 ! PD(1,1) = -.04D0
552 ! PD(1,2) = 1.D4*Y(3)
553 ! PD(1,3) = 1.D4*Y(2)
554 ! PD(2,1) = .04D0
555 ! PD(2,3) = -PD(1,3)
556 ! PD(3,2) = 6.D7*Y(2)
557 ! PD(2,2) = -PD(1,2) - PD(3,2)
558 ! RETURN
559 ! END
561 ! The output from this program (on a Cray-1 in single precision)
562 ! is as follows.
564 ! At t = 4.0000e-01 y = 9.851726e-01 3.386406e-05 1.479357e-02
565 ! At t = 4.0000e+00 y = 9.055142e-01 2.240418e-05 9.446344e-02
566 ! At t = 4.0000e+01 y = 7.158050e-01 9.184616e-06 2.841858e-01
567 ! At t = 4.0000e+02 y = 4.504846e-01 3.222434e-06 5.495122e-01
568 ! At t = 4.0000e+03 y = 1.831701e-01 8.940379e-07 8.168290e-01
569 ! At t = 4.0000e+04 y = 3.897016e-02 1.621193e-07 9.610297e-01
570 ! At t = 4.0000e+05 y = 4.935213e-03 1.983756e-08 9.950648e-01
571 ! At t = 4.0000e+06 y = 5.159269e-04 2.064759e-09 9.994841e-01
572 ! At t = 4.0000e+07 y = 5.306413e-05 2.122677e-10 9.999469e-01
573 ! At t = 4.0000e+08 y = 5.494530e-06 2.197825e-11 9.999945e-01
574 ! At t = 4.0000e+09 y = 5.129458e-07 2.051784e-12 9.999995e-01
575 ! At t = 4.0000e+10 y = -7.170603e-08 -2.868241e-13 1.000000e+00
577 ! No. steps = 330, No. f-s = 405, No. J-s = 69
579 ! *Accuracy:
580 ! The accuracy of the solution depends on the choice of tolerances
581 ! RelTol and AbsTol. Actual (global) errors may exceed these local
582 ! tolerances, so choose them conservatively.
584 ! *Cautions:
585 ! The work arrays should not be altered between calls to DLSODE for
586 ! the same problem, except possibly for the conditional and optional
587 ! inputs.
589 ! *Portability:
590 ! Since NEQ is dimensioned inside DLSODE, some compilers may object
591 ! to a call to DLSODE with NEQ a scalar variable. In this event,
592 ! use DIMENSION NEQ. Similar remarks apply to RelTol and AbsTol.
594 ! Note to Cray users:
595 ! For maximum efficiency, use the CFT77 compiler. Appropriate
596 ! compiler optimization directives have been inserted for CFT77.
598 ! *Reference:
599 ! Alan C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
600 ! Solvers," in Scientific Computing, R. S. Stepleman, et al., Eds.
601 ! (North-Holland, Amsterdam, 1983), pp. 55-64.
603 ! *Long Description:
604 ! The following complete description of the user interface to
605 ! DLSODE consists of four parts:
607 ! 1. The call sequence to subroutine DLSODE, which is a driver
608 ! routine for the solver. This includes descriptions of both
609 ! the call sequence arguments and user-supplied routines.
610 ! Following these descriptions is a description of optional
611 ! inputs available through the call sequence, and then a
612 ! description of optional outputs in the work arrays.
614 ! 2. Descriptions of other routines in the DLSODE package that may
615 ! be (optionally) called by the user. These provide the ability
616 ! to alter error message handling, save and restore the internal
617 ! COMMON, and obtain specified derivatives of the solution y(t).
619 ! 3. Descriptions of COMMON block to be declared in overlay or
620 ! similar environments, or to be saved when doing an interrupt
621 ! of the problem and continued solution later.
623 ! 4. Description of two routines in the DLSODE package, either of
624 ! which the user may replace with his own version, if desired.
625 ! These relate to the measurement of errors.
628 ! Part 1. Call Sequence
629 ! ----------------------
631 ! Arguments
632 ! ---------
633 ! The call sequence parameters used for input only are
635 ! F, NEQ, TOUT, ITOL, RelTol, AbsTol, ITASK, IOPT, LRW, LIW, JAC, MF,
637 ! and those used for both input and output are
639 ! Y, T, ISTATE.
641 ! The work arrays RWORK and IWORK are also used for conditional and
642 ! optional inputs and optional outputs. (The term output here
643 ! refers to the return from subroutine DLSODE to the user's calling
644 ! program.)
646 ! The legality of input parameters will be thoroughly checked on the
647 ! initial call for the problem, but not checked thereafter unless a
648 ! change in input parameters is flagged by ISTATE = 3 on input.
650 ! The descriptions of the call arguments are as follows.
652 ! F The name of the user-supplied subroutine defining the ODE
653 ! system. The system must be put in the first-order form
654 ! dy/dt = f(t,y), where f is a vector-valued function of
655 ! the scalar t and the vector y. Subroutine F is to compute
656 ! the function f. It is to have the form
658 ! SUBROUTINE F (NEQ, T, Y, YDOT)
659 ! KPP_REAL T, Y(*), YDOT(*)
661 ! where NEQ, T, and Y are input, and the array YDOT =
662 ! f(T,Y) is output. Y and YDOT are arrays of length NEQ.
663 ! Subroutine F should not alter Y(1),...,Y(NEQ). F must be
664 ! declared EXTERNAL in the calling program.
666 ! Subroutine F may access user-defined quantities in
667 ! NEQ(2),... and/or in Y(NEQ+1),..., if NEQ is an array
668 ! (dimensioned in F) and/or Y has length exceeding NEQ.
669 ! See the descriptions of NEQ and Y below.
671 ! If quantities computed in the F routine are needed
672 ! externally to DLSODE, an extra call to F should be made
673 ! for this purpose, for consistent and accurate results.
674 ! If only the derivative dy/dt is needed, use DINTDY
675 ! instead.
677 ! NEQ The size of the ODE system (number of first-order
678 ! ordinary differential equations). Used only for input.
679 ! NEQ may be decreased, but not increased, during the
680 ! problem. If NEQ is decreased (with ISTATE = 3 on input),
681 ! the remaining components of Y should be left undisturbed,
682 ! if these are to be accessed in F and/or JAC.
684 ! Normally, NEQ is a scalar, and it is generally referred
685 ! to as a scalar in this user interface description.
686 ! However, NEQ may be an array, with NEQ set to the
687 ! system size. (The DLSODE package accesses only NEQ.)
688 ! In either case, this parameter is passed as the NEQ
689 ! argument in all calls to F and JAC. Hence, if it is an
690 ! array, locations NEQ(2),... may be used to store other
691 ! integer data and pass it to F and/or JAC. Subroutines
692 ! F and/or JAC must include NEQ in a DIMENSION statement
693 ! in that case.
695 ! Y A real array for the vector of dependent variables, of
696 ! length NEQ or more. Used for both input and output on
697 ! the first call (ISTATE = 1), and only for output on
698 ! other calls. On the first call, Y must contain the
699 ! vector of initial values. On output, Y contains the
700 ! computed solution vector, evaluated at T. If desired,
701 ! the Y array may be used for other purposes between
702 ! calls to the solver.
704 ! This array is passed as the Y argument in all calls to F
705 ! and JAC. Hence its length may exceed NEQ, and locations
706 ! Y(NEQ+1),... may be used to store other real data and
707 ! pass it to F and/or JAC. (The DLSODE package accesses
708 ! only Y(1),...,Y(NEQ).)
710 ! T The independent variable. On input, T is used only on
711 ! the first call, as the initial point of the integration.
712 ! On output, after each call, T is the value at which a
713 ! computed solution Y is evaluated (usually the same as
714 ! TOUT). On an error return, T is the farthest point
715 ! reached.
717 ! TOUT The next value of T at which a computed solution is
718 ! desired. Used only for input.
720 ! When starting the problem (ISTATE = 1), TOUT may be equal
721 ! to T for one call, then should not equal T for the next
722 ! call. For the initial T, an input value of TOUT .NE. T
723 ! is used in order to determine the direction of the
724 ! integration (i.e., the algebraic sign of the step sizes)
725 ! and the rough scale of the problem. Integration in
726 ! either direction (forward or backward in T) is permitted.
728 ! If ITASK = 2 or 5 (one-step modes), TOUT is ignored
729 ! after the first call (i.e., the first call with
730 ! TOUT .NE. T). Otherwise, TOUT is required on every call.
732 ! If ITASK = 1, 3, or 4, the values of TOUT need not be
733 ! monotone, but a value of TOUT which backs up is limited
734 ! to the current internal T interval, whose endpoints are
735 ! TCUR - HU and TCUR. (See "Optional Outputs" below for
736 ! TCUR and HU.)
739 ! ITOL An indicator for the type of error control. See
740 ! description below under AbsTol. Used only for input.
742 ! RelTol A relative error tolerance parameter, either a scalar or
743 ! an array of length NEQ. See description below under
744 ! AbsTol. Input only.
746 ! AbsTol An absolute error tolerance parameter, either a scalar or
747 ! an array of length NEQ. Input only.
749 ! The input parameters ITOL, RelTol, and AbsTol determine the
750 ! error control performed by the solver. The solver will
751 ! control the vector e = (e(i)) of estimated local errors
752 ! in Y, according to an inequality of the form
754 ! rms-norm of ( e(i)/EWT(i) ) <= 1,
756 ! where
758 ! EWT(i) = RelTol(i)*ABS(Y(i)) + AbsTol(i),
760 ! and the rms-norm (root-mean-square norm) here is
762 ! rms-norm(v) = SQRT(sum v(i)**2 / NEQ).
764 ! Here EWT = (EWT(i)) is a vector of weights which must
765 ! always be positive, and the values of RelTol and AbsTol
766 ! should all be nonnegative. The following table gives the
767 ! types (scalar/array) of RelTol and AbsTol, and the
768 ! corresponding form of EWT(i).
770 ! ITOL RelTol AbsTol EWT(i)
771 ! ---- ------ ------ -----------------------------
772 ! 1 scalar scalar RelTol*ABS(Y(i)) + AbsTol
773 ! 2 scalar array RelTol*ABS(Y(i)) + AbsTol(i)
774 ! 3 array scalar RelTol(i)*ABS(Y(i)) + AbsTol
775 ! 4 array array RelTol(i)*ABS(Y(i)) + AbsTol(i)
777 ! When either of these parameters is a scalar, it need not
778 ! be dimensioned in the user's calling program.
780 ! If none of the above choices (with ITOL, RelTol, and AbsTol
781 ! fixed throughout the problem) is suitable, more general
782 ! error controls can be obtained by substituting
783 ! user-supplied routines for the setting of EWT and/or for
784 ! the norm calculation. See Part 4 below.
786 ! If global errors are to be estimated by making a repeated
787 ! run on the same problem with smaller tolerances, then all
788 ! components of RelTol and AbsTol (i.e., of EWT) should be
789 ! scaled down uniformly.
791 ! ITASK An index specifying the task to be performed. Input
792 ! only. ITASK has the following values and meanings:
793 ! 1 Normal computation of output values of y(t) at
794 ! t = TOUT (by overshooting and interpolating).
795 ! 2 Take one step only and return.
796 ! 3 Stop at the first internal mesh point at or beyond
797 ! t = TOUT and return.
798 ! 4 Normal computation of output values of y(t) at
799 ! t = TOUT but without overshooting t = TCRIT. TCRIT
800 ! must be input as RWORK(1). TCRIT may be equal to or
801 ! beyond TOUT, but not behind it in the direction of
802 ! integration. This option is useful if the problem
803 ! has a singularity at or beyond t = TCRIT.
804 ! 5 Take one step, without passing TCRIT, and return.
805 ! TCRIT must be input as RWORK(1).
807 ! Note: If ITASK = 4 or 5 and the solver reaches TCRIT
808 ! (within roundoff), it will return T = TCRIT (exactly) to
809 ! indicate this (unless ITASK = 4 and TOUT comes before
810 ! TCRIT, in which case answers at T = TOUT are returned
811 ! first).
813 ! ISTATE An index used for input and output to specify the state
814 ! of the calculation.
816 ! On input, the values of ISTATE are as follows:
817 ! 1 This is the first call for the problem
818 ! (initializations will be done). See "Note" below.
819 ! 2 This is not the first call, and the calculation is to
820 ! continue normally, with no change in any input
821 ! parameters except possibly TOUT and ITASK. (If ITOL,
822 ! RelTol, and/or AbsTol are changed between calls with
823 ! ISTATE = 2, the new values will be used but not
824 ! tested for legality.)
825 ! 3 This is not the first call, and the calculation is to
826 ! continue normally, but with a change in input
827 ! parameters other than TOUT and ITASK. Changes are
828 ! allowed in NEQ, ITOL, RelTol, AbsTol, IOPT, LRW, LIW, MF,
829 ! ML, MU, and any of the optional inputs except H0.
830 ! (See IWORK description for ML and MU.)
832 ! Note: A preliminary call with TOUT = T is not counted as
833 ! a first call here, as no initialization or checking of
834 ! input is done. (Such a call is sometimes useful for the
835 ! purpose of outputting the initial conditions.) Thus the
836 ! first call for which TOUT .NE. T requires ISTATE = 1 on
837 ! input.
839 ! On output, ISTATE has the following values and meanings:
840 ! 1 Nothing was done, as TOUT was equal to T with
841 ! ISTATE = 1 on input.
842 ! 2 The integration was performed successfully.
843 ! -1 An excessive amount of work (more than MXSTEP steps)
844 ! was done on this call, before completing the
845 ! requested task, but the integration was otherwise
846 ! successful as far as T. (MXSTEP is an optional input
847 ! and is normally 500.) To continue, the user may
848 ! simply reset ISTATE to a value >1 and call again (the
849 ! excess work step counter will be reset to 0). In
850 ! addition, the user may increase MXSTEP to avoid this
851 ! error return; see "Optional Inputs" below.
852 ! -2 Too much accuracy was requested for the precision of
853 ! the machine being used. This was detected before
854 ! completing the requested task, but the integration
855 ! was successful as far as T. To continue, the
856 ! tolerance parameters must be reset, and ISTATE must
857 ! be set to 3. The optional output TOLSF may be used
858 ! for this purpose. (Note: If this condition is
859 ! detected before taking any steps, then an illegal
860 ! input return (ISTATE = -3) occurs instead.)
861 ! -3 Illegal input was detected, before taking any
862 ! integration steps. See written message for details.
863 ! (Note: If the solver detects an infinite loop of
864 ! calls to the solver with illegal input, it will cause
865 ! the run to stop.)
866 ! -4 There were repeated error-test failures on one
867 ! attempted step, before completing the requested task,
868 ! but the integration was successful as far as T. The
869 ! problem may have a singularity, or the input may be
870 ! inappropriate.
871 ! -5 There were repeated convergence-test failures on one
872 ! attempted step, before completing the requested task,
873 ! but the integration was successful as far as T. This
874 ! may be caused by an inaccurate Jacobian matrix, if
875 ! one is being used.
876 ! -6 EWT(i) became zero for some i during the integration.
877 ! Pure relative error control (AbsTol(i)=0.0) was
878 ! requested on a variable which has now vanished. The
879 ! integration was successful as far as T.
881 ! Note: Since the normal output value of ISTATE is 2, it
882 ! does not need to be reset for normal continuation. Also,
883 ! since a negative input value of ISTATE will be regarded
884 ! as illegal, a negative output value requires the user to
885 ! change it, and possibly other inputs, before calling the
886 ! solver again.
888 ! IOPT An integer flag to specify whether any optional inputs
889 ! are being used on this call. Input only. The optional
890 ! inputs are listed under a separate heading below.
891 ! 0 No optional inputs are being used. Default values
892 ! will be used in all cases.
893 ! 1 One or more optional inputs are being used.
895 ! RWORK A real working array (double precision). The length of
896 ! RWORK must be at least
898 ! 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM
900 ! where
901 ! NYH = the initial value of NEQ,
902 ! MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
903 ! smaller value is given as an optional input),
904 ! LWM = 0 if MITER = 0,
905 ! LWM = NEQ**2 + 2 if MITER = 1 or 2,
906 ! LWM = NEQ + 2 if MITER = 3, and
907 ! LWM = (2*ML + MU + 1)*NEQ + 2
908 ! if MITER = 4 or 5.
