Merge remote-tracking branch 'origin/release-v4.6.1'
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / kpp_radau5.f90
blob9e6560d7cf6153e918356b6aa922b0768cf57cf3
1 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
2 ! RADAU5 - Runge-Kutta method based on Radau-2A quadrature !
3 ! (2 stages, order 5) !
4 ! By default the code employs the KPP sparse linear algebra routines !
5 ! Compile with -DFULL_ALGEBRA to use full linear algebra (LAPACK) !
6 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
8 MODULE KPP_ROOT_Integrator
10 USE KPP_ROOT_Precision, ONLY: dp
11 USE KPP_ROOT_Jacobian, ONLY: NVAR, LU_NONZERO, LU_DIAG
12 USE KPP_ROOT_LinearAlgebra
14 IMPLICIT NONE
15 PUBLIC
16 SAVE
18 ! Statistics
19 INTEGER :: Nfun, Njac, Nstp, Nacc, Nrej, Ndec, Nsol, Nsng
21 ! Method parameters
22 KPP_REAL :: Transf(3,3), TransfInv(3,3), &
23 rkA(3,3), rkB(3), rkC(3), rkE(3), &
24 rkGamma, rkAlpha, rkBeta
26 ! description of the error numbers IERR
27 CHARACTER(LEN=50), PARAMETER, DIMENSION(-11:1) :: IERR_NAMES = (/ &
28 'Matrix is repeatedly singular ', & ! -11
29 'Step size too small: T + 10*H = T or H < Roundoff ', & ! -10
30 'No of steps exceeds maximum bound ', & ! -9
31 'Tolerances are too small ', & ! -8
32 'Improper values for Qmin, Qmax ', & ! -7
33 'Newton stopping tolerance too small ', & ! -6
34 'Improper value for ThetaMin ', & ! -5
35 'Improper values for FacMin/FacMax/FacSafe/FacRej ', & ! -4
36 'Hmin/Hmax/Hstart must be positive ', & ! -3
37 'Improper value for maximal no of Newton iterations', & ! -2
38 'Improper value for maximal no of steps ', & ! -1
39 ' ', & ! 0 (not used)
40 'Success ' /) ! 1
42 CONTAINS
44 ! **************************************************************************
46 SUBROUTINE INTEGRATE( TIN, TOUT, &
47 ICNTRL_U, RCNTRL_U, ISTATUS_U, RSTATUS_U, IERR_U )
49 USE KPP_ROOT_Parameters, ONLY: NVAR
50 USE KPP_ROOT_Global, ONLY: ATOL,RTOL,VAR
52 IMPLICIT NONE
54 KPP_REAL :: TIN ! TIN - Start Time
55 KPP_REAL :: TOUT ! TOUT - End Time
56 INTEGER, INTENT(IN), OPTIONAL :: ICNTRL_U(20)
57 KPP_REAL, INTENT(IN), OPTIONAL :: RCNTRL_U(20)
58 INTEGER, INTENT(OUT), OPTIONAL :: ISTATUS_U(20)
59 KPP_REAL, INTENT(OUT), OPTIONAL :: RSTATUS_U(20)
60 INTEGER, INTENT(OUT), OPTIONAL :: IERR_U
62 KPP_REAL, SAVE :: H
63 INTEGER :: IERR
65 KPP_REAL :: RCNTRL(20), RSTATUS(20)
66 INTEGER :: ICNTRL(20), ISTATUS(20)
67 INTEGER, SAVE :: Ntotal = 0
69 H =0.0_dp
71 !~~~> fine-tune the integrator:
72 ICNTRL(:) = 0
73 ICNTRL(2) = 0 ! 0=vector tolerances, 1=scalar tolerances
74 ICNTRL(5) = 8 ! Max no. of Newton iterations
75 ICNTRL(6) = 1 ! Starting values for Newton are interpolated (0) or zero (1)
76 ICNTRL(11) = 1 ! Gustaffson (1) or classic(2) controller
77 RCNTRL(1:20) = 0._dp
79 !~~~> if optional parameters are given, and if they are >0,
80 ! then use them to overwrite default settings
81 IF (PRESENT(ICNTRL_U)) ICNTRL(1:20) = ICNTRL_U(1:20)
82 IF (PRESENT(RCNTRL_U)) RCNTRL(1:20) = RCNTRL_U(1:20)
85 CALL RADAU5( NVAR,TIN,TOUT,VAR,H, &
86 RTOL,ATOL, &
87 RCNTRL,ICNTRL,RSTATUS,ISTATUS,IERR )
89 !!$ Ntotal = Ntotal + Nstp
90 !!$ PRINT*,'NSTEPS=',Nstp,' (',Ntotal,')'
92 Nfun = Nfun + ISTATUS(1)
93 Njac = Njac + ISTATUS(2)
94 Nstp = Nstp + ISTATUS(3)
95 Nacc = Nacc + ISTATUS(4)
96 Nrej = Nrej + ISTATUS(5)
97 Ndec = Ndec + ISTATUS(6)
98 Nsol = Nsol + ISTATUS(7)
99 Nsng = Nsng + ISTATUS(8)
101 ! if optional parameters are given for output
102 ! use them to store information in them
103 IF (PRESENT(ISTATUS_U)) THEN
104 ISTATUS_U(:) = 0
105 ISTATUS_U(1) = Nfun ! function calls
106 ISTATUS_U(2) = Njac ! jacobian calls
107 ISTATUS_U(3) = Nstp ! steps
108 ISTATUS_U(4) = Nacc ! accepted steps
109 ISTATUS_U(5) = Nrej ! rejected steps (except at the beginning)
110 ISTATUS_U(6) = Ndec ! LU decompositions
111 ISTATUS_U(7) = Nsol ! forward/backward substitutions
112 ENDIF
113 IF (PRESENT(RSTATUS_U)) THEN
114 RSTATUS_U(:) = 0.
115 RSTATUS_U(1) = TOUT ! final time
116 ENDIF
117 IF (PRESENT(IERR_U)) IERR_U = IERR
119 ! mz_rs_20050716: IERR is returned to the user who then decides what to do
120 ! about it, i.e. either stop the run or ignore it.
121 !!$ IF (IERR < 0) THEN
122 !!$ PRINT *,'RADAU: Unsuccessful exit at T=', TIN,' (IERR=',IERR,')'
123 !!$ STOP
124 !!$ ENDIF
126 END SUBROUTINE INTEGRATE
128 SUBROUTINE RADAU5(N,T,Tend,Y,H,RelTol,AbsTol, &
129 RCNTRL,ICNTRL,RSTATUS,ISTATUS,IDID)
131 !~~~>-----------------------------------------------
132 ! NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
133 ! SYSTEM OF FirstStep 0RDER ORDINARY DIFFERENTIAL EQUATIONS
134 ! M*Y'=F(T,Y).
