Merge remote-tracking branch 'origin/release-v4.6.1'
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / kpp_sdirk.f90
blob19384f723313973d6c14895385b52d8c5b42617b
1 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
2 ! SDIRK - Singly-Diagonally-Implicit Runge-Kutta method !
3 ! (L-stable, 5 stages, order 4) !
4 ! By default the code employs the KPP sparse linear algebra routines !
5 ! Compile with -DFULL_ALGEBRA to use full linear algebra (LAPACK) !
6 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
7 ! A. Sandu - version of July 10, 2005
9 MODULE KPP_ROOT_Integrator
11 USE KPP_ROOT_Precision
12 USE KPP_ROOT_Global, ONLY: FIX, RCONST, TIME
13 USE KPP_ROOT_Parameters, ONLY: NVAR, NSPEC, NFIX, LU_NONZERO
14 USE KPP_ROOT_JacobianSP, ONLY: LU_DIAG
15 USE KPP_ROOT_LinearAlgebra, ONLY: KppDecomp, KppSolve, &
16 Set2zero, WLAMCH, WAXPY, WCOPY
18 IMPLICIT NONE
19 PUBLIC
20 SAVE
22 !~~~> Statistics on the work performed by the SDIRK method
23 INTEGER :: Nfun,Njac,Nstp,Nacc,Nrej,Ndec,Nsol,Nsng
24 INTEGER, PARAMETER :: ifun=1, ijac=2, istp=3, iacc=4, &
25 irej=5, idec=6, isol=7, isng=8, itexit=1, ihexit=2
26 ! SDIRK method coefficients
27 KPP_REAL :: rkAlpha(5,4), rkBeta(5,4), rkD(4,5), &
28 rkGamma, rkA(5,5), rkB(5), rkC(5)
30 ! description of the error numbers IERR
31 CHARACTER(LEN=50), PARAMETER, DIMENSION(-8:1) :: IERR_NAMES = (/ &
32 'Matrix is repeatedly singular ', & ! -8
33 'Step size too small: T + 10*H = T or H < Roundoff ', & ! -7
34 'No of steps exceeds maximum bound ', & ! -6
35 'Improper tolerance values ', & ! -5
36 'FacMin/FacMax/FacRej must be positive ', & ! -4
37 'Hmin/Hmax/Hstart must be positive ', & ! -3
38 'Improper value for maximal no of Newton iterations', & ! -2
39 'Improper value for maximal no of steps ', & ! -1
40 ' ', & ! 0 (not used)
41 'Success ' /) ! 1
43 CONTAINS
45 SUBROUTINE INTEGRATE( TIN, TOUT, &
46 ICNTRL_U, RCNTRL_U, ISTATUS_U, RSTATUS_U, IERR_U )
48 USE KPP_ROOT_Parameters
49 USE KPP_ROOT_Global
50 IMPLICIT NONE
52 KPP_REAL, INTENT(IN) :: TIN ! Start Time
53 KPP_REAL, INTENT(IN) :: TOUT ! End Time
54 ! Optional input parameters and statistics
55 INTEGER, INTENT(IN), OPTIONAL :: ICNTRL_U(20)
56 KPP_REAL, INTENT(IN), OPTIONAL :: RCNTRL_U(20)
57 INTEGER, INTENT(OUT), OPTIONAL :: ISTATUS_U(20)
58 KPP_REAL, INTENT(OUT), OPTIONAL :: RSTATUS_U(20)
59 INTEGER, INTENT(OUT), OPTIONAL :: IERR_U
61 !INTEGER, SAVE :: Ntotal = 0
62 KPP_REAL :: RCNTRL(20), RSTATUS(20)
63 INTEGER :: ICNTRL(20), ISTATUS(20), IERR
65 ICNTRL(:) = 0
66 RCNTRL(:) = 0.0_dp
67 ISTATUS(:) = 0
68 RSTATUS(:) = 0.0_dp
70 ! If optional parameters are given, and if they are >0,
71 ! then they overwrite default settings.
72 IF (PRESENT(ICNTRL_U)) THEN
73 WHERE(ICNTRL_U(:) > 0) ICNTRL(:) = ICNTRL_U(:)
74 END IF
75 IF (PRESENT(RCNTRL_U)) THEN
76 WHERE(RCNTRL_U(:) > 0) RCNTRL(:) = RCNTRL_U(:)
77 END IF
79 CALL SDIRK( NVAR,TIN,TOUT,VAR,RTOL,ATOL, &
80 RCNTRL,ICNTRL,RSTATUS,ISTATUS,IERR )
82 ! mz_rs_20050716: IERR and ISTATUS(istp) are returned to the user who then
83 ! decides what to do about it, i.e. either stop the run or ignore it.