909 ! (See the MF description below for METH and MITER.)
911 ! Thus if MAXORD has its default value and NEQ is constant,
912 ! this length is:
913 ! 20 + 16*NEQ for MF = 10,
914 ! 22 + 16*NEQ + NEQ**2 for MF = 11 or 12,
915 ! 22 + 17*NEQ for MF = 13,
916 ! 22 + 17*NEQ + (2*ML + MU)*NEQ for MF = 14 or 15,
917 ! 20 + 9*NEQ for MF = 20,
918 ! 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
919 ! 22 + 10*NEQ for MF = 23,
920 ! 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.
922 ! The first 20 words of RWORK are reserved for conditional
923 ! and optional inputs and optional outputs.
925 ! The following word in RWORK is a conditional input:
926 ! RWORK(1) = TCRIT, the critical value of t which the
927 ! solver is not to overshoot. Required if ITASK
928 ! is 4 or 5, and ignored otherwise. See ITASK.
930 ! LRW The length of the array RWORK, as declared by the user.
931 ! (This will be checked by the solver.)
933 ! IWORK An integer work array. Its length must be at least
934 ! 20 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
935 ! 20 + NEQ otherwise (MF = 11, 12, 14, 15, 21, 22, 24, 25).
936 ! (See the MF description below for MITER.) The first few
937 ! words of IWORK are used for conditional and optional
938 ! inputs and optional outputs.
940 ! The following two words in IWORK are conditional inputs:
941 ! IWORK(1) = ML These are the lower and upper half-
942 ! IWORK(2) = MU bandwidths, respectively, of the banded
943 ! Jacobian, excluding the main diagonal.
944 ! The band is defined by the matrix locations
945 ! (i,j) with i - ML <= j <= i + MU. ML and MU
946 ! must satisfy 0 <= ML,MU <= NEQ - 1. These are
947 ! required if MITER is 4 or 5, and ignored
948 ! otherwise. ML and MU may in fact be the band
949 ! parameters for a matrix to which df/dy is only
950 ! approximately equal.
952 ! LIW The length of the array IWORK, as declared by the user.
953 ! (This will be checked by the solver.)
955 ! Note: The work arrays must not be altered between calls to DLSODE
956 ! for the same problem, except possibly for the conditional and
957 ! optional inputs, and except for the last 3*NEQ words of RWORK.
958 ! The latter space is used for internal scratch space, and so is
959 ! available for use by the user outside DLSODE between calls, if
960 ! desired (but not for use by F or JAC).
962 ! JAC The name of the user-supplied routine (MITER = 1 or 4) to
963 ! compute the Jacobian matrix, df/dy, as a function of the
964 ! scalar t and the vector y. (See the MF description below
965 ! for MITER.) It is to have the form
967 ! SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
968 ! KPP_REAL T, Y(*), PD(NROWPD,*)
970 ! where NEQ, T, Y, ML, MU, and NROWPD are input and the
971 ! array PD is to be loaded with partial derivatives
972 ! (elements of the Jacobian matrix) on output. PD must be
973 ! given a first dimension of NROWPD. T and Y have the same
974 ! meaning as in subroutine F.
976 ! In the full matrix case (MITER = 1), ML and MU are
977 ! ignored, and the Jacobian is to be loaded into PD in
978 ! columnwise manner, with df(i)/dy(j) loaded into PD(i,j).
980 ! In the band matrix case (MITER = 4), the elements within
981 ! the band are to be loaded into PD in columnwise manner,
982 ! with diagonal lines of df/dy loaded into the rows of PD.
983 ! Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). ML
984 ! and MU are the half-bandwidth parameters (see IWORK).
985 ! The locations in PD in the two triangular areas which
986 ! correspond to nonexistent matrix elements can be ignored
987 ! or loaded arbitrarily, as they are overwritten by DLSODE.
989 ! JAC need not provide df/dy exactly. A crude approximation
990 ! (possibly with a smaller bandwidth) will do.
992 ! In either case, PD is preset to zero by the solver, so
993 ! that only the nonzero elements need be loaded by JAC.
994 ! Each call to JAC is preceded by a call to F with the same
995 ! arguments NEQ, T, and Y. Thus to gain some efficiency,
996 ! intermediate quantities shared by both calculations may
997 ! be saved in a user COMMON block by F and not recomputed
998 ! by JAC, if desired. Also, JAC may alter the Y array, if
999 ! desired. JAC must be declared EXTERNAL in the calling
1000 ! program.
1002 ! Subroutine JAC may access user-defined quantities in
1003 ! NEQ(2),... and/or in Y(NEQ+1),... if NEQ is an array
1004 ! (dimensioned in JAC) and/or Y has length exceeding
1005 ! NEQ. See the descriptions of NEQ and Y above.
1007 ! MF The method flag. Used only for input. The legal values
1008 ! of MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24,
1009 ! and 25. MF has decimal digits METH and MITER:
1010 ! MF = 10*METH + MITER .
1012 ! METH indicates the basic linear multistep method:
1013 ! 1 Implicit Adams method.
1014 ! 2 Method based on backward differentiation formulas
1015 ! (BDF's).
1017 ! MITER indicates the corrector iteration method:
1018 ! 0 Functional iteration (no Jacobian matrix is
1019 ! involved).
1020 ! 1 Chord iteration with a user-supplied full (NEQ by
1021 ! NEQ) Jacobian.
1022 ! 2 Chord iteration with an internally generated
1023 ! (difference quotient) full Jacobian (using NEQ
1024 ! extra calls to F per df/dy value).
1025 ! 3 Chord iteration with an internally generated
1026 ! diagonal Jacobian approximation (using one extra call
1027 ! to F per df/dy evaluation).
1028 ! 4 Chord iteration with a user-supplied banded Jacobian.
1029 ! 5 Chord iteration with an internally generated banded
1030 ! Jacobian (using ML + MU + 1 extra calls to F per
1031 ! df/dy evaluation).
1033 ! If MITER = 1 or 4, the user must supply a subroutine JAC
1034 ! (the name is arbitrary) as described above under JAC.
1035 ! For other values of MITER, a dummy argument can be used.
1037 ! Optional Inputs
1038 ! ---------------
1039 ! The following is a list of the optional inputs provided for in the
1040 ! call sequence. (See also Part 2.) For each such input variable,
1041 ! this table lists its name as used in this documentation, its
1042 ! location in the call sequence, its meaning, and the default value.
1043 ! The use of any of these inputs requires IOPT = 1, and in that case
1044 ! all of these inputs are examined. A value of zero for any of
1045 ! these optional inputs will cause the default value to be used.
1046 ! Thus to use a subset of the optional inputs, simply preload
1047 ! locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively,
1048 ! and then set those of interest to nonzero values.
1050 ! Name Location Meaning and default value
1051 ! ------ --------- -----------------------------------------------
1052 ! H0 RWORK(5) Step size to be attempted on the first step.
1053 ! The default value is determined by the solver.
1054 ! HMAX RWORK(6) Maximum absolute step size allowed. The
1055 ! default value is infinite.
1056 ! HMIN RWORK(7) Minimum absolute step size allowed. The
1057 ! default value is 0. (This lower bound is not
1058 ! enforced on the final step before reaching
1059 ! TCRIT when ITASK = 4 or 5.)
1060 ! MAXORD IWORK(5) Maximum order to be allowed. The default value
1061 ! is 12 if METH = 1, and 5 if METH = 2. (See the
1062 ! MF description above for METH.) If MAXORD
1063 ! exceeds the default value, it will be reduced
1064 ! to the default value. If MAXORD is changed
1065 ! during the problem, it may cause the current
1066 ! order to be reduced.
1067 ! MXSTEP IWORK(6) Maximum number of (internally defined) steps
1068 ! allowed during one call to the solver. The
1069 ! default value is 500.
1070 ! MXHNIL IWORK(7) Maximum number of messages printed (per
1071 ! problem) warning that T + H = T on a step
1072 ! (H = step size). This must be positive to
1073 ! result in a nondefault value. The default
1074 ! value is 10.
1076 ! Optional Outputs
1077 ! ----------------
1078 ! As optional additional output from DLSODE, the variables listed
1079 ! below are quantities related to the performance of DLSODE which
1080 ! are available to the user. These are communicated by way of the
1081 ! work arrays, but also have internal mnemonic names as shown.
1082 ! Except where stated otherwise, all of these outputs are defined on
1083 ! any successful return from DLSODE, and on any return with ISTATE =
1084 ! -1, -2, -4, -5, or -6. On an illegal input return (ISTATE = -3),
1085 ! they will be unchanged from their existing values (if any), except
1086 ! possibly for TOLSF, LENRW, and LENIW. On any error return,
1087 ! outputs relevant to the error will be defined, as noted below.
1089 ! Name Location Meaning
1090 ! ----- --------- ------------------------------------------------
1091 ! HU RWORK(11) Step size in t last used (successfully).
1092 ! HCUR RWORK(12) Step size to be attempted on the next step.
1093 ! TCUR RWORK(13) Current value of the independent variable which
1094 ! the solver has actually reached, i.e., the
1095 ! current internal mesh point in t. On output,
1096 ! TCUR will always be at least as far as the
1097 ! argument T, but may be farther (if interpolation
1098 ! was done).
1099 ! TOLSF RWORK(14) Tolerance scale factor, greater than 1.0,
1100 ! computed when a request for too much accuracy
1101 ! was detected (ISTATE = -3 if detected at the
1102 ! start of the problem, ISTATE = -2 otherwise).
1103 ! If ITOL is left unaltered but RelTol and AbsTol are
1104 ! uniformly scaled up by a factor of TOLSF for the
1105 ! next call, then the solver is deemed likely to
1106 ! succeed. (The user may also ignore TOLSF and
1107 ! alter the tolerance parameters in any other way
1108 ! appropriate.)
1109 ! NST IWORK(11) Number of steps taken for the problem so far.
1110 ! NFE IWORK(12) Number of F evaluations for the problem so far.
1111 ! NJE IWORK(13) Number of Jacobian evaluations (and of matrix LU
1112 ! decompositions) for the problem so far.
1113 ! NQU IWORK(14) Method order last used (successfully).
1114 ! NQCUR IWORK(15) Order to be attempted on the next step.
1115 ! IMXER IWORK(16) Index of the component of largest magnitude in
1116 ! the weighted local error vector ( e(i)/EWT(i) ),
1117 ! on an error return with ISTATE = -4 or -5.
1118 ! LENRW IWORK(17) Length of RWORK actually required. This is
1119 ! defined on normal returns and on an illegal
1120 ! input return for insufficient storage.
1121 ! LENIW IWORK(18) Length of IWORK actually required. This is
1122 ! defined on normal returns and on an illegal
1123 ! input return for insufficient storage.
1125 ! The following two arrays are segments of the RWORK array which may
1126 ! also be of interest to the user as optional outputs. For each
1127 ! array, the table below gives its internal name, its base address
1128 ! in RWORK, and its description.
1130 ! Name Base address Description
1131 ! ---- ------------ ----------------------------------------------
1132 ! YH 21 The Nordsieck history array, of size NYH by
1133 ! (NQCUR + 1), where NYH is the initial value of
1134 ! NEQ. For j = 0,1,...,NQCUR, column j + 1 of
1135 ! YH contains HCUR**j/factorial(j) times the jth
1136 ! derivative of the interpolating polynomial
1137 ! currently representing the solution, evaluated
1138 ! at t = TCUR.
1139 ! ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated
1140 ! corrections on each step, scaled on output to
1141 ! represent the estimated local error in Y on
1142 ! the last step. This is the vector e in the
1143 ! description of the error control. It is
1144 ! defined only on successful return from DLSODE.
1147 ! Part 2. Other Callable Routines
1148 ! --------------------------------
1150 ! The following are optional calls which the user may make to gain
1151 ! additional capabilities in conjunction with DLSODE.
1153 ! Form of call Function
1154 ! ------------------------ ----------------------------------------
1155 ! CALL XSETUN(LUN) Set the logical unit number, LUN, for
1156 ! output of messages from DLSODE, if the
1157 ! default is not desired. The default
1158 ! value of LUN is 6. This call may be made
1159 ! at any time and will take effect
1160 ! immediately.
1161 ! CALL XSETF(MFLAG) Set a flag to control the printing of
1162 ! messages by DLSODE. MFLAG = 0 means do
1163 ! not print. (Danger: this risks losing
1164 ! valuable information.) MFLAG = 1 means
1165 ! print (the default). This call may be
1166 ! made at any time and will take effect
1167 ! immediately.
1168 ! CALL DSRCOM(RSAV,ISAV,JOB) Saves and restores the contents of the
1169 ! internal COMMON blocks used by DLSODE
1170 ! (see Part 3 below). RSAV must be a
1171 ! real array of length 218 or more, and
1172 ! ISAV must be an integer array of length
1173 ! 37 or more. JOB = 1 means save COMMON
1174 ! into RSAV/ISAV. JOB = 2 means restore
1175 ! COMMON from same. DSRCOM is useful if
1176 ! one is interrupting a run and restarting
1177 ! later, or alternating between two or
1178 ! more problems solved with DLSODE.
1179 ! CALL DINTDY(,,,,,) Provide derivatives of y, of various
1180 ! (see below) orders, at a specified point t, if
1181 ! desired. It may be called only after a
1182 ! successful return from DLSODE. Detailed
1183 ! instructions follow.
1185 ! Detailed instructions for using DINTDY
1186 ! --------------------------------------
1187 ! The form of the CALL is:
1189 ! CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG)
1191 ! The input parameters are:
1193 ! T Value of independent variable where answers are
1194 ! desired (normally the same as the T last returned by
1195 ! DLSODE). For valid results, T must lie between
1196 ! TCUR - HU and TCUR. (See "Optional Outputs" above
1197 ! for TCUR and HU.)
1198 ! K Integer order of the derivative desired. K must
1199 ! satisfy 0 <= K <= NQCUR, where NQCUR is the current
1200 ! order (see "Optional Outputs"). The capability
1201 ! corresponding to K = 0, i.e., computing y(t), is
1202 ! already provided by DLSODE directly. Since
1203 ! NQCUR >= 1, the first derivative dy/dt is always
1204 ! available with DINTDY.
1205 ! RWORK(21) The base address of the history array YH.
1206 ! NYH Column length of YH, equal to the initial value of NEQ.
1208 ! The output parameters are:
1210 ! DKY Real array of length NEQ containing the computed value
1211 ! of the Kth derivative of y(t).
1212 ! IFLAG Integer flag, returned as 0 if K and T were legal,
1213 ! -1 if K was illegal, and -2 if T was illegal.
1214 ! On an error return, a message is also written.
1217 ! Part 3. Common Blocks
1218 ! ----------------------
1220 ! If DLSODE is to be used in an overlay situation, the user must
1221 ! declare, in the primary overlay, the variables in:
1222 ! (1) the call sequence to DLSODE,
1223 ! (2) the internal COMMON block /DLS001/, of length 255
1224 ! (218 double precision words followed by 37 integer words).
1226 ! If DLSODE is used on a system in which the contents of internal
1227 ! COMMON blocks are not preserved between calls, the user should
1228 ! declare the above COMMON block in his main program to insure that
1229 ! its contents are preserved.
1231 ! If the solution of a given problem by DLSODE is to be interrupted
1232 ! and then later continued, as when restarting an interrupted run or
1233 ! alternating between two or more problems, the user should save,
1234 ! following the return from the last DLSODE call prior to the
1235 ! interruption, the contents of the call sequence variables and the
1236 ! internal COMMON block, and later restore these values before the
1237 ! next DLSODE call for that problem. In addition, if XSETUN and/or
1238 ! XSETF was called for non-default handling of error messages, then
1239 ! these calls must be repeated. To save and restore the COMMON
1240 ! block, use subroutine DSRCOM (see Part 2 above).
1243 ! Part 4. Optionally Replaceable Solver Routines
1244 ! -----------------------------------------------
1246 ! Below are descriptions of two routines in the DLSODE package which
1247 ! relate to the measurement of errors. Either routine can be
1248 ! replaced by a user-supplied version, if desired. However, since
1249 ! such a replacement may have a major impact on performance, it
1250 ! should be done only when absolutely necessary, and only with great
1251 ! caution. (Note: The means by which the package version of a
1252 ! routine is superseded by the user's version may be system-
1253 ! dependent.)