135 ! THE SYSTEM CAN BE (LINEARLY) IMPLICIT (MASS-MATRIX M /= I)
136 ! OR EXPLICIT (M=I).
137 ! THE METHOD USED IS AN IMPLICIT RUNGE-KUTTA METHOD (RADAU IIA)
138 ! OF ORDER 5 WITH STEP SIZE CONTROL AND CONTINUOUS OUTPUT.
139 ! C.F. SECTION IV.8
141 ! AUTHORS: E. HAIRER AND G. WANNER
142 ! UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
143 ! CH-1211 GENEVE 24, SWITZERLAND
144 ! E-MAIL: HAIRER@DIVSUN.UNIGE.CH, WANNER@DIVSUN.UNIGE.CH
146 ! THIS CODE IS PART OF THE BOOK:
147 ! E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
148 ! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
149 ! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS 14,
150 ! SPRINGER-VERLAG (1991)
152 ! VERSION OF SEPTEMBER 30, 1995
154 ! INPUT PARAMETERS
155 ! ----------------
156 ! N DIMENSION OF THE SYSTEM
158 ! FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
159 ! VALUE OF F(T,Y):
160 ! SUBROUTINE FCN(N,T,Y,F)
161 ! KPP_REAL T,Y(N),F(N)
162 ! F(1)=... ETC.
163 ! RPAR, IPAR (SEE BELOW)
165 ! T INITIAL TIME VALUE
167 ! Tend FINAL T-VALUE (Tend-T MAY BE POSITIVE OR NEGATIVE)
169 ! Y(N) INITIAL VALUES FOR Y
171 ! H INITIALL STEP SIZE GUESS;
172 ! FOR STIFF EQUATIONS WITH INITIALL TRANSIENT,
173 ! H=1.D0/(NORM OF F'), USUALLY 1.D-3 OR 1.D-5, IS GOOD.
174 ! THIS CHOICE IS NOT VERY IMPORTANT, THE STEP SIZE IS
175 ! QUICKLY ADAPTED. (IF H=0.D0, THE CODE PUTS H=1.D-6).
177 ! RelTol,AbsTol RELATIVE AND ABSOLUTE ERROR TOLERANCES.
178 ! for ICNTRL(2) = 0: AbsTol, RelTol are N-dimensional vectors
179 ! = 1: AbsTol, RelTol are scalars
181 ! ----- CONTINUOUS OUTPUT: -----
182 ! DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
183 ! FOR THE INTERVAL [Told,T] IS AVAILABLE THROUGH
184 ! THE FUNCTION
185 ! >>> CONTR5(I,S,CONT,LRC) <<<
186 ! WHICH PROVIDES AN APPROXIMATION TO THE I-TH
187 ! COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
188 ! S SHOULD LIE IN THE INTERVAL [Told,T].
189 ! DO NOT CHANGE THE ENTRIES OF CONT(LRC), IF THE
190 ! DENSE OUTPUT FUNCTION IS USED.
191 !!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
193 !~~~> INPUT PARAMETERS:
195 ! Note: For input parameters equal to zero the default values of the
196 ! corresponding variables are used.
198 !~~~> Integer input parameters:
200 ! ICNTRL(1) = not used
202 ! ICNTRL(2) = 0: AbsTol, RelTol are NVAR-dimensional vectors
203 ! = 1: AbsTol, RelTol are scalars
205 ! ICNTRL(3) = not used
207 ! ICNTRL(4) -> maximum number of integration steps
208 ! For ICNTRL(4)=0 the default value of 10000 is used
210 ! ICNTRL(5) -> maximum number of Newton iterations
211 ! For ICNTRL(5)=0 the default value of 8 is used
213 ! ICNTRL(6) -> starting values of Newton iterations:
214 ! ICNTRL(6)=0 : starting values are obtained from
215 ! the extrapolated collocation solution
216 ! (the default)
217 ! ICNTRL(6)=1 : starting values are zero
219 ! ICNTRL(11) -> switch for step size strategy
220 ! ICNTRL(8) == 1: mod. predictive controller (Gustafsson)
221 ! ICNTRL(8) == 2: classical step size control
222 ! the default value (for iwork(8)=0) is iwork(8)=1.
223 ! the choice iwork(8) == 1 seems to produce safer results;
224 ! for simple problems, the choice iwork(8) == 2 produces
225 ! often slightly faster runs
226 ! ( currently unused )
228 !~~~> Real input parameters:
230 ! RCNTRL(1) -> not used
232 ! RCNTRL(2) -> Hmax, upper bound for the integration step size
234 ! RCNTRL(3) -> not used
236 ! RCNTRL(4) -> FacMin, lower bound on step decrease factor (default=0.2)
238 ! RCNTRL(5) -> FacMax, upper bound on step increase factor (default=6)
240 ! RCNTRL(6) -> FacRej, step decrease factor after multiple rejections
241 ! (default=0.1)
243 ! RCNTRL(7) -> FacSafe, by which the new step is slightly smaller
244 ! than the predicted value (default=0.9)
246 ! RCNTRL(8) -> ThetaMin. If Newton convergence rate smaller
247 ! than ThetaMin the Jacobian is not recomputed;
248 ! (default=0.001)
250 ! RCNTRL(9) -> NewtonTol, stopping criterion for Newton's method
251 ! (default=0.03)
253 ! RCNTRL(10) -> Qmin
255 ! RCNTRL(11) -> Qmax. If Qmin < Hnew/Hold < Qmax, then the
256 ! step size is kept constant and the LU factorization
257 ! reused (default Qmin=1, Qmax=1.2)
258 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
261 ! OUTPUT PARAMETERS
262 ! -----------------
263 ! T T-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED
264 ! (AFTER SUCCESSFUL RETURN T=Tend).