84 !!$ IF (IERR < 0) THEN
85 !!$ PRINT *,'SDIRK: Unsuccessful exit at T=',TIN,' (IERR=',IERR,')'
86 !!$ ENDIF
87 !!$ Ntotal = Ntotal + Nstp
88 !!$ PRINT*,'NSTEPS=',Nstp, '(',Ntotal,')'
90 STEPMIN = RSTATUS(ihexit) ! Save last step
92 ! if optional parameters are given for output they to return information
93 IF (PRESENT(ISTATUS_U)) ISTATUS_U(:) = ISTATUS(1:20)
94 IF (PRESENT(RSTATUS_U)) RSTATUS_U(:) = RSTATUS(1:20)
95 IF (PRESENT(IERR_U)) IERR_U = IERR
97 END SUBROUTINE INTEGRATE
99 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
100 SUBROUTINE SDIRK(N, Tinitial, Tfinal, Y, RelTol, AbsTol, &
101 RCNTRL, ICNTRL, RSTATUS, ISTATUS, IDID)
102 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
104 ! Solves the system y'=F(t,y) using a Singly-Diagonally-Implicit
105 ! Runge-Kutta (SDIRK) method.
107 ! For details on SDIRK methods and their implementation consult:
108 ! E. Hairer and G. Wanner
109 ! "Solving ODEs II. Stiff and differential-algebraic problems".
110 ! Springer series in computational mathematics, Springer-Verlag, 1996.
111 ! This code is based on the SDIRK4 routine in the above book.
113 ! (C) Adrian Sandu, July 2005
114 ! Virginia Polytechnic Institute and State University
115 ! Contact: sandu@cs.vt.edu
116 ! This implementation is part of KPP - the Kinetic PreProcessor
117 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
119 !~~~> INPUT ARGUMENTS:
121 !- Y(NVAR) = vector of initial conditions (at T=Tinitial)
122 !- [Tinitial,Tfinal] = time range of integration
123 ! (if Tinitial>Tfinal the integration is performed backwards in time)
124 !- RelTol, AbsTol = user precribed accuracy
125 !- SUBROUTINE ode_Fun( T, Y, Ydot ) = ODE function,
126 ! returns Ydot = Y' = F(T,Y)
127 !- SUBROUTINE ode_Fun( T, Y, Ydot ) = Jacobian of the ODE function,
128 ! returns Jcb = dF/dY
129 !- ICNTRL(1:20) = integer inputs parameters
130 !- RCNTRL(1:20) = real inputs parameters
131 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
133 !~~~> OUTPUT ARGUMENTS:
135 !- Y(NVAR) -> vector of final states (at T->Tfinal)
136 !- ISTATUS(1:20) -> integer output parameters
137 !- RSTATUS(1:20) -> real output parameters
138 !- IDID -> job status upon return
139 ! success (positive value) or
140 ! failure (negative value)
141 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
143 !~~~> INPUT PARAMETERS:
145 ! Note: For input parameters equal to zero the default values of the
146 ! corresponding variables are used.
148 ! Note: For input parameters equal to zero the default values of the
149 ! corresponding variables are used.