1255 ! DEWSET
1256 ! ------
1257 ! The following subroutine is called just before each internal
1258 ! integration step, and sets the array of error weights, EWT, as
1259 ! described under ITOL/RelTol/AbsTol above:
1261 ! SUBROUTINE DEWSET (NEQ, ITOL, RelTol, AbsTol, YCUR, EWT)
1263 ! where NEQ, ITOL, RelTol, and AbsTol are as in the DLSODE call
1264 ! sequence, YCUR contains the current dependent variable vector,
1265 ! and EWT is the array of weights set by DEWSET.
1267 ! If the user supplies this subroutine, it must return in EWT(i)
1268 ! (i = 1,...,NEQ) a positive quantity suitable for comparing errors
1269 ! in Y(i) to. The EWT array returned by DEWSET is passed to the
1270 ! DVNORM routine (see below), and also used by DLSODE in the
1271 ! computation of the optional output IMXER, the diagonal Jacobian
1272 ! approximation, and the increments for difference quotient
1273 ! Jacobians.
1275 ! In the user-supplied version of DEWSET, it may be desirable to use
1276 ! the current values of derivatives of y. Derivatives up to order NQ
1277 ! are available from the history array YH, described above under
1278 ! optional outputs. In DEWSET, YH is identical to the YCUR array,
1279 ! extended to NQ + 1 columns with a column length of NYH and scale
1280 ! factors of H**j/factorial(j). On the first call for the problem,
1281 ! given by NST = 0, NQ is 1 and H is temporarily set to 1.0.
1282 ! NYH is the initial value of NEQ. The quantities NQ, H, and NST
1283 ! can be obtained by including in SEWSET the statements:
1284 ! KPP_REAL RLS
1285 ! COMMON /DLS001/ RLS(218),ILS(37)
1286 ! NQ = ILS(33)
1287 ! NST = ILS(34)
1288 ! H = RLS(212)
1289 ! Thus, for example, the current value of dy/dt can be obtained as
1290 ! YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is unnecessary
1291 ! when NST = 0).
1293 ! DVNORM
1294 ! ------
1295 ! DVNORM is a real function routine which computes the weighted
1296 ! root-mean-square norm of a vector v:
1298 ! d = DVNORM (n, v, w)
1300 ! where:
1301 ! n = the length of the vector,
1302 ! v = real array of length n containing the vector,
1303 ! w = real array of length n containing weights,
1304 ! d = SQRT( (1/n) * sum(v(i)*w(i))**2 ).
1306 ! DVNORM is called with n = NEQ and with w(i) = 1.0/EWT(i), where
1307 ! EWT is as set by subroutine DEWSET.
1309 ! If the user supplies this function, it should return a nonnegative
1310 ! value of DVNORM suitable for use in the error control in DLSODE.
1311 ! None of the arguments should be altered by DVNORM. For example, a
1312 ! user-supplied DVNORM routine might:
1313 ! - Substitute a max-norm of (v(i)*w(i)) for the rms-norm, or
1314 ! - Ignore some components of v in the norm, with the effect of
1315 ! suppressing the error control on those components of Y.
1316 ! ---------------------------------------------------------------------
1317 !***ROUTINES CALLED DEWSET, DINTDY, DUMACH, DSTODE, DVNORM, XERRWD
1318 !***COMMON BLOCKS DLS001
1319 !***REVISION HISTORY (YYYYMMDD)
1320 ! 19791129 DATE WRITTEN
1321 ! 19791213 Minor changes to declarations; DELP init. in STODE.
1322 ! 19800118 Treat NEQ as array; integer declarations added throughout;
1323 ! minor changes to prologue.
1324 ! 19800306 Corrected TESCO(1,NQP1) setting in CFODE.
1325 ! 19800519 Corrected access of YH on forced order reduction;
1326 ! numerous corrections to prologues and other comments.
1327 ! 19800617 In main driver, added loading of SQRT(UROUND) in RWORK;
1328 ! minor corrections to main prologue.
1329 ! 19800923 Added zero initialization of HU and NQU.
1330 ! 19801218 Revised XERRWD routine; minor corrections to main prologue.
1331 ! 19810401 Minor changes to comments and an error message.
1332 ! 19810814 Numerous revisions: replaced EWT by 1/EWT; used flags
1333 ! JCUR, ICF, IERPJ, IERSL between STODE and subordinates;
1334 ! added tuning parameters CCMAX, MAXCOR, MSBP, MXNCF;
1335 ! reorganized returns from STODE; reorganized type decls.;
1336 ! fixed message length in XERRWD; changed default LUNIT to 6;
1337 ! changed Common lengths; changed comments throughout.
1338 ! 19870330 Major update by ACH: corrected comments throughout;
1339 ! removed TRET from Common; rewrote EWSET with 4 loops;
1340 ! fixed t test in INTDY; added Cray directives in STODE;
1341 ! in STODE, fixed DELP init. and logic around PJAC call;
1342 ! combined routines to save/restore Common;
1343 ! passed LEVEL = 0 in error message calls (except run abort).
1344 ! 19890426 Modified prologue to SLATEC/LDOC format. (FNF)
1345 ! 19890501 Many improvements to prologue. (FNF)
1346 ! 19890503 A few final corrections to prologue. (FNF)
1347 ! 19890504 Minor cosmetic changes. (FNF)
1348 ! 19890510 Corrected description of Y in Arguments section. (FNF)
1349 ! 19890517 Minor corrections to prologue. (FNF)
1350 ! 19920514 Updated with prologue edited 891025 by G. Shaw for manual.
1351 ! 19920515 Converted source lines to upper case. (FNF)
1352 ! 19920603 Revised XERRWD calls using mixed upper-lower case. (ACH)
1353 ! 19920616 Revised prologue comment regarding CFT. (ACH)
1354 ! 19921116 Revised prologue comments regarding Common. (ACH).
1355 ! 19930326 Added comment about non-reentrancy. (FNF)
1356 ! 19930723 Changed D1MACH to DUMACH. (FNF)
1357 ! 19930801 Removed ILLIN and NTREP from Common (affects driver logic);
1358 ! minor changes to prologue and internal comments;
1359 ! changed Hollerith strings to quoted strings;
1360 ! changed internal comments to mixed case;
1361 ! replaced XERRWD with new version using character type;
1362 ! changed dummy dimensions from 1 to *. (ACH)
1363 ! 19930809 Changed to generic intrinsic names; changed names of
1364 ! subprograms and Common blocks to DLSODE etc. (ACH)
1365 ! 19930929 Eliminated use of REAL intrinsic; other minor changes. (ACH)
1366 ! 20010412 Removed all 'own' variables from Common block /DLS001/
1367 ! (affects declarations in 6 routines). (ACH)
1368 ! 20010509 Minor corrections to prologue. (ACH)
1369 ! 20031105 Restored 'own' variables to Common block /DLS001/, to
1370 ! enable interrupt/restart feature. (ACH)
1371 ! 20031112 Added SAVE statements for data-loaded constants.
1373 !***END PROLOGUE DLSODE
1375 !*Internal Notes:
1377 ! Other Routines in the DLSODE Package.
1379 ! In addition to Subroutine DLSODE, the DLSODE package includes the
1380 ! following subroutines and function routines:
1381 ! DINTDY computes an interpolated value of the y vector at t = TOUT.
1382 ! DSTODE is the core integrator, which does one step of the
1383 ! integration and the associated error control.
1384 ! DCFODE sets all method coefficients and test constants.
1385 ! DPREPJ computes and preprocesses the Jacobian matrix J = df/dy
1386 ! and the Newton iteration matrix P = I - h*l0*J.
1387 ! DSOLSY manages solution of linear system in chord iteration.
1388 ! DEWSET sets the error weight vector EWT before each step.
1389 ! DVNORM computes the weighted R.M.S. norm of a vector.
1390 ! DSRCOM is a user-callable routine to save and restore
1391 ! the contents of the internal Common block.
1392 ! DGEFA and DGESL are routines from LINPACK for solving full
1393 ! systems of linear algebraic equations.
1394 ! DGBFA and DGBSL are routines from LINPACK for solving banded
1395 ! linear systems.
1396 ! DUMACH computes the unit roundoff in a machine-independent manner.
1397 ! XERRWD, XSETUN, XSETF, IXSAV, IUMACH handle the printing of all
1398 ! error messages and warnings. XERRWD is machine-dependent.
1399 ! Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines.
1400 ! All the others are subroutines.
1402 !**End
1404 ! Declare externals.
1405 ! Note: they are now internal
1406 !EXTERNAL DPREPJ, DSOLSY
1407 !KPP_REAL DUMACH, DVNORM
1409 ! Declare all other variables.
1410 INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, &
1411 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
1412 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
1413 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
1414 INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, &
1415 LENIW, LENRW, LENWM, ML, MORD(2), MU, MXHNL0, MXSTP0
1416 KPP_REAL ROWNS, &
1417 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
1418 KPP_REAL AbsTolI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RelTolI, &
1419 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0
1421 LOGICAL IHIT
1422 CHARACTER*80 MSG
1423 SAVE MORD, MXSTP0, MXHNL0
1424 !-----------------------------------------------------------------------
1425 ! The following internal Common block contains
1426 ! (a) variables which are local to any subroutine but whose values must
1427 ! be preserved between calls to the routine ("own" variables), and
1428 ! (b) variables which are communicated between subroutines.
1429 ! The block DLS001 is declared in subroutines DLSODE, DINTDY, DSTODE,
1430 ! DPREPJ, and DSOLSY.
1431 ! Groups of variables are replaced by dummy arrays in the Common
1432 ! declarations in routines where those variables are not used.
1433 !-----------------------------------------------------------------------
1434 COMMON /DLS001/ ROWNS(209), &
1435 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, &
1436 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), &
1437 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
1438 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
1439 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
1441 DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/
1442 !-----------------------------------------------------------------------
1443 ! Block A.
1444 ! This code block is executed on every call.
1445 ! It tests ISTATE and ITASK for legality and branches appropriately.
1446 ! If ISTATE .GT. 1 but the flag INIT shows that initialization has
1447 ! not yet been done, an error return occurs.
1448 ! If ISTATE = 1 and TOUT = T, return immediately.
1449 !-----------------------------------------------------------------------
1451 !***FIRST EXECUTABLE STATEMENT DLSODE
1452 IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
1453 IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
1454 IF (ISTATE .EQ. 1) GO TO 10
1455 IF (INIT .EQ. 0) GO TO 603
1456 IF (ISTATE .EQ. 2) GO TO 200
1457 GO TO 20
1458 10 INIT = 0
1459 IF (TOUT .EQ. T) RETURN
1460 !-----------------------------------------------------------------------
1461 ! Block B.
1462 ! The next code block is executed for the initial call (ISTATE = 1),
1463 ! or for a continuation call with parameter changes (ISTATE = 3).
1464 ! It contains checking of all inputs and various initializations.
1466 ! First check legality of the non-optional inputs NEQ, ITOL, IOPT,
1467 ! MF, ML, and MU.
1468 !-----------------------------------------------------------------------
1469 20 IF (NEQ .LE. 0) GO TO 604
1470 IF (ISTATE .EQ. 1) GO TO 25
1471 IF (NEQ .GT. N) GO TO 605
1472 25 N = NEQ
1473 IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606
1474 IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607
1475 METH = MF/10
1476 MITER = MF - 10*METH
1477 IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608
1478 IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608
1479 IF (MITER .LE. 3) GO TO 30
1480 ML = IWORK(1)
1481 MU = IWORK(2)
1482 IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609
1483 IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610
1484 30 CONTINUE
1485 ! Next process and check the optional inputs. --------------------------
1486 IF (IOPT .EQ. 1) GO TO 40
1487 MAXORD = MORD(METH)
1488 MXSTEP = MXSTP0
1489 MXHNIL = MXHNL0
1490 IF (ISTATE .EQ. 1) H0 = 0.0D0
1491 HMXI = 0.0D0
1492 HMIN = 0.0D0
1493 GO TO 60
1494 40 MAXORD = IWORK(5)
1495 IF (MAXORD .LT. 0) GO TO 611
1496 IF (MAXORD .EQ. 0) MAXORD = 100
1497 MAXORD = MIN(MAXORD,MORD(METH))
1498 MXSTEP = IWORK(6)
1499 IF (MXSTEP .LT. 0) GO TO 612
1500 IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0
1501 MXHNIL = IWORK(7)
1502 IF (MXHNIL .LT. 0) GO TO 613
1503 IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0
1504 IF (ISTATE .NE. 1) GO TO 50
1505 H0 = RWORK(5)
1506 IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614
1507 50 HMAX = RWORK(6)
1508 IF (HMAX .LT. 0.0D0) GO TO 615
1509 HMXI = 0.0D0
1510 IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX
1511 HMIN = RWORK(7)
1512 IF (HMIN .LT. 0.0D0) GO TO 616
1513 !-----------------------------------------------------------------------
1514 ! Set work array pointers and check lengths LRW and LIW.
1515 ! Pointers to segments of RWORK and IWORK are named by prefixing L to
1516 ! the name of the segment. E.g., the segment YH starts at RWORK(LYH).
1517 ! Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR.
1518 !-----------------------------------------------------------------------
1519 60 LYH = 21
1520 IF (ISTATE .EQ. 1) NYH = N
1521 LWM = LYH + (MAXORD + 1)*NYH
1522 IF (MITER .EQ. 0) LENWM = 0
1523 IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENWM = N*N + 2
1524 IF (MITER .EQ. 3) LENWM = N + 2
1525 IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2
1526 LEWT = LWM + LENWM
1527 LSAVF = LEWT + N
1528 LACOR = LSAVF + N
1529 LENRW = LACOR + N - 1
1530 IWORK(17) = LENRW
1531 LIWM = 1
1532 LENIW = 20 + N
1533 IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 20
1534 IWORK(18) = LENIW
1535 IF (LENRW .GT. LRW) GO TO 617
1536 IF (LENIW .GT. LIW) GO TO 618
1537 ! Check RelTol and AbsTol for legality. ------------------------------------
1538 RelTolI = RelTol(1)
1539 AbsTolI = AbsTol(1)
1540 DO 70 I = 1,N
1541 IF (ITOL .GE. 3) RelTolI = RelTol(I)
1542 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) AbsTolI = AbsTol(I)
1543 IF (RelTolI .LT. 0.0D0) GO TO 619
1544 IF (AbsTolI .LT. 0.0D0) GO TO 620
1545 70 CONTINUE
1546 IF (ISTATE .EQ. 1) GO TO 100
1547 ! If ISTATE = 3, set flag to signal parameter changes to DSTODE. -------
1548 JSTART = -1
1549 IF (NQ .LE. MAXORD) GO TO 90
1550 ! MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. ---------
1551 DO 80 I = 1,N
1552 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1)
1553 ! Reload WM(1) = RWORK(LWM), since LWM may have changed. ---------------
1554 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1555 IF (N .EQ. NYH) GO TO 200
1556 ! NEQ was reduced. Zero part of YH to avoid undefined references. -----
1557 I1 = LYH + L*NYH
1558 I2 = LYH + (MAXORD + 1)*NYH - 1
1559 IF (I1 .GT. I2) GO TO 200
1560 DO 95 I = I1,I2
1561 95 RWORK(I) = 0.0D0
1562 GO TO 200
1563 !-----------------------------------------------------------------------
1564 ! Block C.
1565 ! The next block is for the initial call only (ISTATE = 1).
1566 ! It contains all remaining initializations, the initial call to F,
1567 ! and the calculation of the initial step size.
1568 ! The error weights in EWT are inverted after being loaded.
1569 !-----------------------------------------------------------------------
1570 100 UROUND = DUMACH()
1571 TN = T
1572 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110
1573 TCRIT = RWORK(1)
1574 IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625
1575 IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) &
1576 H0 = TCRIT - T
1577 110 JSTART = 0
1578 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1579 NHNIL = 0
1580 NST = 0
1581 NJE = 0
1582 NSLAST = 0
1583 HU = 0.0D0
1584 NQU = 0
1585 CCMAX = 0.3D0
1586 MAXCOR = 3
1587 MSBP = 20
1588 MXNCF = 10
1589 ! Initial call to F. (LF0 points to YH(*,2).) -------------------------
1590 LF0 = LYH + NYH
1591 CALL F (NEQ, T, Y, RWORK(LF0))
1592 NFE = 1
1593 ! Load the initial value vector in YH. ---------------------------------
1594 DO 115 I = 1,N
1595 115 RWORK(I+LYH-1) = Y(I)
1596 ! Load and invert the EWT array. (H is temporarily set to 1.0.) -------
1597 NQ = 1
1598 H = 1.0D0
1599 CALL DEWSET (N, ITOL, RelTol, AbsTol, RWORK(LYH), RWORK(LEWT))
1600 DO 120 I = 1,N
1601 IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621
1602 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1)
1603 !-----------------------------------------------------------------------
1604 ! The coding below computes the step size, H0, to be attempted on the
1605 ! first step, unless the user has supplied a value for this.