266 ! Y(N) NUMERICAL SOLUTION AT T
268 ! H PREDICTED STEP SIZE OF THE LastStep ACCEPTED STEP
270 ! IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
272 ! ISTATUS(1) = No. of function calls
273 ! ISTATUS(2) = No. of jacobian calls
274 ! ISTATUS(3) = No. of steps
275 ! ISTATUS(4) = No. of accepted steps
276 ! ISTATUS(5) = No. of rejected steps (except at the beginning)
277 ! ISTATUS(6) = No. of LU decompositions
278 ! ISTATUS(7) = No. of forward/backward substitutions
279 ! ISTATUS(8) = No. of singular matrix decompositions
281 ! RSTATUS(1) -> Texit, the time corresponding to the
282 ! computed Y upon return
283 ! RSTATUS(2) -> Hexit, last accepted step before exit
284 ! For multiple restarts, use Hexit as Hstart
285 ! in the subsequent run
286 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
288 IMPLICIT NONE
290 INTEGER :: N
291 KPP_REAL :: Y(N),AbsTol(N),RelTol(N),RCNTRL(20),RSTATUS(20)
292 INTEGER :: ICNTRL(20), ISTATUS(20)
293 LOGICAL :: StartNewton, Gustafsson
294 INTEGER :: IDID, ITOL
295 KPP_REAL :: H,Tend,T
297 !~~~> Control arguments
298 INTEGER :: Max_no_steps, NewtonMaxit
299 KPP_REAL :: Hstart,Hmin,Hmax,Qmin,Qmax
300 KPP_REAL :: Roundoff, ThetaMin,TolNewton
301 KPP_REAL :: FacSafe,FacMin,FacMax,FacRej
302 !~~~> Local variables
303 INTEGER :: i
304 KPP_REAL, PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
306 !~~~> variables from the former COMMON block /CONRA5/
307 ! KPP_REAL :: Tsol, Hsol
309 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
310 ! SETTING THE PARAMETERS
311 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
312 Nfun=0
313 Njac=0
314 Nstp=0
315 Nacc=0
316 Nrej=0
317 Ndec=0
318 Nsol=0
319 IDID = 0
321 !~~~> ICNTRL(1) - autonomous system - not used
322 !~~~> ITOL: 1 for vector and 0 for scalar AbsTol/RelTol
323 IF (ICNTRL(2) == 0) THEN
324 ITOL = 1
325 ELSE
326 ITOL = 0
327 END IF
328 !~~~> ICNTRL(3) - method selection - not used
329 !~~~> Max_no_steps: the maximal number of time steps
330 IF (ICNTRL(4) == 0) THEN
331 Max_no_steps = 10000
332 ELSE
333 Max_no_steps=ICNTRL(4)
334 IF (Max_no_steps <= 0) THEN
335 WRITE(6,*) 'ICNTRL(4)=',ICNTRL(4)
336 CALL RAD_ErrorMsg(-1,T,ZERO,IDID)
337 END IF
338 END IF
339 !~~~> NewtonMaxit MAXIMAL NUMBER OF NEWTON ITERATIONS
340 IF (ICNTRL(5) == 0) THEN
341 NewtonMaxit = 8
342 ELSE
343 NewtonMaxit=ICNTRL(5)
344 IF (NewtonMaxit <= 0) THEN
345 WRITE(6,*) 'ICNTRL(5)=',ICNTRL(5)
346 CALL RAD_ErrorMsg(-2,T,ZERO,IDID)
347 END IF
348 END IF
349 !~~~> StartNewton: Use extrapolation for starting values of Newton iterations
350 IF (ICNTRL(6) == 0) THEN
351 StartNewton = .TRUE.
352 ELSE
353 StartNewton = .FALSE.
354 END IF
355 !~~~> Gustafsson: step size controller
356 IF(ICNTRL(11) == 0)THEN
357 Gustafsson=.TRUE.
358 ELSE
359 Gustafsson=.FALSE.
360 END IF
363 !~~~> Roundoff SMALLEST NUMBER SATISFYING 1.0d0+Roundoff>1.0d0
364 Roundoff=WLAMCH('E');
366 !~~~> RCNTRL(1) = Hmin - not used
367 Hmin = ZERO
368 !~~~> Hmax = maximal step size
369 IF (RCNTRL(2) == ZERO) THEN
370 Hmax=Tend-T
371 ELSE
372 Hmax=MAX(ABS(RCNTRL(7)),ABS(Tend-T))
373 END IF
374 !~~~> RCNTRL(3) = Hstart - not used
375 Hstart = ZERO
376 !~~~> FacMin: lower bound on step decrease factor
377 IF(RCNTRL(4) == ZERO)THEN
378 FacMin = 0.2d0
379 ELSE
380 FacMin = RCNTRL(4)
381 END IF
382 !~~~> FacMax: upper bound on step increase factor
383 IF(RCNTRL(5) == ZERO)THEN
384 FacMax = 8.D0
385 ELSE
386 FacMax = RCNTRL(5)
387 END IF
388 !~~~> FacRej: step decrease factor after 2 consecutive rejections
389 IF(RCNTRL(6) == ZERO)THEN
390 FacRej = 0.1d0
391 ELSE
392 FacRej = RCNTRL(6)
393 END IF
394 !~~~> FacSafe: by which the new step is slightly smaller
395 ! than the predicted value
396 IF (RCNTRL(7) == ZERO) THEN
397 FacSafe=0.9d0
398 ELSE
399 FacSafe=RCNTRL(7)
400 END IF
401 IF ( (FacMax < ONE) .OR. (FacMin > ONE) .OR. &
402 (FacSafe <= 0.001D0) .OR. (FacSafe >= 1.0d0) ) THEN
403 WRITE(6,*)'RCNTRL(4:7)=',RCNTRL(4:7)
404 CALL RAD_ErrorMsg(-4,T,ZERO,IDID)
405 END IF
407 !~~~> ThetaMin: decides whether the Jacobian should be recomputed
408 IF (RCNTRL(8) == ZERO) THEN
409 ThetaMin = 1.0d-3
410 ELSE
411 ThetaMin=RCNTRL(8)
412 IF (ThetaMin <= 0.0d0 .OR. ThetaMin >= 1.0d0) THEN
413 WRITE(6,*) 'RCNTRL(8)=', RCNTRL(8)
414 CALL RAD_ErrorMsg(-5,T,ZERO,IDID)
415 END IF
416 END IF
417 !~~~> TolNewton: stopping crierion for Newton's method
418 IF (RCNTRL(9) == ZERO) THEN
419 TolNewton = 3.0d-2
420 ELSE
421 TolNewton = RCNTRL(9)
422 IF (TolNewton <= Roundoff) THEN
423 WRITE(6,*) 'RCNTRL(9)=',RCNTRL(9)
424 CALL RAD_ErrorMsg(-6,T,ZERO,IDID)
425 END IF
426 END IF
427 !~~~> Qmin AND Qmax: IF Qmin < Hnew/Hold < Qmax, STEP SIZE = CONST.