150 !~~~>
151 ! ICNTRL(1) = not used
153 ! ICNTRL(2) = 0: AbsTol, RelTol are NVAR-dimensional vectors
154 ! = 1: AbsTol, RelTol are scalars
156 ! ICNTRL(3) = not used
158 ! ICNTRL(4) -> maximum number of integration steps
159 ! For ICNTRL(4)=0 the default value of 100000 is used
161 ! ICNTRL(5) -> maximum number of Newton iterations
162 ! For ICNTRL(5)=0 the default value of 8 is used
164 ! ICNTRL(6) -> starting values of Newton iterations:
165 ! ICNTRL(6)=0 : starting values are interpolated (the default)
166 ! ICNTRL(6)=1 : starting values are zero
168 !~~~> Real parameters
170 ! RCNTRL(1) -> Hmin, lower bound for the integration step size
171 ! It is strongly recommended to keep Hmin = ZERO
172 ! RCNTRL(2) -> Hmax, upper bound for the integration step size
173 ! RCNTRL(3) -> Hstart, starting value for the integration step size
175 ! RCNTRL(4) -> FacMin, lower bound on step decrease factor (default=0.2)
176 ! RCNTRL(5) -> FacMax, upper bound on step increase factor (default=6)
177 ! RCNTRL(6) -> FacRej, step decrease factor after multiple rejections
178 ! (default=0.1)
179 ! RCNTRL(7) -> FacSafe, by which the new step is slightly smaller
180 ! than the predicted value (default=0.9)
181 ! RCNTRL(8) -> ThetaMin. If Newton convergence rate smaller
182 ! than ThetaMin the Jacobian is not recomputed;
183 ! (default=0.001)
184 ! RCNTRL(9) -> NewtonTol, stopping criterion for Newton's method
185 ! (default=0.03)
186 ! RCNTRL(10) -> Qmin
187 ! RCNTRL(11) -> Qmax. If Qmin < Hnew/Hold < Qmax, then the
188 ! step size is kept constant and the LU factorization
189 ! reused (default Qmin=1, Qmax=1.2)
191 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
193 !~~~> OUTPUT PARAMETERS:
195 ! Note: each call to Rosenbrock adds the current no. of fcn calls
196 ! to previous value of ISTATUS(1), and similar for the other params.
197 ! Set ISTATUS(1:10) = 0 before call to avoid this accumulation.
199 ! ISTATUS(1) = No. of function calls
200 ! ISTATUS(2) = No. of jacobian calls
201 ! ISTATUS(3) = No. of steps
202 ! ISTATUS(4) = No. of accepted steps
203 ! ISTATUS(5) = No. of rejected steps (except at the beginning)
204 ! ISTATUS(6) = No. of LU decompositions
205 ! ISTATUS(7) = No. of forward/backward substitutions
206 ! ISTATUS(8) = No. of singular matrix decompositions
208 ! RSTATUS(1) -> Texit, the time corresponding to the
209 ! computed Y upon return
210 ! RSTATUS(2) -> Hexit, last predicted step before exit
211 ! For multiple restarts, use Hexit as Hstart in the following run
212 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
213 IMPLICIT NONE
215 ! Arguments
216 INTEGER, INTENT(IN) :: N, ICNTRL(20)
217 KPP_REAL, INTENT(IN) :: Tinitial, Tfinal, &
218 RelTol(NVAR), AbsTol(NVAR), RCNTRL(20)
219 KPP_REAL, INTENT(INOUT) :: Y(NVAR)
220 INTEGER, INTENT(OUT) :: IDID
221 INTEGER, INTENT(INOUT) :: ISTATUS(20)
222 KPP_REAL, INTENT(OUT) :: RSTATUS(20)
224 ! Local variables
225 KPP_REAL :: Hmin, Hmax, Hstart, Roundoff, &
226 FacMin, Facmax, FacSafe, FacRej, &
227 ThetaMin, NewtonTol, Qmin, Qmax, &
228 Texit, Hexit
229 INTEGER :: ITOL, NewtonMaxit, Max_no_steps, i
230 KPP_REAL, PARAMETER :: ZERO = 0.0d0
232 !~~~> Initialize statistics
233 Nfun = ISTATUS(ifun)
234 Njac = ISTATUS(ijac)
235 Nstp = ISTATUS(istp)
236 Nacc = ISTATUS(iacc)
237 Nrej = ISTATUS(irej)
238 Ndec = ISTATUS(idec)