1606 ! First check that TOUT - T differs significantly from zero.
1607 ! A scalar tolerance quantity TOL is computed, as MAX(RelTol(I))
1608 ! if this is positive, or MAX(AbsTol(I)/ABS(Y(I))) otherwise, adjusted
1609 ! so as to be between 100*UROUND and 1.0E-3.
1610 ! Then the computed value H0 is given by..
1611 ! NEQ
1612 ! H0**2 = TOL / ( w0**-2 + (1/NEQ) * SUM ( f(i)/ywt(i) )**2 )
1613 ! 1
1614 ! where w0 = MAX ( ABS(T), ABS(TOUT) ),
1615 ! f(i) = i-th component of initial value of f,
1616 ! ywt(i) = EWT(i)/TOL (a weight for y(i)).
1617 ! The sign of H0 is inferred from the initial values of TOUT and T.
1618 !-----------------------------------------------------------------------
1619 IF (H0 .NE. 0.0D0) GO TO 180
1620 TDIST = ABS(TOUT - T)
1621 W0 = MAX(ABS(T),ABS(TOUT))
1622 IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622
1623 TOL = RelTol(1)
1624 IF (ITOL .LE. 2) GO TO 140
1625 DO 130 I = 1,N
1626 130 TOL = MAX(TOL,RelTol(I))
1627 140 IF (TOL .GT. 0.0D0) GO TO 160
1628 AbsTolI = AbsTol(1)
1629 DO 150 I = 1,N
1630 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) AbsTolI = AbsTol(I)
1631 AYI = ABS(Y(I))
1632 IF (AYI .NE. 0.0D0) TOL = MAX(TOL,AbsTolI/AYI)
1633 150 CONTINUE
1634 160 TOL = MAX(TOL,100.0D0*UROUND)
1635 TOL = MIN(TOL,0.001D0)
1636 SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT))
1637 SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2
1638 H0 = 1.0D0/SQRT(SUM)
1639 H0 = MIN(H0,TDIST)
1640 H0 = SIGN(H0,TOUT-T)
1641 ! Adjust H0 if necessary to meet HMAX bound. ---------------------------
1642 180 RH = ABS(H0)*HMXI
1643 IF (RH .GT. 1.0D0) H0 = H0/RH
1644 ! Load H with H0 and scale YH(*,2) by H0. ------------------------------
1645 H = H0
1646 DO 190 I = 1,N
1647 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1)
1648 GO TO 270
1649 !-----------------------------------------------------------------------
1650 ! Block D.
1651 ! The next code block is for continuation calls only (ISTATE = 2 or 3)
1652 ! and is to check stop conditions before taking a step.
1653 !-----------------------------------------------------------------------
1654 200 NSLAST = NST
1655 GO TO (210, 250, 220, 230, 240), ITASK
1656 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250
1657 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1658 IF (IFLAG .NE. 0) GO TO 627
1659 T = TOUT
1660 GO TO 420
1661 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND)
1662 IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623
1663 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250
1664 GO TO 400
1665 230 TCRIT = RWORK(1)
1666 IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624
1667 IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625
1668 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245
1669 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1670 IF (IFLAG .NE. 0) GO TO 627
1671 T = TOUT
1672 GO TO 420
1673 240 TCRIT = RWORK(1)
1674 IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624
1675 245 HMX = ABS(TN) + ABS(H)
1676 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
1677 IF (IHIT) GO TO 400
1678 TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND)
1679 IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250
1680 H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND)
1681 IF (ISTATE .EQ. 2) JSTART = -2
1682 !-----------------------------------------------------------------------
1683 ! Block E.
1684 ! The next block is normally executed for all calls and contains
1685 ! the call to the one-step core integrator DSTODE.
1687 ! This is a looping point for the integration steps.
1689 ! First check for too many steps being taken, update EWT (if not at
1690 ! start of problem), check for too much accuracy being requested, and
1691 ! check for H below the roundoff level in T.
1692 !-----------------------------------------------------------------------
1693 250 CONTINUE
1694 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500
1695 CALL DEWSET (N, ITOL, RelTol, AbsTol, RWORK(LYH), RWORK(LEWT))
1696 DO 260 I = 1,N
1697 IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510
1698 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1)
1699 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT))
1700 IF (TOLSF .LE. 1.0D0) GO TO 280
1701 TOLSF = TOLSF*2.0D0
1702 IF (NST .EQ. 0) GO TO 626
1703 GO TO 520
1704 280 IF ((TN + H) .NE. TN) GO TO 290
1705 NHNIL = NHNIL + 1
1706 IF (NHNIL .GT. MXHNIL) GO TO 290
1707 MSG = 'DLSODE- Warning..internal T (=R1) and H (=R2) are'
1708 CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1709 MSG=' such that in the machine, T + H = T on the next step '
1710 CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1711 MSG = ' (H = step size). Solver will continue anyway'
1712 CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H)
1713 IF (NHNIL .LT. MXHNIL) GO TO 290
1714 MSG = 'DLSODE- Above warning has been issued I1 times. '
1715 CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1716 MSG = ' It will not be issued again for this problem'
1717 CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0)
1718 290 CONTINUE
1719 !-----------------------------------------------------------------------
1720 ! CALL DSTODE(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPREPJ,DSOLSY)
1721 !-----------------------------------------------------------------------
1722 CALL DSTODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), &
1723 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), &
1724 F, JAC)
1725 !F, JAC, DPREPJ, DSOLSY)
1726 KGO = 1 - KFLAG
1727 GO TO (300, 530, 540), KGO
1728 !-----------------------------------------------------------------------
1729 ! Block F.
1730 ! The following block handles the case of a successful return from the
1731 ! core integrator (KFLAG = 0). Test for stop conditions.
1732 !-----------------------------------------------------------------------
1733 300 INIT = 1
1734 GO TO (310, 400, 330, 340, 350), ITASK
1735 ! ITASK = 1. If TOUT has been reached, interpolate. -------------------
1736 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250
1737 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1738 T = TOUT
1739 GO TO 420
1740 ! ITASK = 3. Jump to exit if TOUT was reached. ------------------------
1741 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400
1742 GO TO 250
1743 ! ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary.
1744 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345
1745 CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1746 T = TOUT
1747 GO TO 420
1748 345 HMX = ABS(TN) + ABS(H)
1749 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
1750 IF (IHIT) GO TO 400
1751 TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND)
1752 IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250
1753 H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND)
1754 JSTART = -2
1755 GO TO 250
1756 ! ITASK = 5. See if TCRIT was reached and jump to exit. ---------------
1757 350 HMX = ABS(TN) + ABS(H)
1758 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
1759 !-----------------------------------------------------------------------
1760 ! Block G.
1761 ! The following block handles all successful returns from DLSODE.
1762 ! If ITASK .NE. 1, Y is loaded from YH and T is set accordingly.
1763 ! ISTATE is set to 2, and the optional outputs are loaded into the
1764 ! work arrays before returning.
1765 !-----------------------------------------------------------------------
1766 400 DO 410 I = 1,N
1767 410 Y(I) = RWORK(I+LYH-1)
1768 T = TN
1769 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
1770 IF (IHIT) T = TCRIT
1771 420 ISTATE = 2
1772 RWORK(11) = HU
1773 RWORK(12) = H
1774 RWORK(13) = TN
1775 IWORK(11) = NST
1776 IWORK(12) = NFE
1777 IWORK(13) = NJE
1778 IWORK(14) = NQU
1779 IWORK(15) = NQ
1780 RETURN
1781 !-----------------------------------------------------------------------
1782 ! Block H.
1783 ! The following block handles all unsuccessful returns other than
1784 ! those for illegal input. First the error message routine is called.
1785 ! If there was an error test or convergence test failure, IMXER is set.
1786 ! Then Y is loaded from YH and T is set to TN. The optional outputs
1787 ! are loaded into the work arrays before returning.
1788 !-----------------------------------------------------------------------
1789 ! The maximum number of steps was taken before reaching TOUT. ----------
1790 500 MSG = 'DLSODE- At current T (=R1), MXSTEP (=I1) steps '
1791 CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1792 MSG = ' taken on this call before reaching TOUT '
1793 CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0)
1794 ISTATE = -1
1795 GO TO 580
1796 ! EWT(I) .LE. 0.0 for some I (not at start of problem). ----------------
1797 510 EWTI = RWORK(LEWT+I-1)
1798 MSG = 'DLSODE- At T (=R1), EWT(I1) has become R2 .LE. 0.'
1799 CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI)
1800 ISTATE = -6
1801 GO TO 580
1802 ! Too much accuracy requested for machine precision. -------------------
1803 520 MSG = 'DLSODE- At T (=R1), too much accuracy requested '
1804 CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1805 MSG = ' for precision of machine.. see TOLSF (=R2) '
1806 CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF)
1807 RWORK(14) = TOLSF
1808 ISTATE = -2
1809 GO TO 580
1810 ! KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. -----
1811 530 MSG = 'DLSODE- At T(=R1) and step size H(=R2), the error'
1812 CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1813 MSG = ' test failed repeatedly or with ABS(H) = HMIN'
1814 CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H)
1815 ISTATE = -4
1816 GO TO 560
1817 ! KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ----
1818 540 MSG = 'DLSODE- At T (=R1) and step size H (=R2), the '
1819 CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1820 MSG = ' corrector convergence failed repeatedly '
1821 CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1822 MSG = ' or with ABS(H) = HMIN '
1823 CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H)
1824 ISTATE = -5
1825 ! Compute IMXER if relevant. -------------------------------------------
1826 560 BIG = 0.0D0
1827 IMXER = 1
1828 DO 570 I = 1,N
1829 SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1))
1830 IF (BIG .GE. SIZE) GO TO 570
1831 BIG = SIZE
1832 IMXER = I
1833 570 CONTINUE
1834 IWORK(16) = IMXER
1835 ! Set Y vector, T, and optional outputs. -------------------------------
1836 580 DO 590 I = 1,N
1837 590 Y(I) = RWORK(I+LYH-1)
1838 T = TN
1839 RWORK(11) = HU
1840 RWORK(12) = H
1841 RWORK(13) = TN
1842 IWORK(11) = NST
1843 IWORK(12) = NFE
1844 IWORK(13) = NJE
1845 IWORK(14) = NQU
1846 IWORK(15) = NQ
1847 RETURN
1848 !-----------------------------------------------------------------------
1849 ! Block I.
1850 ! The following block handles all error returns due to illegal input
1851 ! (ISTATE = -3), as detected before calling the core integrator.
1852 ! First the error message routine is called. If the illegal input
1853 ! is a negative ISTATE, the run is aborted (apparent infinite loop).
1854 !-----------------------------------------------------------------------
1855 601 MSG = 'DLSODE- ISTATE (=I1) illegal '
1856 CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0)
1857 IF (ISTATE .LT. 0) GO TO 800
1858 GO TO 700
1859 602 MSG = 'DLSODE- ITASK (=I1) illegal '
1860 CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0)
1861 GO TO 700
1862 603 MSG = 'DLSODE- ISTATE .GT. 1 but DLSODE not initialized '
1863 CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1864 GO TO 700
1865 604 MSG = 'DLSODE- NEQ (=I1) .LT. 1 '
1866 CALL XERRWD (MSG, 30, 4, 0, 1, NEQ, 0, 0, 0.0D0, 0.0D0)
1867 GO TO 700
1868 605 MSG = 'DLSODE- ISTATE = 3 and NEQ increased (I1 to I2) '
1869 CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ, 0, 0.0D0, 0.0D0)
1870 GO TO 700
1871 606 MSG = 'DLSODE- ITOL (=I1) illegal '
1872 CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0)
1873 GO TO 700
1874 607 MSG = 'DLSODE- IOPT (=I1) illegal '
1875 CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0)
1876 GO TO 700
1877 608 MSG = 'DLSODE- MF (=I1) illegal '
1878 CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0)
1879 GO TO 700
1880 609 MSG = 'DLSODE- ML (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)'
1881 CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ, 0, 0.0D0, 0.0D0)
1882 GO TO 700
1883 610 MSG = 'DLSODE- MU (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)'
1884 CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ, 0, 0.0D0, 0.0D0)
1885 GO TO 700
1886 611 MSG = 'DLSODE- MAXORD (=I1) .LT. 0 '
1887 CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0)
1888 GO TO 700
1889 612 MSG = 'DLSODE- MXSTEP (=I1) .LT. 0 '
1890 CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0)
1891 GO TO 700
1892 613 MSG = 'DLSODE- MXHNIL (=I1) .LT. 0 '
1893 CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0)
1894 GO TO 700
1895 614 MSG = 'DLSODE- TOUT (=R1) behind T (=R2) '
1896 CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T)
1897 MSG = ' Integration direction is given by H0 (=R1) '
1898 CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0)
1899 GO TO 700
1900 615 MSG = 'DLSODE- HMAX (=R1) .LT. 0.0 '
1901 CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0)
1902 GO TO 700
1903 616 MSG = 'DLSODE- HMIN (=R1) .LT. 0.0 '
1904 CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0)
1905 GO TO 700
1906 617 CONTINUE
1907 MSG='DLSODE- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)'
1908 CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0)
1909 GO TO 700
1910 618 CONTINUE
1911 MSG='DLSODE- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)'
1912 CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0)
1913 GO TO 700
1914 619 MSG = 'DLSODE- RelTol(I1) is R1 .LT. 0.0 '
1915 CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RelTolI, 0.0D0)
1916 GO TO 700
1917 620 MSG = 'DLSODE- AbsTol(I1) is R1 .LT. 0.0 '
1918 CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, AbsTolI, 0.0D0)
1919 GO TO 700
1920 621 EWTI = RWORK(LEWT+I-1)
1921 MSG = 'DLSODE- EWT(I1) is R1 .LE. 0.0 '
1922 CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0)
1923 GO TO 700
1924 622 CONTINUE
1925 MSG='DLSODE- TOUT (=R1) too close to T(=R2) to start integration'
1926 CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T)
1927 GO TO 700
1928 623 CONTINUE
1929 MSG='DLSODE- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) '
1930 CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP)
1931 GO TO 700
1932 624 CONTINUE
1933 MSG='DLSODE- ITASK = 4 OR 5 and TCRIT (=R1) behind TCUR (=R2) '
1934 CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN)
1935 GO TO 700
1936 625 CONTINUE
1937 MSG='DLSODE- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) '
1938 CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT)
1939 GO TO 700
1940 626 MSG = 'DLSODE- At start of problem, too much accuracy '
1941 CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0)
1942 MSG=' requested for precision of machine.. See TOLSF (=R1) '
1943 CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0)
1944 RWORK(14) = TOLSF
1945 GO TO 700
1946 627 MSG = 'DLSODE- Trouble in DINTDY. ITASK = I1, TOUT = R1'
1947 CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0)
1949 700 ISTATE = -3
1950 RETURN
1952 800 MSG = 'DLSODE- Run aborted.. apparent infinite loop '
1953 CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0)
1954 RETURN
1955 !----------------------- END OF SUBROUTINE DLSODE ----------------------
1956 !END SUBROUTINE DLSODE
1957 CONTAINS
1960 !DECK DUMACH
1961 KPP_REAL FUNCTION DUMACH ()
1962 !***BEGIN PROLOGUE DUMACH
1963 !***PURPOSE Compute the unit roundoff of the machine.
1964 !***CATEGORY R1
1965 !***TYPE KPP_REAL (RUMACH-S, DUMACH-D)
1966 !***KEYWORDS MACHINE CONSTANTS
1967 !***AUTHOR Hindmarsh, Alan C., (LLNL)
1968 !***DESCRIPTION
1969 ! *Usage:
1970 ! KPP_REAL A, DUMACH
1971 ! A = DUMACH()
1973 ! *Function Return Values:
1974 ! A : the unit roundoff of the machine.