428 IF (RCNTRL(10) == ZERO) THEN
429 Qmin=1.D0
430 ELSE
431 Qmin=RCNTRL(10)
432 END IF
433 IF (RCNTRL(11) == ZERO) THEN
434 Qmax=1.2D0
435 ELSE
436 Qmax=RCNTRL(11)
437 END IF
438 IF (Qmin > ONE .OR. Qmax < ONE) THEN
439 WRITE(6,*) 'RCNTRL(10:11)=',Qmin,Qmax
440 CALL RAD_ErrorMsg(-7,T,ZERO,IDID)
441 END IF
442 !~~~> Check if tolerances are reasonable
443 IF (ITOL == 0) THEN
444 IF (AbsTol(1) <= ZERO.OR.RelTol(1) <= 10.d0*Roundoff) THEN
445 WRITE (6,*) 'AbsTol/RelTol=',AbsTol,RelTol
446 CALL RAD_ErrorMsg(-8,T,ZERO,IDID)
447 END IF
448 ELSE
449 DO i=1,N
450 IF (AbsTol(i) <= ZERO.OR.RelTol(i) <= 10.d0*Roundoff) THEN
451 WRITE (6,*) 'AbsTol/RelTol(',i,')=',AbsTol(i),RelTol(i)
452 CALL RAD_ErrorMsg(-8,T,ZERO,IDID)
453 END IF
454 END DO
455 END IF
457 !~~~> WHEN A FAIL HAS OCCURED, RETURN
458 IF (IDID < 0) RETURN
461 !~~~> CALL TO CORE INTEGRATOR ------------
462 CALL RAD_Integrator( N,T,Y,Tend,Hmax,H,RelTol,AbsTol,ITOL,IDID, &
463 Max_no_steps,Roundoff,FacSafe,ThetaMin,TolNewton,Qmin,Qmax, &
464 NewtonMaxit,StartNewton,Gustafsson,FacMin,FacMax,FacRej )
466 ISTATUS(1)=Nfun
467 ISTATUS(2)=Njac
468 ISTATUS(3)=Nstp
469 ISTATUS(4)=Nacc
470 ISTATUS(5)=Nrej
471 ISTATUS(6)=Ndec
472 ISTATUS(7)=Nsol
473 ISTATUS(8)=Nsng
475 ! END SUBROUTINE RADAU5
476 CONTAINS ! INTERNAL PROCEDURES TO RADAU5
479 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
480 SUBROUTINE RAD_Integrator( N,T,Y,Tend,Hmax,H,RelTol,AbsTol,ITOL,IDID, &
481 Max_no_steps,Roundoff,FacSafe,ThetaMin,TolNewton,Qmin,Qmax, &
482 NewtonMaxit,StartNewton,Gustafsson,FacMin,FacMax,FacRej )
483 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
484 ! CORE INTEGRATOR FOR RADAU5
485 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
487 IMPLICIT NONE
488 INTEGER :: N
489 KPP_REAL Y(NVAR),Z1(NVAR),Z2(NVAR),Z3(NVAR),Y0(NVAR),&
490 SCAL(NVAR),F1(NVAR),F2(NVAR),F3(NVAR), &
491 CONT(N,4),AbsTol(NVAR),RelTol(NVAR)
493 #ifdef FULL_ALGEBRA
494 KPP_REAL :: FJAC(NVAR,NVAR), E1(NVAR,NVAR)
495 DOUBLE COMPLEX :: E2(NVAR,NVAR)
496 #else
497 KPP_REAL :: FJAC(LU_NONZERO), E1(LU_NONZERO)
498 DOUBLE COMPLEX :: E2(LU_NONZERO)
499 #endif
501 !~~~> Local variables
502 KPP_REAL :: TMP(NVAR), T, Tend, Tdirection, &
503 H, Hmax, HmaxN, Hacc, Hnew, Hopt, Hold, &
504 Fac, FacMin, Facmax, FacSafe, FacRej, FacGus, FacConv, &
505 Theta, ThetaMin, TolNewton, ERR, ERRACC, &
506 Qmin, Qmax, DYNO, Roundoff, &
507 AK, AK1, AK2, AK3, C3Q, &
508 Qnewton, DYTH, THQ, THQOLD, DYNOLD, &
509 DENOM, C1Q, C2Q, ALPHA, BETA, GAMMA, CFAC, ACONT3, QT
510 INTEGER :: IP1(NVAR),IP2(NVAR), ITOL, IDID, Max_no_steps, &
511 NewtonIter, NewtonMaxit, ISING
512 LOGICAL :: REJECT, FirstStep, FreshJac, LastStep, &
513 Gustafsson, StartNewton, NewtonDone
514 ! KPP_REAL, PARAMETER :: ONE = 1.0d0, ZERO = 0.0d0
516 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
517 ! INITIALISATIONS
518 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
520 CALL RAD_Coefficients
522 Tdirection=SIGN(1.D0,Tend-T)
523 HmaxN=MIN(ABS(Hmax),ABS(Tend-T))
524 H=MIN(ABS(Hmin),ABS(Hstart))
525 H=MIN(ABS(H),HmaxN)
526 IF (ABS(H) <= 10.D0*Roundoff) H=1.0D-6
527 H=SIGN(H,Tdirection)
528 Hold=H
529 REJECT=.FALSE.
530 FirstStep=.TRUE.
531 LastStep=.FALSE.
532 FreshJac=.FALSE.; Theta=1.0d0
533 IF ((T+H*1.0001D0-Tend)*Tdirection >= 0.D0) THEN
534 H=Tend-T
535 LastStep=.TRUE.
536 END IF
537 FacConv=1.D0
538 CFAC=FacSafe*(1+2*NewtonMaxit)
539 Nsng=0
540 ! Told=T
541 CALL RAD_ErrorScale(N,ITOL,AbsTol,RelTol,Y,SCAL)
542 CALL FUN_CHEM(T,Y,Y0)
544 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
545 !~~~> Time loop begins
546 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
547 Tloop: DO WHILE ( (Tend-T)*Tdirection - Roundoff > ZERO )
549 !~~~> COMPUTE JACOBIAN MATRIX ANALYTICALLY
550 IF ( (.NOT.FreshJac) .AND. (Theta > ThetaMin) ) THEN
551 CALL JAC_CHEM(T,Y,FJAC)
552 FreshJac=.TRUE.
553 END IF
555 !~~~> Compute the matrices E1 and E2 and their decompositions
556 GAMMA = rkGamma/H
557 ALPHA = rkAlpha/H
558 BETA = rkBeta/H
559 CALL RAD_DecompReal(N,FJAC,GAMMA,E1,IP1,ISING)
560 IF (ISING /= 0) THEN
561 Nsng=Nsng+1
562 IF (Nsng >= 5) THEN
563 CALL RAD_ErrorMsg(-12,T,H,IDID); RETURN
564 END IF
565 H=H*0.5D0; REJECT=.TRUE.; LastStep=.FALSE.
566 CYCLE Tloop
567 END IF
568 CALL RAD_DecompCmplx(N,FJAC,ALPHA,BETA,E2,IP2,ISING)
569 IF (ISING /= 0) THEN
570 Nsng=Nsng+1
571 IF (Nsng >= 5) THEN
572 CALL RAD_ErrorMsg(-12,T,H,IDID); RETURN
573 END IF
574 H=H*0.5D0; REJECT=.TRUE.; LastStep=.FALSE.
575 CYCLE Tloop
576 END IF
578 30 CONTINUE
579 Nstp=Nstp+1
580 IF (Nstp > Max_no_steps) THEN
581 PRINT*,'Max number of time steps is ',Max_no_steps
582 CALL RAD_ErrorMsg(-9,T,H,IDID); RETURN
583 END IF
584 IF (0.1D0*ABS(H) <= ABS(T)*Roundoff) THEN
585 CALL RAD_ErrorMsg(-10,T,H,IDID); RETURN
586 END IF
588 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
589 ! STARTING VALUES FOR NEWTON ITERATION
590 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
591 IF ( FirstStep .OR. (.NOT.StartNewton) ) THEN
592 CALL Set2zero(N,Z1)
593 CALL Set2zero(N,Z2)
594 CALL Set2zero(N,Z3)
595 CALL Set2zero(N,F1)
596 CALL Set2zero(N,F2)
597 CALL Set2zero(N,F3)
598 ELSE
599 C3Q=H/Hold
600 C1Q=rkC(1)*C3Q
601 C2Q=rkC(2)*C3Q
602 DO i=1,N
603 AK1=CONT(i,2)
604 AK2=CONT(i,3)
605 AK3=CONT(i,4)
606 Z1(i)=C1Q*(AK1+(C1Q-rkC(2)+ONE)*(AK2+(C1Q-rkC(1)+ONE)*AK3))
607 Z2(i)=C2Q*(AK1+(C2Q-rkC(2)+ONE)*(AK2+(C2Q-rkC(1)+ONE)*AK3))
608 Z3(i)=C3Q*(AK1+(C3Q-rkC(2)+ONE)*(AK2+(C3Q-rkC(1)+ONE)*AK3))
609 END DO
610 ! F(1,2,3) = TransfInv x Z(1,2,3)
611 CALL RAD_Transform(N,TransfInv,Z1,Z2,Z3,F1,F2,F3)
612 END IF
613 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
614 ! LOOP FOR THE SIMPLIFIED NEWTON ITERATION
615 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
617 FacConv = MAX(FacConv,Roundoff)**0.8D0
618 Theta=ABS(ThetaMin)
620 NewtonLoop:DO NewtonIter = 1, NewtonMaxit
622 !~~~> The right-hand side
623 DO i=1,N
624 TMP(i)=Y(i)+Z1(i)
625 END DO
626 CALL FUN_CHEM(T+rkC(1)*H,TMP,Z1)
627 DO i=1,N
628 TMP(i)=Y(i)+Z2(i)
629 END DO
630 CALL FUN_CHEM(T+rkC(2)*H,TMP,Z2)
631 DO i=1,N
632 TMP(i)=Y(i)+Z3(i)
633 END DO
634 CALL FUN_CHEM(T+rkC(3)*H,TMP,Z3)
636 !~~~> Solve the linear systems
637 ! Z(1,2,3) = TransfInv x Z(1,2,3)
638 CALL RAD_Transform(N,TransfInv,Z1,Z2,Z3,Z1,Z2,Z3)
639 CALL RAD_Solve( N,FJAC,GAMMA,ALPHA,BETA,E1,E2, &
640 Z1,Z2,Z3,F1,F2,F3,CONT,IP1,IP2,ISING )
641 Nsol=Nsol+1
643 DYNO=0.0d0
644 DO i=1,N
645 DENOM=SCAL(i)
646 DYNO=DYNO+(Z1(i)/DENOM)**2+(Z2(i)/DENOM)**2+(Z3(i)/DENOM)**2
647 END DO
648 DYNO=SQRT(DYNO/(3*N))
650 !~~~> Bad convergence or number of iterations too large
651 IF ( (NewtonIter > 1) .AND. (NewtonIter < NewtonMaxit) ) THEN
652 THQ=DYNO/DYNOLD
653 IF (NewtonIter == 2) THEN
654 Theta=THQ
655 ELSE
656 Theta=SQRT(THQ*THQOLD)
657 END IF
658 THQOLD=THQ
659 IF (Theta < 0.99d0) THEN
660 FacConv=Theta/(1.0d0-Theta)
661 DYTH=FacConv*DYNO*Theta**(NewtonMaxit-1-NewtonIter)/TolNewton
662 IF (DYTH >= 1.0d0) THEN
663 Qnewton=MAX(1.0D-4,MIN(20.0d0,DYTH))
664 FAC=.8D0*Qnewton**(-1.0d0/(4.0d0+NewtonMaxit-1-NewtonIter))
665 H=FAC*H
666 REJECT=.TRUE.
667 LastStep=.FALSE.
668 CYCLE Tloop
669 END IF
670 ELSE ! Non-convergence of Newton
671 H=H*0.5D0; REJECT=.TRUE.; LastStep=.FALSE.
672 CYCLE Tloop
673 END IF
674 END IF
675 DYNOLD=MAX(DYNO,Roundoff)
676 CALL WAXPY(N,ONE,Z1,1,F1,1) ! F1 <- F1 + Z1
677 CALL WAXPY(N,ONE,Z2,1,F2,1) ! F2 <- F2 + Z2
678 CALL WAXPY(N,ONE,Z3,1,F3,1) ! F3 <- F3 + Z3
679 ! Z(1,2,3) = Transf x F(1,2,3)
680 CALL RAD_Transform(N,Transf,F1,F2,F3,Z1,Z2,Z3)
681 NewtonDone = (FacConv*DYNO <= TolNewton)
682 IF (NewtonDone) EXIT NewtonLoop
684 END DO NewtonLoop
686 IF (.NOT.NewtonDone) THEN
687 CALL RAD_ErrorMsg(-8,T,H,IDID);
688 H=H*0.5D0; REJECT=.TRUE.; LastStep=.FALSE.
689 CYCLE Tloop
690 END IF
693 !~~~> ERROR ESTIMATION
694 CALL RAD_ErrorEstimate(N,FJAC,H,Y0,Y,T, &
695 E1,Z1,Z2,Z3,IP1,SCAL,ERR, &
696 FirstStep,REJECT,GAMMA)
697 !~~~> COMPUTATION OF Hnew
698 Fac = ERR**(-0.25d0)* &
699 MIN(FacSafe,(NewtonIter+2*NewtonMaxit)/CFAC)
700 Fac = MIN(FacMax,MAX(FacMin,Fac))
701 Hnew = Fac*H
703 !~~~> IS THE ERROR SMALL ENOUGH ?