1976 ! *Description:
1977 ! The unit roundoff is defined as the smallest positive machine
1978 ! number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH
1979 ! in a machine-independent manner.
1981 !***REFERENCES (NONE)
1982 !***ROUTINES CALLED DUMSUM
1983 !***REVISION HISTORY (YYYYMMDD)
1984 ! 19930216 DATE WRITTEN
1985 ! 19930818 Added SLATEC-format prologue. (FNF)
1986 ! 20030707 Added DUMSUM to force normal storage of COMP. (ACH)
1987 !***END PROLOGUE DUMACH
1989 KPP_REAL U, COMP
1990 !***FIRST EXECUTABLE STATEMENT DUMACH
1991 U = 1.0D0
1992 10 U = U*0.5D0
1993 CALL DUMSUM(1.0D0, U, COMP)
1994 IF (COMP .NE. 1.0D0) GO TO 10
1995 DUMACH = U*2.0D0
1996 RETURN
1997 !----------------------- End of Function DUMACH ------------------------
1998 END FUNCTION DUMACH
2000 SUBROUTINE DUMSUM(A,B,C)
2001 ! Routine to force normal storing of A + B, for DUMACH.
2002 KPP_REAL A, B, C
2003 C = A + B
2004 RETURN
2005 END SUBROUTINE DUMSUM
2006 !DECK DCFODE
2007 SUBROUTINE DCFODE (METH, ELCO, TESCO)
2008 !***BEGIN PROLOGUE DCFODE
2009 !***SUBSIDIARY
2010 !***PURPOSE Set ODE integrator coefficients.
2011 !***TYPE KPP_REAL (SCFODE-S, DCFODE-D)
2012 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2013 !***DESCRIPTION
2015 ! DCFODE is called by the integrator routine to set coefficients
2016 ! needed there. The coefficients for the current method, as
2017 ! given by the value of METH, are set for all orders and saved.
2018 ! The maximum order assumed here is 12 if METH = 1 and 5 if METH = 2.
2019 ! (A smaller value of the maximum order is also allowed.)
2020 ! DCFODE is called once at the beginning of the problem,
2021 ! and is not called again unless and until METH is changed.
2023 ! The ELCO array contains the basic method coefficients.
2024 ! The coefficients el(i), 1 .le. i .le. nq+1, for the method of
2025 ! order nq are stored in ELCO(i,nq). They are given by a genetrating
2026 ! polynomial, i.e.,
2027 ! l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq.
2028 ! For the implicit Adams methods, l(x) is given by
2029 ! dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1), l(-1) = 0.
2030 ! For the BDF methods, l(x) is given by
2031 ! l(x) = (x+1)*(x+2)* ... *(x+nq)/K,
2032 ! where K = factorial(nq)*(1 + 1/2 + ... + 1/nq).
2034 ! The TESCO array contains test constants used for the
2035 ! local error test and the selection of step size and/or order.
2036 ! At order nq, TESCO(k,nq) is used for the selection of step
2037 ! size at order nq - 1 if k = 1, at order nq if k = 2, and at order
2038 ! nq + 1 if k = 3.
2040 !***SEE ALSO DLSODE
2041 !***ROUTINES CALLED (NONE)
2042 !***REVISION HISTORY (YYMMDD)
2043 ! 791129 DATE WRITTEN
2044 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
2045 ! 890503 Minor cosmetic changes. (FNF)
2046 ! 930809 Renamed to allow single/double precision versions. (ACH)
2047 !***END PROLOGUE DCFODE
2048 !**End
2049 INTEGER METH
2050 INTEGER I, IB, NQ, NQM1, NQP1
2051 KPP_REAL ELCO(13,12), TESCO(3,12), PC(12)
2052 KPP_REAL AGAMQ, FNQ, FNQM1, PINT, RAGQ, RQFAC, RQ1FAC, TSIGN, XPIN
2054 !***FIRST EXECUTABLE STATEMENT DCFODE
2055 GO TO (100, 200), METH
2057 100 ELCO(1,1) = 1.0D0
2058 ELCO(2,1) = 1.0D0
2059 TESCO(1,1) = 0.0D0
2060 TESCO(2,1) = 2.0D0
2061 TESCO(1,2) = 1.0D0
2062 TESCO(3,12) = 0.0D0
2063 PC(1) = 1.0D0
2064 RQFAC = 1.0D0
2065 DO 140 NQ = 2,12
2066 !-----------------------------------------------------------------------
2067 ! The PC array will contain the coefficients of the polynomial
2068 ! p(x) = (x+1)*(x+2)*...*(x+nq-1).
2069 ! Initially, p(x) = 1.
2070 !-----------------------------------------------------------------------
2071 RQ1FAC = RQFAC
2072 RQFAC = RQFAC/NQ
2073 NQM1 = NQ - 1
2074 FNQM1 = NQM1
2075 NQP1 = NQ + 1
2076 ! Form coefficients of p(x)*(x+nq-1). ----------------------------------
2077 PC(NQ) = 0.0D0
2078 DO 110 IB = 1,NQM1
2079 I = NQP1 - IB
2080 110 PC(I) = PC(I-1) + FNQM1*PC(I)
2081 PC(1) = FNQM1*PC(1)
2082 ! Compute integral, -1 to 0, of p(x) and x*p(x). -----------------------
2083 PINT = PC(1)
2084 XPIN = PC(1)/2.0D0
2085 TSIGN = 1.0D0
2086 DO 120 I = 2,NQ
2087 TSIGN = -TSIGN
2088 PINT = PINT + TSIGN*PC(I)/I
2089 120 XPIN = XPIN + TSIGN*PC(I)/(I+1)
2090 ! Store coefficients in ELCO and TESCO. --------------------------------
2091 ELCO(1,NQ) = PINT*RQ1FAC
2092 ELCO(2,NQ) = 1.0D0
2093 DO 130 I = 2,NQ
2094 130 ELCO(I+1,NQ) = RQ1FAC*PC(I)/I
2095 AGAMQ = RQFAC*XPIN
2096 RAGQ = 1.0D0/AGAMQ
2097 TESCO(2,NQ) = RAGQ
2098 IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/NQP1
2099 TESCO(3,NQM1) = RAGQ
2100 140 CONTINUE
2101 RETURN
2103 200 PC(1) = 1.0D0
2104 RQ1FAC = 1.0D0
2105 DO 230 NQ = 1,5
2106 !-----------------------------------------------------------------------
2107 ! The PC array will contain the coefficients of the polynomial
2108 ! p(x) = (x+1)*(x+2)*...*(x+nq).
2109 ! Initially, p(x) = 1.
2110 !-----------------------------------------------------------------------
2111 FNQ = NQ
2112 NQP1 = NQ + 1
2113 ! Form coefficients of p(x)*(x+nq). ------------------------------------
2114 PC(NQP1) = 0.0D0
2115 DO 210 IB = 1,NQ
2116 I = NQ + 2 - IB
2117 210 PC(I) = PC(I-1) + FNQ*PC(I)
2118 PC(1) = FNQ*PC(1)
2119 ! Store coefficients in ELCO and TESCO. --------------------------------
2120 DO 220 I = 1,NQP1
2121 220 ELCO(I,NQ) = PC(I)/PC(2)
2122 ELCO(2,NQ) = 1.0D0
2123 TESCO(1,NQ) = RQ1FAC
2124 TESCO(2,NQ) = NQP1/ELCO(1,NQ)
2125 TESCO(3,NQ) = (NQ+2)/ELCO(1,NQ)
2126 RQ1FAC = RQ1FAC/FNQ
2127 230 CONTINUE
2128 RETURN
2129 !----------------------- END OF SUBROUTINE DCFODE ----------------------
2130 END SUBROUTINE DCFODE
2131 !DECK DINTDY
2132 SUBROUTINE DINTDY (T, K, YH, NYH, DKY, IFLAG)
2133 !***BEGIN PROLOGUE DINTDY
2134 !***SUBSIDIARY
2135 !***PURPOSE Interpolate solution derivatives.
2136 !***TYPE KPP_REAL (SINTDY-S, DINTDY-D)
2137 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2138 !***DESCRIPTION
2140 ! DINTDY computes interpolated values of the K-th derivative of the
2141 ! dependent variable vector y, and stores it in DKY. This routine
2142 ! is called within the package with K = 0 and T = TOUT, but may
2143 ! also be called by the user for any K up to the current order.
2144 ! (See detailed instructions in the usage documentation.)
2146 ! The computed values in DKY are gotten by interpolation using the
2147 ! Nordsieck history array YH. This array corresponds uniquely to a
2148 ! vector-valued polynomial of degree NQCUR or less, and DKY is set
2149 ! to the K-th derivative of this polynomial at T.
2150 ! The formula for DKY is:
2151 ! q
2152 ! DKY(i) = sum c(j,K) * (T - tn)**(j-K) * h**(-j) * YH(i,j+1)
2153 ! j=K
2154 ! where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, tn = TCUR, h = HCUR.
2155 ! The quantities nq = NQCUR, l = nq+1, N = NEQ, tn, and h are
2156 ! communicated by COMMON. The above sum is done in reverse order.
2157 ! IFLAG is returned negative if either K or T is out of bounds.
2159 !***SEE ALSO DLSODE
2160 !***ROUTINES CALLED XERRWD
2161 !***COMMON BLOCKS DLS001
2162 !***REVISION HISTORY (YYMMDD)
2163 ! 791129 DATE WRITTEN
2164 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
2165 ! 890503 Minor cosmetic changes. (FNF)
2166 ! 930809 Renamed to allow single/double precision versions. (ACH)
2167 ! 010418 Reduced size of Common block /DLS001/. (ACH)
2168 ! 031105 Restored 'own' variables to Common block /DLS001/, to
2169 ! enable interrupt/restart feature. (ACH)
2170 ! 050427 Corrected roundoff decrement in TP. (ACH)
2171 !***END PROLOGUE DINTDY
2172 !**End
2173 INTEGER K, NYH, IFLAG
2174 KPP_REAL T, YH(NYH,*), DKY(*)
2175 INTEGER IOWND, IOWNS, &
2176 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2177 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2178 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2179 KPP_REAL ROWNS, &
2180 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
2181 COMMON /DLS001/ ROWNS(209), &
2182 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, &
2183 IOWND(6), IOWNS(6), &
2184 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2185 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2186 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2187 INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1
2188 KPP_REAL C, R, S, TP
2189 CHARACTER*80 MSG
2191 !***FIRST EXECUTABLE STATEMENT DINTDY
2192 IFLAG = 0
2193 IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80
2194 TP = TN - HU - 100.0D0*UROUND*SIGN(ABS(TN) + ABS(HU), HU)
2195 IF ((T-TP)*(T-TN) .GT. 0.0D0) GO TO 90
2197 S = (T - TN)/H
2198 IC = 1
2199 IF (K .EQ. 0) GO TO 15
2200 JJ1 = L - K
2201 DO 10 JJ = JJ1,NQ
2202 10 IC = IC*JJ
2203 15 C = IC
2204 DO 20 I = 1,N
2205 20 DKY(I) = C*YH(I,L)
2206 IF (K .EQ. NQ) GO TO 55
2207 JB2 = NQ - K
2208 DO 50 JB = 1,JB2
2209 J = NQ - JB
2210 JP1 = J + 1
2211 IC = 1
2212 IF (K .EQ. 0) GO TO 35
2213 JJ1 = JP1 - K
2214 DO 30 JJ = JJ1,J
2215 30 IC = IC*JJ
2216 35 C = IC
2217 DO 40 I = 1,N
2218 40 DKY(I) = C*YH(I,JP1) + S*DKY(I)
2219 50 CONTINUE
2220 IF (K .EQ. 0) RETURN
2221 55 R = H**(-K)
2222 DO 60 I = 1,N
2223 60 DKY(I) = R*DKY(I)
2224 RETURN
2226 80 MSG = 'DINTDY- K (=I1) illegal '
2227 CALL XERRWD (MSG, 30, 51, 0, 1, K, 0, 0, 0.0D0, 0.0D0)
2228 IFLAG = -1
2229 RETURN
2230 90 MSG = 'DINTDY- T (=R1) illegal '
2231 CALL XERRWD (MSG, 30, 52, 0, 0, 0, 0, 1, T, 0.0D0)
2232 MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) '
2233 CALL XERRWD (MSG, 60, 52, 0, 0, 0, 0, 2, TP, TN)
2234 IFLAG = -2
2235 RETURN
2236 !----------------------- END OF SUBROUTINE DINTDY ----------------------
2237 END SUBROUTINE DINTDY
2238 !DECK DPREPJ
2239 SUBROUTINE DPREPJ (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, F, JAC)
2240 !***BEGIN PROLOGUE DPREPJ
2241 !***SUBSIDIARY
2242 !***PURPOSE Compute and process Newton iteration matrix.
2243 !***TYPE KPP_REAL (SPREPJ-S, DPREPJ-D)
2244 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2245 !***DESCRIPTION
2247 ! DPREPJ is called by DSTODE to compute and process the matrix
2248 ! P = I - h*el(1)*J , where J is an approximation to the Jacobian.
2249 ! Here J is computed by the user-supplied routine JAC if
2250 ! MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5.
2251 ! If MITER = 3, a diagonal approximation to J is used.
2252 ! J is stored in WM and replaced by P. If MITER .ne. 3, P is then
2253 ! subjected to LU decomposition in preparation for later solution
2254 ! of linear systems with P as coefficient matrix. This is done
2255 ! by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5.
2257 ! In addition to variables described in DSTODE and DLSODE prologues,
2258 ! communication with DPREPJ uses the following:
2259 ! Y = array containing predicted values on entry.
2260 ! FTEM = work array of length N (ACOR in DSTODE).
2261 ! SAVF = array containing f evaluated at predicted y.
2262 ! WM = real work space for matrices. On output it contains the
2263 ! inverse diagonal matrix if MITER = 3 and the LU decomposition
2264 ! of P if MITER is 1, 2 , 4, or 5.
2265 ! Storage of matrix elements starts at WM(3).
2266 ! WM also contains the following matrix-related data:
2267 ! WM(1) = SQRT(UROUND), used in numerical Jacobian increments.
2268 ! WM(2) = H*EL0, saved for later use if MITER = 3.
2269 ! IWM = integer work space containing pivot information, starting at
2270 ! IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band
2271 ! parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
2272 ! EL0 = EL(1) (input).
2273 ! IERPJ = output error flag, = 0 if no trouble, .gt. 0 if
2274 ! P matrix found to be singular.
2275 ! JCUR = output flag = 1 to indicate that the Jacobian matrix
2276 ! (or approximation) is now current.
2277 ! This routine also uses the COMMON variables EL0, H, TN, UROUND,
2278 ! MITER, N, NFE, and NJE.
2280 !***SEE ALSO DLSODE
2281 !***ROUTINES CALLED DGBFA, DGEFA, DVNORM
2282 !***COMMON BLOCKS DLS001
2283 !***REVISION HISTORY (YYMMDD)
2284 ! 791129 DATE WRITTEN
2285 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
2286 ! 890504 Minor cosmetic changes. (FNF)
2287 ! 930809 Renamed to allow single/double precision versions. (ACH)
2288 ! 010418 Reduced size of Common block /DLS001/. (ACH)
2289 ! 031105 Restored 'own' variables to Common block /DLS001/, to
2290 ! enable interrupt/restart feature. (ACH)
2291 !***END PROLOGUE DPREPJ
2292 !**End
2293 EXTERNAL F, JAC
2294 INTEGER NEQ, NYH, IWM(*)
2295 KPP_REAL Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), WM(*)
2296 INTEGER IOWND, IOWNS, &
2297 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2298 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2299 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2300 KPP_REAL ROWNS, &
2301 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
2302 COMMON /DLS001/ ROWNS(209), &
2303 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, &
2304 IOWND(6), IOWNS(6), &
2305 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2306 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2307 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2308 INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP, &
2309 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1
2310 KPP_REAL CON, DI, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ
2311 !KPP_REAL DVNORM
2313 !***FIRST EXECUTABLE STATEMENT DPREPJ
2314 NJE = NJE + 1
2315 IERPJ = 0
2316 JCUR = 1
2317 HL0 = H*EL0
2318 CON = -HL0
2320 #ifdef FULL_ALGEBRA
2321 LENP = N*N
2322 DO i = 1,LENP
2323 WM(i+2) = 0.0D0
2324 END DO
2325 CALL JAC_CHEM (NEQ, TN, Y, WM(3))
2326 DO I = 1,LENP
2327 WM(I+2) = WM(I+2)*CON
2328 END DO
2329 ! Add identity matrix
2330 J = 3
2331 NP1 = N + 1
2332 DO I = 1,N
2333 WM(J) = WM(J) + 1.0D0
2334 J = J + NP1
2335 END DO
2336 ! Do LU decomposition on P
2337 CALL DGETRF(N,N,WM(3),N,IWM(21),IER)
2338 #else
2339 CALL JAC_CHEM (NEQ, TN, Y, WM(3))
2340 DO i = 1,LU_NONZERO
2341 WM(i+2) = WM(i+2)*CON
2342 END DO
2343 ! Add identity matrix
2344 DO i = 1,N
2345 j = 2+LU_DIAG(i)
2346 WM(j) = WM(j) + 1.0D0
2347 END DO
2348 ! Do LU decomposition on P
2349 CALL KppDecomp(WM(3),IER)
2350 #endif
2351 IF (IER .NE. 0) IERPJ = 1
2352 RETURN
2353 !----------------------- END OF SUBROUTINE DPREPJ ----------------------
2354 END SUBROUTINE DPREPJ
2355 !DECK DSOLSY
2356 SUBROUTINE DSOLSY (WM, IWM, X, TEM)
2357 !***BEGIN PROLOGUE DSOLSY
2358 !***SUBSIDIARY
2359 !***PURPOSE ODEPACK linear system solver.
2360 !***TYPE KPP_REAL (SSOLSY-S, DSOLSY-D)
2361 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2362 !***DESCRIPTION
2364 ! This routine manages the solution of the linear system arising from
2365 ! a chord iteration. It is called if MITER .ne. 0.
2366 ! If MITER is 1 or 2, it calls DGESL to accomplish this.
2367 ! If MITER = 3 it updates the coefficient h*EL0 in the diagonal
2368 ! matrix, and then computes the solution.
2369 ! If MITER is 4 or 5, it calls DGBSL.
2370 ! Communication with DSOLSY uses the following variables:
2371 ! WM = real work space containing the inverse diagonal matrix if
2372 ! MITER = 3 and the LU decomposition of the matrix otherwise.
2373 ! Storage of matrix elements starts at WM(3).
2374 ! WM also contains the following matrix-related data:
2375 ! WM(1) = SQRT(UROUND) (not used here),
2376 ! WM(2) = HL0, the previous value of h*EL0, used if MITER = 3.
2377 ! IWM = integer work space containing pivot information, starting at
2378 ! IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band
2379 ! parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
2380 ! X = the right-hand side vector on input, and the solution vector
2381 ! on output, of length N.
2382 ! TEM = vector of work space of length N, not used in this version.
2383 ! IERSL = output flag (in COMMON). IERSL = 0 if no trouble occurred.
2384 ! IERSL = 1 if a singular matrix arose with MITER = 3.
2385 ! This routine also uses the COMMON variables EL0, H, MITER, and N.
2387 !***SEE ALSO DLSODE
2388 !***ROUTINES CALLED DGBSL, DGESL
2389 !***COMMON BLOCKS DLS001
2390 !***REVISION HISTORY (YYMMDD)
2391 ! 791129 DATE WRITTEN
2392 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
2393 ! 890503 Minor cosmetic changes. (FNF)
2394 ! 930809 Renamed to allow single/double precision versions. (ACH)
2395 ! 010418 Reduced size of Common block /DLS001/. (ACH)
2396 ! 031105 Restored 'own' variables to Common block /DLS001/, to
2397 ! enable interrupt/restart feature. (ACH)
2398 !***END PROLOGUE DSOLSY
2399 !**End
2400 INTEGER IWM(*)
2401 KPP_REAL WM(*), X(*), TEM(*)
2402 INTEGER IOWND, IOWNS, &
2403 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2404 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2405 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2406 KPP_REAL ROWNS, &
2407 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
2408 COMMON /DLS001/ ROWNS(209), &
2409 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, &
2410 IOWND(6), IOWNS(6), &
2411 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2412 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2413 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2414 INTEGER I, MEBAND, ML, MU
2415 KPP_REAL DI, HL0, PHL0, R
2417 !***FIRST EXECUTABLE STATEMENT DSOLSY
2418 IERSL = 0
2419 #ifdef FULL_ALGEBRA
2420 CALL DGETRS ('N',N,1,WM(3),N,IWM(21),X,N,0)
2421 #else
2422 CALL KppSolve(WM(3),X)
2423 #endif
2424 RETURN
2425 !----------------------- END OF SUBROUTINE DSOLSY ----------------------
2426 END SUBROUTINE DSOLSY
2427 !DECK DSRCOM
2428 SUBROUTINE DSRCOM (RSAV, ISAV, JOB)
2429 !***BEGIN PROLOGUE DSRCOM
2430 !***SUBSIDIARY
2431 !***PURPOSE Save/restore ODEPACK COMMON blocks.
2432 !***TYPE KPP_REAL (SSRCOM-S, DSRCOM-D)
2433 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2434 !***DESCRIPTION
2436 ! This routine saves or restores (depending on JOB) the contents of
2437 ! the COMMON block DLS001, which is used internally
2438 ! by one or more ODEPACK solvers.
2440 ! RSAV = real array of length 218 or more.
2441 ! ISAV = integer array of length 37 or more.
2442 ! JOB = flag indicating to save or restore the COMMON blocks:
2443 ! JOB = 1 if COMMON is to be saved (written to RSAV/ISAV)
2444 ! JOB = 2 if COMMON is to be restored (read from RSAV/ISAV)
2445 ! A call with JOB = 2 presumes a prior call with JOB = 1.
2447 !***SEE ALSO DLSODE
2448 !***ROUTINES CALLED (NONE)
2449 !***COMMON BLOCKS DLS001
2450 !***REVISION HISTORY (YYMMDD)
2451 ! 791129 DATE WRITTEN
2452 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
2453 ! 890503 Minor cosmetic changes. (FNF)
2454 ! 921116 Deleted treatment of block /EH0001/. (ACH)
2455 ! 930801 Reduced Common block length by 2. (ACH)
2456 ! 930809 Renamed to allow single/double precision versions. (ACH)
2457 ! 010418 Reduced Common block length by 209+12. (ACH)
2458 ! 031105 Restored 'own' variables to Common block /DLS001/, to
2459 ! enable interrupt/restart feature. (ACH)
2460 ! 031112 Added SAVE statement for data-loaded constants.
2461 !***END PROLOGUE DSRCOM
2462 !**End
2463 INTEGER ISAV(*), JOB
2464 INTEGER ILS
2465 INTEGER I, LENILS, LENRLS
2466 KPP_REAL RSAV(*), RLS
2467 SAVE LENRLS, LENILS
2468 COMMON /DLS001/ RLS(218), ILS(37)
2469 DATA LENRLS/218/, LENILS/37/
2471 !***FIRST EXECUTABLE STATEMENT DSRCOM
2472 IF (JOB .EQ. 2) GO TO 100
2474 DO 10 I = 1,LENRLS
2475 10 RSAV(I) = RLS(I)
2476 DO 20 I = 1,LENILS
2477 20 ISAV(I) = ILS(I)
2478 RETURN
2480 100 CONTINUE
2481 DO 110 I = 1,LENRLS
2482 110 RLS(I) = RSAV(I)
2483 DO 120 I = 1,LENILS
2484 120 ILS(I) = ISAV(I)
2485 RETURN
2486 !----------------------- END OF SUBROUTINE DSRCOM ----------------------
2487 END SUBROUTINE DSRCOM
2488 !DECK DSTODE
2489 SUBROUTINE DSTODE (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, &
2490 WM, IWM, F, JAC)
2491 !WM, IWM, F, JAC, PJAC, SLVS)
2492 !***BEGIN PROLOGUE DSTODE
2493 !***SUBSIDIARY
2494 !***PURPOSE Performs one step of an ODEPACK integration.
2495 !***TYPE KPP_REAL (SSTODE-S, DSTODE-D)
2496 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2497 !***DESCRIPTION
2499 ! DSTODE performs one step of the integration of an initial value
2500 ! problem for a system of ordinary differential equations.
2501 ! Note: DSTODE is independent of the value of the iteration method
2502 ! indicator MITER, when this is .ne. 0, and hence is independent
2503 ! of the type of chord method used, or the Jacobian structure.
2504 ! Communication with DSTODE is done with the following variables:
2506 ! NEQ = integer array containing problem size in NEQ, and
2507 ! passed as the NEQ argument in all calls to F and JAC.
2508 ! Y = an array of length .ge. N used as the Y argument in
2509 ! all calls to F and JAC.
2510 ! YH = an NYH by LMAX array containing the dependent variables
2511 ! and their approximate scaled derivatives, where
2512 ! LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
2513 ! j-th derivative of y(i), scaled by h**j/factorial(j)
2514 ! (j = 0,1,...,NQ). on entry for the first step, the first
2515 ! two columns of YH must be set from the initial values.
2516 ! NYH = a constant integer .ge. N, the first dimension of YH.
2517 ! YH1 = a one-dimensional array occupying the same space as YH.
2518 ! EWT = an array of length N containing multiplicative weights
2519 ! for local error measurements. Local errors in Y(i) are
2520 ! compared to 1.0/EWT(i) in various error tests.
2521 ! SAVF = an array of working storage, of length N.
2522 ! Also used for input of YH(*,MAXORD+2) when JSTART = -1
2523 ! and MAXORD .lt. the current order NQ.
2524 ! ACOR = a work array of length N, used for the accumulated
2525 ! corrections. On a successful return, ACOR(i) contains
2526 ! the estimated one-step local error in Y(i).
2527 ! WM,IWM = real and integer work arrays associated with matrix
2528 ! operations in chord iteration (MITER .ne. 0).
2529 ! PJAC = name of routine to evaluate and preprocess Jacobian matrix
2530 ! and P = I - h*el0*JAC, if a chord method is being used.
2531 ! SLVS = name of routine to solve linear system in chord iteration.
2532 ! CCMAX = maximum relative change in h*el0 before PJAC is called.
2533 ! H = the step size to be attempted on the next step.
2534 ! H is altered by the error control algorithm during the
2535 ! problem. H can be either positive or negative, but its
2536 ! sign must remain constant throughout the problem.
2537 ! HMIN = the minimum absolute value of the step size h to be used.
2538 ! HMXI = inverse of the maximum absolute value of h to be used.
2539 ! HMXI = 0.0 is allowed and corresponds to an infinite hmax.
2540 ! HMIN and HMXI may be changed at any time, but will not
2541 ! take effect until the next change of h is considered.
2542 ! TN = the independent variable. TN is updated on each step taken.
2543 ! JSTART = an integer used for input only, with the following
2544 ! values and meanings:
2545 ! 0 perform the first step.
2546 ! .gt.0 take a new step continuing from the last.
2547 ! -1 take the next step with a new value of H, MAXORD,
2548 ! N, METH, MITER, and/or matrix parameters.
2549 ! -2 take the next step with a new value of H,
2550 ! but with other inputs unchanged.
2551 ! On return, JSTART is set to 1 to facilitate continuation.
2552 ! KFLAG = a completion code with the following meanings:
2553 ! 0 the step was succesful.
2554 ! -1 the requested error could not be achieved.
2555 ! -2 corrector convergence could not be achieved.
2556 ! -3 fatal error in PJAC or SLVS.
2557 ! A return with KFLAG = -1 or -2 means either
2558 ! abs(H) = HMIN or 10 consecutive failures occurred.
2559 ! On a return with KFLAG negative, the values of TN and
2560 ! the YH array are as of the beginning of the last
2561 ! step, and H is the last step size attempted.
2562 ! MAXORD = the maximum order of integration method to be allowed.
2563 ! MAXCOR = the maximum number of corrector iterations allowed.
2564 ! MSBP = maximum number of steps between PJAC calls (MITER .gt. 0).
2565 ! MXNCF = maximum number of convergence failures allowed.
2566 ! METH/MITER = the method flags. See description in driver.
2567 ! N = the number of first-order differential equations.
2568 ! The values of CCMAX, H, HMIN, HMXI, TN, JSTART, KFLAG, MAXORD,
2569 ! MAXCOR, MSBP, MXNCF, METH, MITER, and N are communicated via COMMON.
2571 !***SEE ALSO DLSODE
2572 !***ROUTINES CALLED DCFODE, DVNORM
2573 !***COMMON BLOCKS DLS001
2574 !***REVISION HISTORY (YYMMDD)
2575 ! 791129 DATE WRITTEN
2576 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
2577 ! 890503 Minor cosmetic changes. (FNF)
2578 ! 930809 Renamed to allow single/double precision versions. (ACH)
2579 ! 010418 Reduced size of Common block /DLS001/. (ACH)
2580 ! 031105 Restored 'own' variables to Common block /DLS001/, to
2581 ! enable interrupt/restart feature. (ACH)
2582 !***END PROLOGUE DSTODE
2583 !**End
2584 EXTERNAL F, JAC !, PJAC, SLVS
2585 INTEGER NEQ, NYH, IWM(*)
2586 KPP_REAL Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), &
2587 ACOR(*), WM(*)
2588 INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, &
2589 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2590 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2591 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2592 INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ
2593 KPP_REAL CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, &
2594 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
2595 KPP_REAL DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, &
2596 EXUP,R, RH, RHDN, RHSM, RHUP, TOLD
2597 !KPP_REAL DVNORM
2598 COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), &
2599 HOLD, RMAX, TESCO(3,12), &
2600 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, &
2601 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, &
2602 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, &
2603 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, &
2604 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2606 !***FIRST EXECUTABLE STATEMENT DSTODE
2607 KFLAG = 0
2608 TOLD = TN
2609 NCF = 0
2610 IERPJ = 0
2611 IERSL = 0
2612 JCUR = 0
2613 ICF = 0
2614 DELP = 0.0D0
2615 IF (JSTART .GT. 0) GO TO 200
2616 IF (JSTART .EQ. -1) GO TO 100
2617 IF (JSTART .EQ. -2) GO TO 160
2618 !-----------------------------------------------------------------------
2619 ! On the first call, the order is set to 1, and other variables are
2620 ! initialized. RMAX is the maximum ratio by which H can be increased
2621 ! in a single step. It is initially 1.E4 to compensate for the small
2622 ! initial H, but then is normally equal to 10. If a failure
2623 ! occurs (in corrector convergence or error test), RMAX is set to 2
2624 ! for the next increase.
2625 !-----------------------------------------------------------------------
2626 LMAX = MAXORD + 1
2627 NQ = 1
2628 L = 2
2629 IALTH = 2
2630 RMAX = 10000.0D0
2631 RC = 0.0D0
2632 EL0 = 1.0D0
2633 CRATE = 0.7D0
2634 HOLD = H
2635 MEO = METH
2636 NSLP = 0
2637 IPUP = MITER
2638 IRET = 3
2639 GO TO 140
2640 !-----------------------------------------------------------------------
2641 ! The following block handles preliminaries needed when JSTART = -1.
2642 ! IPUP is set to MITER to force a matrix update.
2643 ! If an order increase is about to be considered (IALTH = 1),
2644 ! IALTH is reset to 2 to postpone consideration one more step.
2645 ! If the caller has changed METH, DCFODE is called to reset
2646 ! the coefficients of the method.
2647 ! If the caller has changed MAXORD to a value less than the current
2648 ! order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly.
2649 ! If H is to be changed, YH must be rescaled.
2650 ! If H or METH is being changed, IALTH is reset to L = NQ + 1
2651 ! to prevent further changes in H for that many steps.