704 accept:IF (ERR < ONE) THEN !~~~> STEP IS ACCEPTED
705 FirstStep=.FALSE.
706 Nacc=Nacc+1
707 IF (Gustafsson) THEN
708 !~~~> Predictive controller of Gustafsson
709 !~~~> Currently not implemented
710 IF (Nacc > 1) THEN
711 FacGus=FacSafe*(H/Hacc)*(ERR**2/ERRACC)**(-0.25d0)
712 FacGus=MIN(FacMax,MAX(FacMin,FacGus))
713 Fac=MIN(Fac,FacGus)
714 Hnew=H*Fac
715 END IF
716 Hacc=H
717 ERRACC=MAX(1.0D-2,ERR)
718 END IF
719 ! Told = T
720 Hold = H
721 T=T+H
722 DO i=1,N
723 Y(i)=Y(i)+Z3(i)
724 CONT(i,2)=(Z2(i)-Z3(i))/(rkC(2)-ONE)
725 AK=(Z1(i)-Z2(i))/(rkC(1)-rkC(2))
726 ACONT3=Z1(i)/rkC(1)
727 ACONT3=(AK-ACONT3)/rkC(2)
728 CONT(i,3)=(AK-CONT(i,2))/(rkC(1)-ONE)
729 CONT(i,4)=CONT(i,3)-ACONT3
730 END DO
731 CALL RAD_ErrorScale(N,ITOL,AbsTol,RelTol,Y,SCAL)
732 FreshJac=.FALSE.
733 IF (LastStep) THEN
734 H=Hopt
735 IDID=1
736 RETURN
737 END IF
738 CALL FUN_CHEM(T,Y,Y0)
739 Hnew=Tdirection*MIN(ABS(Hnew),HmaxN)
740 Hopt=Hnew
741 Hopt=MIN(H,Hnew)
742 IF (REJECT) Hnew=Tdirection*MIN(ABS(Hnew),ABS(H))
743 REJECT=.FALSE.
744 IF ((T+Hnew/Qmin-Tend)*Tdirection >= 0.D0) THEN
745 H=Tend-T
746 LastStep=.TRUE.
747 ELSE
748 QT=Hnew/H
749 IF ( (Theta<=ThetaMin) .AND. (QT>=Qmin) &
750 .AND. (QT<=Qmax) ) GOTO 30
751 H=Hnew
752 END IF
753 CYCLE Tloop
754 ELSE accept !~~~> STEP IS REJECTED
755 REJECT=.TRUE.
756 LastStep=.FALSE.
757 IF (FirstStep) THEN
758 H=H*FacRej
759 ELSE
760 H=Hnew
761 END IF
762 IF (Nacc >= 1) Nrej=Nrej+1
763 CYCLE Tloop
764 END IF accept
767 END DO Tloop
770 END SUBROUTINE RAD_Integrator
772 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
773 SUBROUTINE RAD_ErrorMsg(Code,T,H,IERR)
774 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
775 ! Handles all error messages
776 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
778 IMPLICIT NONE
779 KPP_REAL, INTENT(IN) :: T, H
780 INTEGER, INTENT(IN) :: Code
781 INTEGER, INTENT(OUT) :: IERR
783 IERR = Code
784 PRINT * , &
785 'Forced exit from RADAU5 due to the following error:'
786 IF ((Code>=-11).AND.(Code<=-1)) THEN
787 PRINT *, IERR_NAMES(Code)
788 ELSE
789 PRINT *, 'Unknown Error code: ', Code
790 ENDIF
792 PRINT *, "T=", T, "and H=", H
794 END SUBROUTINE RAD_ErrorMsg
797 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
798 SUBROUTINE RAD_ErrorScale(N,ITOL,AbsTol,RelTol,Y,SCAL)
799 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
800 ! Handles all error messages
801 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
802 IMPLICIT NONE
803 INTEGER, INTENT(IN) :: N, ITOL
804 KPP_REAL, INTENT(IN) :: AbsTol(*), RelTol(*), Y(N)
805 KPP_REAL, INTENT(OUT) :: SCAL(N)
806 INTEGER :: i
808 IF (ITOL==0) THEN
809 DO i=1,N
810 SCAL(i)=AbsTol(1)+RelTol(1)*ABS(Y(i))
811 END DO
812 ELSE
813 DO i=1,N
814 SCAL(i)=AbsTol(i)+RelTol(i)*ABS(Y(i))
815 END DO
816 END IF
818 END SUBROUTINE RAD_ErrorScale
820 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
821 SUBROUTINE RAD_Transform(N,Tr,Z1,Z2,Z3,F1,F2,F3)
822 !~~~> F = Tr x Z
823 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
824 IMPLICIT NONE
825 INTEGER :: N, i
826 KPP_REAL :: Tr(3,3),Z1(N),Z2(N),Z3(N),F1(N),F2(N),F3(N)
827 KPP_REAL :: x1, x2, x3
828 DO i=1,N
829 x1 = Z1(i); x2 = Z2(i); x3 = Z3(i)
830 F1(i) = Tr(1,1)*x1 + Tr(1,2)*x2 + Tr(1,3)*x3
831 F2(i) = Tr(2,1)*x1 + Tr(2,2)*x2 + Tr(2,3)*x3
832 F3(i) = Tr(3,1)*x1 + Tr(3,2)*x2 + Tr(3,3)*x3
833 END DO
834 END SUBROUTINE RAD_Transform
836 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
837 SUBROUTINE RAD_Coefficients
838 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
839 IMPLICIT NONE
840 KPP_REAL :: s2,s3,s6,x1,x2,x3,x4,y1,y2,y3,y4,y5
842 s2 = SQRT(2.0d0);
843 s3 = SQRT(3.0d0);
844 s6 = SQRT(6.0d0);
845 x1 = 3.d0**(1.d0/3.d0);
846 x2 = 3.d0**(2.d0/3.d0);
847 x3 = 3.d0**(1.d0/6.d0);
848 x4 = 3.d0**(5.d0/6.d0);
850 rkA(1,1) = 11.d0/45.d0-7.d0/360.d0*s6
851 rkA(1,2) = 37.d0/225.d0-169.d0/1800.d0*s6
852 rkA(1,3) = -2.d0/225.d0+s6/75
853 rkA(2,1) = 37.d0/225.d0+169.d0/1800.d0*s6
854 rkA(2,2) = 11.d0/45.d0+7.d0/360.d0*s6
855 rkA(2,3) = -2.d0/225.d0-s6/75
856 rkA(3,1) = 4.d0/9.d0-s6/36
857 rkA(3,2) = 4.d0/9.d0+s6/36
858 rkA(3,3) = 1.d0/9.d0
860 rkB(1) = 4.d0/9.d0-s6/36
861 rkB(2) = 4.d0/9.d0+s6/36
862 rkB(3) = 1.d0/9.d0
864 rkC(1) = 2.d0/5.d0-s6/10
865 rkC(2) = 2.d0/5.d0+s6/10
866 rkC(3) = 1.d0
868 ! Error estimation
869 rkE(1) = -(13.d0+7.d0*s6)/3.d0
870 rkE(2) = (-13.d0+7.d0*s6)/3.d0
871 rkE(3) = -1.d0/3.d0
873 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
874 !~~~> Diagonalize the RK matrix:
875 ! TransfInv * inv(rkA) * Transf =
876 ! | rkGamma 0 0 |
877 ! | 0 rkAlpha -rkBeta |
878 ! | 0 rkBeta rkAlpha |
879 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
880 rkGamma = 3-x1+x2
881 rkAlpha = x1/2-x2/2+3
882 rkBeta = -x4/2-3.d0/2.d0*x3
884 y1 = 36.d0/625.d0*s6
885 y2 = 129.d0/2500.d0*x1
886 y3 = 111.d0/2500.d0*x3*s2
887 Transf(1,1) = -31.d0/1250.d0*s6*x1+37.d0/1250.d0*s6*x2-y1 &
888 +129.d0/1250.d0*x1-33.d0/1250.d0*x2+49.d0/625.d0
889 Transf(1,2) = -y1-y2-y3 &
890 +31.d0/2500.d0*x4*s2+33.d0/2500.d0*x2+49.d0/625.d0
891 Transf(1,3) = 3.d0/2500.d0*x3*(-33-43*x2+31*x3*s2+37*s3*s2)
892 Transf(2,1) = 31.d0/1250.d0*s6*x1-37.d0/1250.d0*s6*x2+y1 &
893 +129.d0/1250.d0*x1-33.d0/1250.d0*x2+49.d0/625.d0
894 Transf(2,2) = y1-y2+y3&
895 -31.d0/2500.d0*x4*s2+33.d0/2500.d0*x2+49.d0/625.d0
896 Transf(2,3) = -3.d0/2500.d0*x3*(33+43*x2+31*x3*s2+37*s3*s2)
897 Transf(3,1) = 1.d0
898 Transf(3,2) = 1.d0
899 Transf(3,3) = 0.d0
901 y1 = 11.d0/36.d0*x3*s2 + 43.d0/108.d0*x4*s2
902 y2 = 11.d0/36.d0*s2*x2 - 43.d0/36.d0*s2*x1
903 y3 = 31.d0/54.d0*x1 + 37.d0/54.d0*x2
904 y4 = 31.d0/54.d0*x4-37.d0/18.d0*x3
905 y5 = -x2/27+5.d0/27.d0*x1
906 TransfInv(1,1) = y1 + y3
907 TransfInv(1,2) = -y1 + y3
908 TransfInv(1,3) = y5 + 1.d0/3.d0
909 TransfInv(2,1) = -y1 - y3
910 TransfInv(2,2) = y1 - y3
911 TransfInv(2,3) = -y5 + 2.d0/3.d0
912 TransfInv(3,1) = y4 - y2
913 TransfInv(3,2) = y4 + y2
914 TransfInv(3,3) = x3/9+5.d0/27.d0*x4
916 END SUBROUTINE RAD_Coefficients
919 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
920 SUBROUTINE RAD_DecompReal(N,FJAC,GAMMA,E1,IP1,ISING)
921 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
922 IMPLICIT NONE
924 INTEGER :: N, ISING
925 KPP_REAL :: GAMMA
926 #ifdef FULL_ALGEBRA
927 KPP_REAL :: FJAC(NVAR,NVAR),E1(NVAR,NVAR)
928 #else
929 KPP_REAL :: FJAC(LU_NONZERO),E1(LU_NONZERO)
930 #endif
931 INTEGER :: IP1(N), i, j
933 #ifdef FULL_ALGEBRA
934 DO j=1,N
935 DO i=1,N
936 E1(i,j)=-FJAC(i,j)
937 END DO
938 E1(j,j)=E1(j,j)+GAMMA
939 END DO
940 CALL DGETRF(N,N,E1,N,IP1,ISING)
941 #else
942 DO i=1,LU_NONZERO
943 E1(i)=-FJAC(i)
944 END DO
945 DO i=1,NVAR
946 j = LU_DIAG(i); E1(j)=E1(j)+GAMMA
947 END DO
948 CALL KppDecomp(E1,ISING)
949 #endif
951 END SUBROUTINE RAD_DecompReal
954 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
955 SUBROUTINE RAD_DecompCmplx(N,FJAC,ALPHA,BETA,E2,IP2,ISING)
956 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
957 IMPLICIT NONE
958 INTEGER :: N, ISING
959 #ifdef FULL_ALGEBRA
960 KPP_REAL :: FJAC(N,N)
961 DOUBLE COMPLEX :: E2(N,N)
962 #else
963 KPP_REAL :: FJAC(LU_NONZERO)
964 DOUBLE COMPLEX :: E2(LU_NONZERO)
965 #endif
966 KPP_REAL :: ALPHA, BETA
967 INTEGER :: IP2(N), i, j
969 #ifdef FULL_ALGEBRA
970 DO j=1,N
971 DO i=1,N
972 E2(i,j) = DCMPLX( -FJAC(i,j), 0.0d0 )
973 END DO
974 E2(j,j) = E2(j,j) + DCMPLX( ALPHA, BETA )
975 END DO
976 CALL ZGETRF(N,N,E2,N,IP2,ISING)
977 #else
978 DO i=1,LU_NONZERO
979 E2(i) = DCMPLX( -FJAC(i), 0.0d0 )
980 END DO
981 DO i=1,NVAR
982 j = LU_DIAG(i); E2(j)=E2(j)+DCMPLX( ALPHA, BETA )
983 END DO
984 CALL KppDecompCmplx(E2,ISING)
985 #endif
986 Ndec=Ndec+1
988 END SUBROUTINE RAD_DecompCmplx
991 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
992 SUBROUTINE RAD_Solve(N,FJAC,GAMMA,ALPHA,BETA,E1,E2,&
993 Z1,Z2,Z3,F1,F2,F3,CONT,IP1,IP2,ISING)
994 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
995 IMPLICIT NONE
996 INTEGER :: N,IP1(NVAR),IP2(NVAR),ISING
997 #ifdef FULL_ALGEBRA
998 KPP_REAL :: FJAC(NVAR,NVAR), E1(NVAR,NVAR)
999 DOUBLE COMPLEX :: E2(NVAR,NVAR)
1000 #else
1001 KPP_REAL :: FJAC(LU_NONZERO), E1(LU_NONZERO)
1002 DOUBLE COMPLEX :: E2(LU_NONZERO)
1003 #endif
1004 KPP_REAL :: Z1(N),Z2(N),Z3(N), &
1005 F1(N),F2(N),F3(N),CONT(N), &
1006 GAMMA,ALPHA,BETA
1007 DOUBLE COMPLEX :: BC(N)
1008 INTEGER :: i,j
1009 KPP_REAL :: S2, S3
1011 DO i=1,N
1012 S2=-F2(i)
1013 S3=-F3(i)
1014 Z1(i)=Z1(i)-F1(i)*GAMMA
1015 Z2(i)=Z2(i)+S2*ALPHA-S3*BETA
1016 Z3(i)=Z3(i)+S3*ALPHA+S2*BETA
1017 END DO
1018 #ifdef FULL_ALGEBRA
1019 CALL DGETRS ('N',N,1,E1,N,IP1,Z1,N,0)
1020 #else
1021 CALL KppSolve (E1,Z1)
1022 #endif
1024 DO j=1,N
1025 BC(j) = DCMPLX(Z2(j),Z3(j))
1026 END DO
1027 #ifdef FULL_ALGEBRA