2652 !-----------------------------------------------------------------------
2653 100 IPUP = MITER
2654 LMAX = MAXORD + 1
2655 IF (IALTH .EQ. 1) IALTH = 2
2656 IF (METH .EQ. MEO) GO TO 110
2657 CALL DCFODE (METH, ELCO, TESCO)
2658 MEO = METH
2659 IF (NQ .GT. MAXORD) GO TO 120
2660 IALTH = L
2661 IRET = 1
2662 GO TO 150
2663 110 IF (NQ .LE. MAXORD) GO TO 160
2664 120 NQ = MAXORD
2665 L = LMAX
2666 DO 125 I = 1,L
2667 125 EL(I) = ELCO(I,NQ)
2668 NQNYH = NQ*NYH
2669 RC = RC*EL(1)/EL0
2670 EL0 = EL(1)
2671 CONIT = 0.5D0/(NQ+2)
2672 DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L)
2673 EXDN = 1.0D0/L
2674 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
2675 RH = MIN(RHDN,1.0D0)
2676 IREDO = 3
2677 IF (H .EQ. HOLD) GO TO 170
2678 RH = MIN(RH,ABS(H/HOLD))
2679 H = HOLD
2680 GO TO 175
2681 !-----------------------------------------------------------------------
2682 ! DCFODE is called to get all the integration coefficients for the
2683 ! current METH. Then the EL vector and related constants are reset
2684 ! whenever the order NQ is changed, or at the start of the problem.
2685 !-----------------------------------------------------------------------
2686 140 CALL DCFODE (METH, ELCO, TESCO)
2687 150 DO 155 I = 1,L
2688 155 EL(I) = ELCO(I,NQ)
2689 NQNYH = NQ*NYH
2690 RC = RC*EL(1)/EL0
2691 EL0 = EL(1)
2692 CONIT = 0.5D0/(NQ+2)
2693 GO TO (160, 170, 200), IRET
2694 !-----------------------------------------------------------------------
2695 ! If H is being changed, the H ratio RH is checked against
2696 ! RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to
2697 ! L = NQ + 1 to prevent a change of H for that many steps, unless
2698 ! forced by a convergence or error test failure.
2699 !-----------------------------------------------------------------------
2700 160 IF (H .EQ. HOLD) GO TO 200
2701 RH = H/HOLD
2702 H = HOLD
2703 IREDO = 3
2704 GO TO 175
2705 170 RH = MAX(RH,HMIN/ABS(H))
2706 175 RH = MIN(RH,RMAX)
2707 RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH)
2708 R = 1.0D0
2709 DO 180 J = 2,L
2710 R = R*RH
2711 DO 180 I = 1,N
2712 180 YH(I,J) = YH(I,J)*R
2713 H = H*RH
2714 RC = RC*RH
2715 IALTH = L
2716 IF (IREDO .EQ. 0) GO TO 690
2717 !-----------------------------------------------------------------------
2718 ! This section computes the predicted values by effectively
2719 ! multiplying the YH array by the Pascal Triangle matrix.
2720 ! RC is the ratio of new to old values of the coefficient H*EL(1).
2721 ! When RC differs from 1 by more than CCMAX, IPUP is set to MITER
2722 ! to force PJAC to be called, if a Jacobian is involved.
2723 ! In any case, PJAC is called at least every MSBP steps.
2724 !-----------------------------------------------------------------------
2725 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER
2726 IF (NST .GE. NSLP+MSBP) IPUP = MITER
2727 TN = TN + H
2728 I1 = NQNYH + 1
2729 DO 215 JB = 1,NQ
2730 I1 = I1 - NYH
2731 !dir$ ivdep
2732 DO 210 I = I1,NQNYH
2733 210 YH1(I) = YH1(I) + YH1(I+NYH)
2734 215 CONTINUE
2735 !-----------------------------------------------------------------------
2736 ! Up to MAXCOR corrector iterations are taken. A convergence test is
2737 ! made on the R.M.S. norm of each correction, weighted by the error
2738 ! weight vector EWT. The sum of the corrections is accumulated in the
2739 ! vector ACOR(i). The YH array is not altered in the corrector loop.
2740 !-----------------------------------------------------------------------
2741 220 M = 0
2742 DO 230 I = 1,N
2743 230 Y(I) = YH(I,1)
2744 CALL F (NEQ, TN, Y, SAVF)
2745 NFE = NFE + 1
2746 IF (IPUP .LE. 0) GO TO 250
2747 !-----------------------------------------------------------------------
2748 ! If indicated, the matrix P = I - h*el(1)*J is reevaluated and
2749 ! preprocessed before starting the corrector iteration. IPUP is set
2750 ! to 0 as an indicator that this has been done.
2751 !-----------------------------------------------------------------------
2752 !CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC)
2753 CALL DPREPJ(NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC)
2754 IPUP = 0
2755 RC = 1.0D0
2756 NSLP = NST
2757 CRATE = 0.7D0
2758 IF (IERPJ .NE. 0) GO TO 430
2759 250 DO 260 I = 1,N
2760 260 ACOR(I) = 0.0D0
2761 270 IF (MITER .NE. 0) GO TO 350
2762 !-----------------------------------------------------------------------
2763 ! In the case of functional iteration, update Y directly from
2764 ! the result of the last function evaluation.
2765 !-----------------------------------------------------------------------
2766 DO 290 I = 1,N
2767 SAVF(I) = H*SAVF(I) - YH(I,2)
2768 290 Y(I) = SAVF(I) - ACOR(I)
2769 DEL = DVNORM (N, Y, EWT)
2770 DO 300 I = 1,N
2771 Y(I) = YH(I,1) + EL(1)*SAVF(I)
2772 300 ACOR(I) = SAVF(I)
2773 GO TO 400
2774 !-----------------------------------------------------------------------
2775 ! In the case of the chord method, compute the corrector error,
2776 ! and solve the linear system with that as right-hand side and
2777 ! P as coefficient matrix.
2778 !-----------------------------------------------------------------------
2779 350 DO 360 I = 1,N
2780 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
2781 !CALL SLVS (WM, IWM, Y, SAVF)
2782 CALL DSOLSY(WM, IWM, Y, SAVF)
2783 IF (IERSL .LT. 0) GO TO 430
2784 IF (IERSL .GT. 0) GO TO 410
2785 DEL = DVNORM (N, Y, EWT)
2786 DO 380 I = 1,N
2787 ACOR(I) = ACOR(I) + Y(I)
2788 380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
2789 !-----------------------------------------------------------------------
2790 ! Test for convergence. If M.gt.0, an estimate of the convergence
2791 ! rate constant is stored in CRATE, and this is used in the test.
2792 !-----------------------------------------------------------------------
2793 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP)
2794 DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT)
2795 IF (DCON .LE. 1.0D0) GO TO 450
2796 M = M + 1
2797 IF (M .EQ. MAXCOR) GO TO 410
2798 IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410
2799 DELP = DEL
2800 CALL F (NEQ, TN, Y, SAVF)
2801 NFE = NFE + 1
2802 GO TO 270
2803 !-----------------------------------------------------------------------
2804 ! The corrector iteration failed to converge.
2805 ! If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for
2806 ! the next try. Otherwise the YH array is retracted to its values
2807 ! before prediction, and H is reduced, if possible. If H cannot be
2808 ! reduced or MXNCF failures have occurred, exit with KFLAG = -2.
2809 !-----------------------------------------------------------------------
2810 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
2811 ICF = 1
2812 IPUP = MITER
2813 GO TO 220
2814 430 ICF = 2
2815 NCF = NCF + 1
2816 RMAX = 2.0D0
2817 TN = TOLD
2818 I1 = NQNYH + 1
2819 DO 445 JB = 1,NQ
2820 I1 = I1 - NYH
2821 !dir$ ivdep
2822 DO 440 I = I1,NQNYH
2823 440 YH1(I) = YH1(I) - YH1(I+NYH)
2824 445 CONTINUE
2825 IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680
2826 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670
2827 IF (NCF .EQ. MXNCF) GO TO 670
2828 RH = 0.25D0
2829 IPUP = MITER
2830 IREDO = 1
2831 GO TO 170
2832 !-----------------------------------------------------------------------
2833 ! The corrector has converged. JCUR is set to 0
2834 ! to signal that the Jacobian involved may need updating later.
2835 ! The local error test is made and control passes to statement 500
2836 ! if it fails.
2837 !-----------------------------------------------------------------------
2838 450 JCUR = 0
2839 IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
2840 IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ)
2841 IF (DSM .GT. 1.0D0) GO TO 500
2842 !-----------------------------------------------------------------------
2843 ! After a successful step, update the YH array.
2844 ! Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1.
2845 ! If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for
2846 ! use in a possible order increase on the next step.
2847 ! If a change in H is considered, an increase or decrease in order
2848 ! by one is considered also. A change in H is made only if it is by a
2849 ! factor of at least 1.1. If not, IALTH is set to 3 to prevent
2850 ! testing for that many steps.
2851 !-----------------------------------------------------------------------
2852 KFLAG = 0
2853 IREDO = 0
2854 NST = NST + 1
2855 HU = H
2856 NQU = NQ
2857 DO 470 J = 1,L
2858 DO 470 I = 1,N
2859 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
2860 IALTH = IALTH - 1
2861 IF (IALTH .EQ. 0) GO TO 520
2862 IF (IALTH .GT. 1) GO TO 700
2863 IF (L .EQ. LMAX) GO TO 700
2864 DO 490 I = 1,N
2865 490 YH(I,LMAX) = ACOR(I)
2866 GO TO 700
2867 !-----------------------------------------------------------------------
2868 ! The error test failed. KFLAG keeps track of multiple failures.
2869 ! Restore TN and the YH array to their previous values, and prepare
2870 ! to try the step again. Compute the optimum step size for this or
2871 ! one lower order. After 2 or more failures, H is forced to decrease
2872 ! by a factor of 0.2 or less.
2873 !-----------------------------------------------------------------------
2874 500 KFLAG = KFLAG - 1
2875 TN = TOLD
2876 I1 = NQNYH + 1
2877 DO 515 JB = 1,NQ
2878 I1 = I1 - NYH
2879 !dir$ ivdep
2880 DO 510 I = I1,NQNYH
2881 510 YH1(I) = YH1(I) - YH1(I+NYH)
2882 515 CONTINUE
2883 RMAX = 2.0D0
2884 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660
2885 IF (KFLAG .LE. -3) GO TO 640
2886 IREDO = 2
2887 RHUP = 0.0D0
2888 GO TO 540
2889 !-----------------------------------------------------------------------
2890 ! Regardless of the success or failure of the step, factors
2891 ! RHDN, RHSM, and RHUP are computed, by which H could be multiplied
2892 ! at order NQ - 1, order NQ, or order NQ + 1, respectively.
2893 ! In the case of failure, RHUP = 0.0 to avoid an order increase.
2894 ! The largest of these is determined and the new order chosen
2895 ! accordingly. If the order is to be increased, we compute one
2896 ! additional scaled derivative.
2897 !-----------------------------------------------------------------------
2898 520 RHUP = 0.0D0
2899 IF (L .EQ. LMAX) GO TO 540
2900 DO 530 I = 1,N
2901 530 SAVF(I) = ACOR(I) - YH(I,LMAX)
2902 DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ)
2903 EXUP = 1.0D0/(L+1)
2904 RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0)
2905 540 EXSM = 1.0D0/L
2906 RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0)
2907 RHDN = 0.0D0
2908 IF (NQ .EQ. 1) GO TO 560
2909 DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ)
2910 EXDN = 1.0D0/NQ
2911 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
2912 560 IF (RHSM .GE. RHUP) GO TO 570
2913 IF (RHUP .GT. RHDN) GO TO 590
2914 GO TO 580
2915 570 IF (RHSM .LT. RHDN) GO TO 580
2916 NEWQ = NQ
2917 RH = RHSM
2918 GO TO 620
2919 580 NEWQ = NQ - 1
2920 RH = RHDN
2921 IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0
2922 GO TO 620
2923 590 NEWQ = L
2924 RH = RHUP
2925 IF (RH .LT. 1.1D0) GO TO 610
2926 R = EL(L)/L
2927 DO 600 I = 1,N
2928 600 YH(I,NEWQ+1) = ACOR(I)*R
2929 GO TO 630
2930 610 IALTH = 3
2931 GO TO 700
2932 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610
2933 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0)
2934 !-----------------------------------------------------------------------
2935 ! If there is a change of order, reset NQ, l, and the coefficients.
2936 ! In any case H is reset according to RH and the YH array is rescaled.
2937 ! Then exit from 690 if the step was OK, or redo the step otherwise.
2938 !-----------------------------------------------------------------------
2939 IF (NEWQ .EQ. NQ) GO TO 170
2940 630 NQ = NEWQ
2941 L = NQ + 1
2942 IRET = 2
2943 GO TO 150
2944 !-----------------------------------------------------------------------
2945 ! Control reaches this section if 3 or more failures have occured.
2946 ! If 10 failures have occurred, exit with KFLAG = -1.
2947 ! It is assumed that the derivatives that have accumulated in the
2948 ! YH array have errors of the wrong order. Hence the first
2949 ! derivative is recomputed, and the order is set to 1. Then
2950 ! H is reduced by a factor of 10, and the step is retried,
2951 ! until it succeeds or H reaches HMIN.
2952 !-----------------------------------------------------------------------
2953 640 IF (KFLAG .EQ. -10) GO TO 660
2954 RH = 0.1D0
2955 RH = MAX(HMIN/ABS(H),RH)
2956 H = H*RH
2957 DO 645 I = 1,N
2958 645 Y(I) = YH(I,1)
2959 CALL F (NEQ, TN, Y, SAVF)
2960 NFE = NFE + 1
2961 DO 650 I = 1,N
2962 650 YH(I,2) = H*SAVF(I)
2963 IPUP = MITER
2964 IALTH = 5
2965 IF (NQ .EQ. 1) GO TO 200
2966 NQ = 1
2967 L = 2
2968 IRET = 3
2969 GO TO 150
2970 !-----------------------------------------------------------------------
2971 ! All returns are made through this section. H is saved in HOLD
2972 ! to allow the caller to change H on the next step.
2973 !-----------------------------------------------------------------------
2974 660 KFLAG = -1
2975 GO TO 720
2976 670 KFLAG = -2
2977 GO TO 720
2978 680 KFLAG = -3
2979 GO TO 720
2980 690 RMAX = 10.0D0
2981 700 R = 1.0D0/TESCO(2,NQU)
2982 DO 710 I = 1,N
2983 710 ACOR(I) = ACOR(I)*R
2984 720 HOLD = H
2985 JSTART = 1
2986 RETURN
2987 !----------------------- END OF SUBROUTINE DSTODE ----------------------
2988 END SUBROUTINE DSTODE
2989 !DECK DEWSET
2990 SUBROUTINE DEWSET (N, ITOL, RelTol, AbsTol, YCUR, EWT)
2991 !***BEGIN PROLOGUE DEWSET
2992 !***SUBSIDIARY
2993 !***PURPOSE Set error weight vector.
2994 !***TYPE KPP_REAL (SEWSET-S, DEWSET-D)
2995 !***AUTHOR Hindmarsh, Alan C., (LLNL)
2996 !***DESCRIPTION
2998 ! This subroutine sets the error weight vector EWT according to
2999 ! EWT(i) = RelTol(i)*ABS(YCUR(i)) + AbsTol(i), i = 1,...,N,
3000 ! with the subscript on RelTol and/or AbsTol possibly replaced by 1 above,
3001 ! depending on the value of ITOL.
3003 !***SEE ALSO DLSODE
3004 !***ROUTINES CALLED (NONE)
3005 !***REVISION HISTORY (YYMMDD)
3006 ! 791129 DATE WRITTEN
3007 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
3008 ! 890503 Minor cosmetic changes. (FNF)
3009 ! 930809 Renamed to allow single/double precision versions. (ACH)
3010 !***END PROLOGUE DEWSET
3011 !**End
3012 INTEGER N, ITOL
3013 INTEGER I
3014 KPP_REAL RelTol(*), AbsTol(*), YCUR(N), EWT(N)
3016 !***FIRST EXECUTABLE STATEMENT DEWSET
3017 GO TO (10, 20, 30, 40), ITOL
3018 10 CONTINUE
3019 DO 15 I = 1,N
3020 15 EWT(I) = RelTol(1)*ABS(YCUR(I)) + AbsTol(1)
3021 RETURN
3022 20 CONTINUE
3023 DO 25 I = 1,N
3024 25 EWT(I) = RelTol(1)*ABS(YCUR(I)) + AbsTol(I)
3025 RETURN
3026 30 CONTINUE
3027 DO 35 I = 1,N
3028 35 EWT(I) = RelTol(I)*ABS(YCUR(I)) + AbsTol(1)
3029 RETURN
3030 40 CONTINUE
3031 DO 45 I = 1,N
3032 45 EWT(I) = RelTol(I)*ABS(YCUR(I)) + AbsTol(I)
3033 RETURN
3034 !----------------------- END OF SUBROUTINE DEWSET ----------------------
3035 END SUBROUTINE DEWSET
3036 !DECK DVNORM
3037 KPP_REAL FUNCTION DVNORM (N, V, W)
3038 !***BEGIN PROLOGUE DVNORM
3039 !***SUBSIDIARY
3040 !***PURPOSE Weighted root-mean-square vector norm.
3041 !***TYPE KPP_REAL (SVNORM-S, DVNORM-D)
3042 !***AUTHOR Hindmarsh, Alan C., (LLNL)
3043 !***DESCRIPTION
3045 ! This function routine computes the weighted root-mean-square norm
3046 ! of the vector of length N contained in the array V, with weights
3047 ! contained in the array W of length N:
3048 ! DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 )
3050 !***SEE ALSO DLSODE
3051 !***ROUTINES CALLED (NONE)
3052 !***REVISION HISTORY (YYMMDD)
3053 ! 791129 DATE WRITTEN
3054 ! 890501 Modified prologue to SLATEC/LDOC format. (FNF)
3055 ! 890503 Minor cosmetic changes. (FNF)
3056 ! 930809 Renamed to allow single/double precision versions. (ACH)
3057 !***END PROLOGUE DVNORM
3058 !**End
3059 INTEGER N, I
3060 KPP_REAL V(N), W(N), SUM
3062 !***FIRST EXECUTABLE STATEMENT DVNORM
3063 SUM = 0.0D0
3064 DO 10 I = 1,N
3065 10 SUM = SUM + (V(I)*W(I))**2
3066 DVNORM = SQRT(SUM/N)
3067 RETURN
3068 !----------------------- END OF FUNCTION DVNORM ------------------------
3069 END FUNCTION DVNORM
3070 !DECK XERRWD
3071 SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
3072 !***BEGIN PROLOGUE XERRWD
3073 !***SUBSIDIARY
3074 !***PURPOSE Write error message with values.
3075 !***CATEGORY R3C
3076 !***TYPE KPP_REAL (XERRWV-S, XERRWD-D)
3077 !***AUTHOR Hindmarsh, Alan C., (LLNL)
3078 !***DESCRIPTION
3080 ! Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV,
3081 ! as given here, constitute a simplified version of the SLATEC error
3082 ! handling package.
3084 ! All arguments are input arguments.
3086 ! MSG = The message (character array).
3087 ! NMES = The length of MSG (number of characters).
3088 ! NERR = The error number (not used).
3089 ! LEVEL = The error level..
3090 ! 0 or 1 means recoverable (control returns to caller).
3091 ! 2 means fatal (run is aborted--see note below).
3092 ! NI = Number of integers (0, 1, or 2) to be printed with message.
3093 ! I1,I2 = Integers to be printed, depending on NI.
3094 ! NR = Number of reals (0, 1, or 2) to be printed with message.
3095 ! R1,R2 = Reals to be printed, depending on NR.
3097 ! Note.. this routine is machine-dependent and specialized for use
3098 ! in limited context, in the following ways..
3099 ! 1. The argument MSG is assumed to be of type CHARACTER, and
3100 ! the message is printed with a format of (1X,A).
3101 ! 2. The message is assumed to take only one line.
3102 ! Multi-line messages are generated by repeated calls.
3103 ! 3. If LEVEL = 2, control passes to the statement STOP
3104 ! to abort the run. This statement may be machine-dependent.
3105 ! 4. R1 and R2 are assumed to be in double precision and are printed
3106 ! in D21.13 format.
3108 !***ROUTINES CALLED IXSAV
3109 !***REVISION HISTORY (YYMMDD)
3110 ! 920831 DATE WRITTEN
3111 ! 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH)
3112 ! 930329 Modified prologue to SLATEC format. (FNF)
3113 ! 930407 Changed MSG from CHARACTER*1 array to variable. (FNF)
3114 ! 930922 Minor cosmetic change. (FNF)
3115 !***END PROLOGUE XERRWD
3117 !*Internal Notes:
3119 ! For a different default logical unit number, IXSAV (or a subsidiary
3120 ! routine that it calls) will need to be modified.
3121 ! For a different run-abort command, change the statement following
3122 ! statement 100 at the end.
3123 !-----------------------------------------------------------------------
3124 ! Subroutines called by XERRWD.. None
3125 ! Function routine called by XERRWD.. IXSAV
3126 !-----------------------------------------------------------------------
3127 !**End
3129 ! Declare arguments.
3131 KPP_REAL R1, R2
3132 INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR
3133 CHARACTER*(*) MSG
3135 ! Declare local variables.
3137 INTEGER LUNIT, MESFLG !, IXSAV
3139 ! Get logical unit number and message print flag.
3141 !***FIRST EXECUTABLE STATEMENT XERRWD
3142 LUNIT = IXSAV (1, 0, .FALSE.)
3143 MESFLG = IXSAV (2, 0, .FALSE.)
3144 IF (MESFLG .EQ. 0) GO TO 100
3146 ! Write the message.
3148 WRITE (LUNIT,10) MSG
3149 10 FORMAT(1X,A)
3150 IF (NI .EQ. 1) WRITE (LUNIT, 20) I1
3151 20 FORMAT(6X,'In above message, I1 =',I10)
3152 IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2
3153 30 FORMAT(6X,'In above message, I1 =',I10,3X,'I2 =',I10)
3154 IF (NR .EQ. 1) WRITE (LUNIT, 40) R1
3155 40 FORMAT(6X,'In above message, R1 =',D21.13)
3156 IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2
3157 50 FORMAT(6X,'In above, R1 =',D21.13,3X,'R2 =',D21.13)
3159 ! Abort the run if LEVEL = 2.
3161 100 IF (LEVEL .NE. 2) RETURN
3162 STOP
3163 !----------------------- End of Subroutine XERRWD ----------------------
3164 END SUBROUTINE XERRWD
3165 !DECK XSETF
3166 SUBROUTINE XSETF (MFLAG)
3167 !***BEGIN PROLOGUE XSETF
3168 !***PURPOSE Reset the error print control flag.
3169 !***CATEGORY R3A
3170 !***TYPE ALL (XSETF-A)
3171 !***KEYWORDS ERROR CONTROL
3172 !***AUTHOR Hindmarsh, Alan C., (LLNL)
3173 !***DESCRIPTION
3175 ! XSETF sets the error print control flag to MFLAG:
3176 ! MFLAG=1 means print all messages (the default).
3177 ! MFLAG=0 means no printing.
3179 !***SEE ALSO XERRWD, XERRWV
3180 !***REFERENCES (NONE)
3181 !***ROUTINES CALLED IXSAV
3182 !***REVISION HISTORY (YYMMDD)
3183 ! 921118 DATE WRITTEN
3184 ! 930329 Added SLATEC format prologue. (FNF)
3185 ! 930407 Corrected SEE ALSO section. (FNF)
3186 ! 930922 Made user-callable, and other cosmetic changes. (FNF)
3187 !***END PROLOGUE XSETF
3189 ! Subroutines called by XSETF.. None
3190 ! Function routine called by XSETF.. IXSAV
3191 !-----------------------------------------------------------------------
3192 !**End
3193 INTEGER MFLAG, JUNK !, IXSAV
3195 !***FIRST EXECUTABLE STATEMENT XSETF
3196 IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = IXSAV (2,MFLAG,.TRUE.)
3197 RETURN
3198 !----------------------- End of Subroutine XSETF -----------------------
3199 END SUBROUTINE XSETF
3200 !DECK XSETUN
3201 SUBROUTINE XSETUN (LUN)
3202 !***BEGIN PROLOGUE XSETUN
3203 !***PURPOSE Reset the logical unit number for error messages.
3204 !***CATEGORY R3B
3205 !***TYPE ALL (XSETUN-A)
3206 !***KEYWORDS ERROR CONTROL
3207 !***DESCRIPTION
3209 ! XSETUN sets the logical unit number for error messages to LUN.
3211 !***AUTHOR Hindmarsh, Alan C., (LLNL)
3212 !***SEE ALSO XERRWD, XERRWV
3213 !***REFERENCES (NONE)
3214 !***ROUTINES CALLED IXSAV
3215 !***REVISION HISTORY (YYMMDD)
3216 ! 921118 DATE WRITTEN
3217 ! 930329 Added SLATEC format prologue. (FNF)
3218 ! 930407 Corrected SEE ALSO section. (FNF)
3219 ! 930922 Made user-callable, and other cosmetic changes. (FNF)
3220 !***END PROLOGUE XSETUN
3222 ! Subroutines called by XSETUN.. None
3223 ! Function routine called by XSETUN.. IXSAV
3224 !-----------------------------------------------------------------------
3225 !**End
3226 INTEGER LUN, JUNK !, IXSAV
3228 !***FIRST EXECUTABLE STATEMENT XSETUN
3229 IF (LUN .GT. 0) JUNK = IXSAV (1,LUN,.TRUE.)
3230 RETURN
3231 !----------------------- End of Subroutine XSETUN ----------------------
3232 END SUBROUTINE XSETUN
3233 !DECK IXSAV
3234 INTEGER FUNCTION IXSAV (IPAR, IVALUE, ISET)
3235 !***BEGIN PROLOGUE IXSAV
3236 !***SUBSIDIARY
3237 !***PURPOSE Save and recall error message control parameters.
3238 !***CATEGORY R3C
3239 !***TYPE ALL (IXSAV-A)
3240 !***AUTHOR Hindmarsh, Alan C., (LLNL)
3241 !***DESCRIPTION
3243 ! IXSAV saves and recalls one of two error message parameters:
3244 ! LUNIT, the logical unit number to which messages are printed, and
3245 ! MESFLG, the message print flag.
3246 ! This is a modification of the SLATEC library routine J4SAVE.
3248 ! Saved local variables..
3249 ! LUNIT = Logical unit number for messages. The default is obtained
3250 ! by a call to IUMACH (may be machine-dependent).
3251 ! MESFLG = Print control flag..
3252 ! 1 means print all messages (the default).
3253 ! 0 means no printing.
3255 ! On input..
3256 ! IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG).
3257 ! IVALUE = The value to be set for the parameter, if ISET = .TRUE.
3258 ! ISET = Logical flag to indicate whether to read or write.
3259 ! If ISET = .TRUE., the parameter will be given
3260 ! the value IVALUE. If ISET = .FALSE., the parameter
3261 ! will be unchanged, and IVALUE is a dummy argument.
3263 ! On return..
3264 ! IXSAV = The (old) value of the parameter.
3266 !***SEE ALSO XERRWD, XERRWV
3267 !***ROUTINES CALLED IUMACH
3268 !***REVISION HISTORY (YYMMDD)
3269 ! 921118 DATE WRITTEN
3270 ! 930329 Modified prologue to SLATEC format. (FNF)
3271 ! 930915 Added IUMACH call to get default output unit. (ACH)
3272 ! 930922 Minor cosmetic changes. (FNF)
3273 ! 010425 Type declaration for IUMACH added. (ACH)
3274 !***END PROLOGUE IXSAV
3276 ! Subroutines called by IXSAV.. None
3277 ! Function routine called by IXSAV.. IUMACH
3278 !-----------------------------------------------------------------------
3279 !**End
3280 LOGICAL ISET
3281 INTEGER IPAR, IVALUE
3282 !-----------------------------------------------------------------------
3283 INTEGER LUNIT, MESFLG!, IUMACH
3284 !-----------------------------------------------------------------------
3285 ! The following Fortran-77 declaration is to cause the values of the
3286 ! listed (local) variables to be saved between calls to this routine.
3287 !-----------------------------------------------------------------------
3288 SAVE LUNIT, MESFLG
3289 DATA LUNIT/-1/, MESFLG/1/
3291 !***FIRST EXECUTABLE STATEMENT IXSAV
3292 IF (IPAR .EQ. 1) THEN
3293 IF (LUNIT .EQ. -1) LUNIT = IUMACH()
3294 IXSAV = LUNIT
3295 IF (ISET) LUNIT = IVALUE
3296 ENDIF
3298 IF (IPAR .EQ. 2) THEN
3299 IXSAV = MESFLG
3300 IF (ISET) MESFLG = IVALUE
3301 ENDIF
3303 RETURN
3304 !----------------------- End of Function IXSAV -------------------------
3305 END FUNCTION IXSAV
3306 !DECK IUMACH
3307 INTEGER FUNCTION IUMACH()
3308 !***BEGIN PROLOGUE IUMACH
3309 !***PURPOSE Provide standard output unit number.
3310 !***CATEGORY R1
3311 !***TYPE INTEGER (IUMACH-I)
3312 !***KEYWORDS MACHINE CONSTANTS
3313 !***AUTHOR Hindmarsh, Alan C., (LLNL)
3314 !***DESCRIPTION
3315 ! *Usage:
3316 ! INTEGER LOUT, IUMACH
3317 ! LOUT = IUMACH()
3319 ! *Function Return Values:
3320 ! LOUT : the standard logical unit for Fortran output.
3322 !***REFERENCES (NONE)
3323 !***ROUTINES CALLED (NONE)
3324 !***REVISION HISTORY (YYMMDD)
3325 ! 930915 DATE WRITTEN
3326 ! 930922 Made user-callable, and other cosmetic changes. (FNF)
3327 !***END PROLOGUE IUMACH
3329 !*Internal Notes:
3330 ! The built-in value of 6 is standard on a wide range of Fortran
3331 ! systems. This may be machine-dependent.
3332 !**End
3333 !***FIRST EXECUTABLE STATEMENT IUMACH
3334 IUMACH = 6
3336 RETURN
3337 !----------------------- End of Function IUMACH ------------------------
3338 END FUNCTION IUMACH
3340 !---- END OF SUBROUTINE DLSODE AND ITS INTERNAL PROCEDURES
3341 END SUBROUTINE DLSODE
3342 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3343 SUBROUTINE FUN_CHEM(N, T, V, FCT)
3344 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3346 USE KPP_ROOT_Parameters
3347 USE KPP_ROOT_Global
3348 USE KPP_ROOT_Function, ONLY: Fun
3349 USE KPP_ROOT_Rates
3351 IMPLICIT NONE
3353 INTEGER :: N
3354 KPP_REAL :: V(NVAR), FCT(NVAR), T, TOLD
3356 ! TOLD = TIME
3357 ! TIME = T
3358 ! CALL Update_SUN()
3359 ! CALL Update_RCONST()
3360 ! CALL Update_PHOTO()
3361 ! TIME = TOLD
3363 CALL Fun(V, FIX, RCONST, FCT)
3365 !Nfun=Nfun+1
3367 END SUBROUTINE FUN_CHEM
3370 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3371 SUBROUTINE JAC_CHEM (N, T, V, JF)
3372 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3374 USE KPP_ROOT_Parameters
3375 USE KPP_ROOT_Global
3376 USE KPP_ROOT_JacobianSP
3377 USE KPP_ROOT_Jacobian, ONLY: Jac_SP
3378 USE KPP_ROOT_Rates
3380 IMPLICIT NONE
3382 KPP_REAL :: V(NVAR), T, TOLD
3383 INTEGER :: I, J, N, ML, MU, NROWPD
3384 #ifdef FULL_ALGEBRA
3385 KPP_REAL :: JV(LU_NONZERO), JF(NVAR,NVAR)
3386 #else
3387 KPP_REAL :: JF(LU_NONZERO)
3388 #endif
3390 ! TOLD = TIME
3391 ! TIME = T
3392 ! CALL Update_SUN()
3393 ! CALL Update_RCONST()
3394 ! CALL Update_PHOTO()
3395 ! TIME = TOLD
3397 #ifdef FULL_ALGEBRA
3398 CALL Jac_SP(V, FIX, RCONST, JV)
3399 DO j=1,NVAR
3400 DO i=1,NVAR
3401 JF(i,j) = 0.0d0
3402 END DO
3403 END DO
3404 DO i=1,LU_NONZERO
3405 JF(LU_IROW(i),LU_ICOL(i)) = JV(i)
3406 END DO
3407 #else
3408 CALL Jac_SP(V, FIX, RCONST, JF)
3409 #endif
3410 !Njac=Njac+1
3412 END SUBROUTINE JAC_CHEM
3415 END MODULE KPP_ROOT_Integrator