1028 CALL ZGETRS ('N',N,1,E2,N,IP2,BC,N,0)
1029 #else
1030 CALL KppSolveCmplx (E2,BC)
1031 #endif
1032 DO j=1,N
1033 Z2(j) = DBLE( BC(j) )
1034 Z3(j) = AIMAG( BC(j) )
1035 END DO
1037 END SUBROUTINE RAD_Solve
1040 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1041 SUBROUTINE RAD_ErrorEstimate(N,FJAC,H,Y0,Y,T,&
1042 E1,Z1,Z2,Z3,IP1,SCAL,ERR, &
1043 FirstStep,REJECT,GAMMA)
1044 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1045 IMPLICIT NONE
1047 INTEGER :: N
1048 #ifdef FULL_ALGEBRA
1049 KPP_REAL :: FJAC(NVAR,NVAR), E1(NVAR,NVAR)
1050 #else
1051 KPP_REAL :: FJAC(LU_NONZERO), E1(LU_NONZERO)
1052 #endif
1053 KPP_REAL :: SCAL(N),Z1(N),Z2(N),Z3(N),F1(N),F2(N), &
1054 Y0(N),Y(N),TMP(N),T,H,GAMMA
1055 INTEGER :: IP1(N), i
1056 LOGICAL FirstStep,REJECT
1057 KPP_REAL :: HEE1,HEE2,HEE3,ERR
1059 HEE1 = rkE(1)/H
1060 HEE2 = rkE(2)/H
1061 HEE3 = rkE(3)/H
1063 DO i=1,N
1064 F2(i)=HEE1*Z1(i)+HEE2*Z2(i)+HEE3*Z3(i)
1065 TMP(i)=F2(i)+Y0(i)
1066 END DO
1068 #ifdef FULL_ALGEBRA
1069 CALL DGETRS ('N',N,1,E1,N,IP1,TMP,N,0)
1070 #else
1071 CALL KppSolve (E1, TMP)
1072 #endif
1074 ERR=0.D0
1075 DO i=1,N
1076 ERR=ERR+(TMP(i)/SCAL(i))**2
1077 END DO
1078 ERR=MAX(SQRT(ERR/N),1.D-10)
1080 IF (ERR < 1.D0) RETURN
1081 firej:IF (FirstStep.OR.REJECT) THEN
1082 DO i=1,N
1083 TMP(i)=Y(i)+TMP(i)
1084 END DO
1085 CALL FUN_CHEM(T,TMP,F1)
1086 DO i=1,N
1087 TMP(i)=F1(i)+F2(i)
1088 END DO
1090 #ifdef FULL_ALGEBRA
1091 CALL DGETRS ('N',N,1,E1,N,IP1,TMP,N,0)
1092 #else
1093 CALL KppSolve (E1, TMP)
1094 #endif
1095 ERR=0.D0
1096 DO i=1,N
1097 ERR=ERR+(TMP(i)/SCAL(i))**2
1098 END DO
1099 ERR=MAX(SQRT(ERR/N),1.0d-10)
1100 END IF firej
1102 END SUBROUTINE RAD_ErrorEstimate
1104 !!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1105 ! KPP_REAL FUNCTION CONTR5(I,N,T,CONT)
1106 !!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1107 !! THIS FUNCTION CAN BE USED FOR CONTINUOUS OUTPUT. IT PROVIDES AN
1108 !! APPROXIMATION TO THE I-TH COMPONENT OF THE SOLUTION AT T.
1109 !! IT GIVES THE VALUE OF THE COLLOCATION POLYNOMIAL, DEFINED FOR
1110 !! THE STEP SUCCESSFULLY COMPUTED STEP (BY RADAU5).
1111 !!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1112 ! IMPLICIT NONE
1113 ! INTEGER :: I, N
1114 ! KPP_REAL :: T, CONT(N,4)
1115 ! KPP_REAL :: S
1116 ! KPP_REAL, PARAMETER :: ONE = 1.0d0
1117 ! S=(T-Tsol)/Hsol
1118 ! CONTR5=CONT(i,1)+S* &
1119 ! (CONT(i,2)+(S-rkC(2)+ONE)*(CONT(i,3)+(S-rkC(1)+ONE)*CONT(i,4)))
1120 ! END FUNCTION CONTR5
1122 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1123 END SUBROUTINE RADAU5 ! AND ALL ITS INTERNAL PROCEDURES
1124 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1126 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1127 SUBROUTINE FUN_CHEM(T, V, FCT)
1128 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1130 USE KPP_ROOT_Parameters
1131 USE KPP_ROOT_Global
1132 USE KPP_ROOT_Function, ONLY: Fun
1133 USE KPP_ROOT_Rates, ONLY: Update_SUN, Update_RCONST, Update_PHOTO
1135 IMPLICIT NONE
1137 KPP_REAL :: V(NVAR), FCT(NVAR)
1138 KPP_REAL :: T, Told
1140 !Told = TIME
1141 !TIME = T
1142 !CALL Update_SUN()
1143 !CALL Update_RCONST()
1144 !CALL Update_PHOTO()
1145 !TIME = Told
1147 CALL Fun(V, FIX, RCONST, FCT)
1149 Nfun=Nfun+1
1151 END SUBROUTINE FUN_CHEM
1153 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1154 SUBROUTINE JAC_CHEM (T, V, JF)
1155 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1157 USE KPP_ROOT_Parameters
1158 USE KPP_ROOT_Global
1159 USE KPP_ROOT_JacobianSP
1160 USE KPP_ROOT_Jacobian, ONLY: Jac_SP
1161 USE KPP_ROOT_Rates, ONLY: Update_SUN, Update_RCONST, Update_PHOTO
1163 IMPLICIT NONE
1165 KPP_REAL :: V(NVAR), T, Told
1166 #ifdef FULL_ALGEBRA
1167 KPP_REAL :: JV(LU_NONZERO), JF(NVAR,NVAR)
1168 INTEGER :: i, j
1169 #else
1170 KPP_REAL :: JF(LU_NONZERO)
1171 #endif
1173 !Told = TIME
1174 !TIME = T
1175 !CALL Update_SUN()
1176 !CALL Update_RCONST()
1177 !CALL Update_PHOTO()
1178 !TIME = Told
1180 #ifdef FULL_ALGEBRA
1181 CALL Jac_SP(V, FIX, RCONST, JV)
1182 DO j=1,NVAR
1183 DO i=1,NVAR
1184 JF(i,j) = 0.0d0
1185 END DO
1186 END DO
1187 DO i=1,LU_NONZERO
1188 JF(LU_IROW(i),LU_ICOL(i)) = JV(i)
1189 END DO
1190 #else
1191 CALL Jac_SP(V, FIX, RCONST, JF)
1192 #endif
1194 Njac=Njac+1
1196 END SUBROUTINE JAC_CHEM
1198 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1200 END MODULE KPP_ROOT_Integrator