239 Nsol = ISTATUS(isol)
240 Nsng = ISTATUS(isng)
241 ! Nfun=0; Njac=0; Nstp=0; Nacc=0
242 ! Nrej=0; Ndec=0; Nsol=0; Nsng=0
244 IDID = 0
246 !~~~> For Scalar tolerances (ICNTRL(2).NE.0) the code uses AbsTol(1) and RelTol(1)
247 ! For Vector tolerances (ICNTRL(2) == 0) the code uses AbsTol(1:NVAR) and RelTol(1:NVAR)
248 IF (ICNTRL(2) == 0) THEN
249 ITOL = 1
250 ELSE
251 ITOL = 0
252 END IF
254 !~~~> The maximum number of time steps admitted
255 IF (ICNTRL(3) == 0) THEN
256 Max_no_steps = 100000
257 ELSEIF (Max_no_steps > 0) THEN
258 Max_no_steps=ICNTRL(3)
259 ELSE
260 PRINT * ,'User-selected ICNTRL(3)=',ICNTRL(3)
261 CALL SDIRK_ErrorMsg(-1,Tinitial,ZERO,IDID)
262 END IF
265 !~~~> The maximum number of Newton iterations admitted
266 IF(ICNTRL(4) == 0)THEN
267 NewtonMaxit=8
268 ELSE
269 NewtonMaxit=ICNTRL(4)
270 IF(NewtonMaxit <= 0)THEN
271 PRINT * ,'User-selected ICNTRL(4)=',ICNTRL(4)
272 CALL SDIRK_ErrorMsg(-2,Tinitial,ZERO,IDID)
273 END IF
274 END IF
276 !~~~> Unit roundoff (1+Roundoff>1)
277 Roundoff = WLAMCH('E')
279 !~~~> Lower bound on the step size: (positive value)
280 IF (RCNTRL(1) == ZERO) THEN
281 Hmin = ZERO
282 ELSEIF (RCNTRL(1) > ZERO) THEN
283 Hmin = RCNTRL(1)
284 ELSE
285 PRINT * , 'User-selected RCNTRL(1)=', RCNTRL(1)
286 CALL SDIRK_ErrorMsg(-3,Tinitial,ZERO,IDID)
287 END IF
289 !~~~> Upper bound on the step size: (positive value)
290 IF (RCNTRL(2) == ZERO) THEN
291 Hmax = ABS(Tfinal-Tinitial)
292 ELSEIF (RCNTRL(2) > ZERO) THEN
293 Hmax = MIN(ABS(RCNTRL(2)),ABS(Tfinal-Tinitial))
294 ELSE
295 PRINT * , 'User-selected RCNTRL(2)=', RCNTRL(2)
296 CALL SDIRK_ErrorMsg(-3,Tinitial,ZERO,IDID)
297 END IF
299 !~~~> Starting step size: (positive value)
300 IF (RCNTRL(3) == ZERO) THEN
301 Hstart = MAX(Hmin,Roundoff)
302 ELSEIF (RCNTRL(3) > ZERO) THEN
303 Hstart = MIN(ABS(RCNTRL(3)),ABS(Tfinal-Tinitial))
304 ELSE
305 PRINT * , 'User-selected Hstart: RCNTRL(3)=', RCNTRL(3)
306 CALL SDIRK_ErrorMsg(-3,Tinitial,ZERO,IDID)
307 END IF
309 !~~~> Step size can be changed s.t. FacMin < Hnew/Hexit < FacMax
310 IF (RCNTRL(4) == ZERO) THEN
311 FacMin = 0.2_dp
312 ELSEIF (RCNTRL(4) > ZERO) THEN
313 FacMin = RCNTRL(4)
314 ELSE
315 PRINT * , 'User-selected FacMin: RCNTRL(4)=', RCNTRL(4)
316 CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,IDID)
317 END IF
318 IF (RCNTRL(5) == ZERO) THEN
319 FacMax = 10.0_dp
320 ELSEIF (RCNTRL(5) > ZERO) THEN
321 FacMax = RCNTRL(5)
322 ELSE
323 PRINT * , 'User-selected FacMax: RCNTRL(5)=', RCNTRL(5)
324 CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,IDID)
325 END IF
326 !~~~> FacRej: Factor to decrease step after 2 succesive rejections
327 IF (RCNTRL(6) == ZERO) THEN
328 FacRej = 0.1_dp
329 ELSEIF (RCNTRL(6) > ZERO) THEN
330 FacRej = RCNTRL(6)
331 ELSE
332 PRINT * , 'User-selected FacRej: RCNTRL(6)=', RCNTRL(6)
333 CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,IDID)
334 END IF
335 !~~~> FacSafe: Safety Factor in the computation of new step size
336 IF (RCNTRL(7) == ZERO) THEN
337 FacSafe = 0.9_dp
338 ELSEIF (RCNTRL(7) > ZERO) THEN
339 FacSafe = RCNTRL(7)
340 ELSE
341 PRINT * , 'User-selected FacSafe: RCNTRL(7)=', RCNTRL(7)
342 CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,IDID)
343 END IF
345 !~~~> DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
346 IF(RCNTRL(8) == 0.D0)THEN
347 ThetaMin = 1.0d-3
348 ELSE
349 ThetaMin = RCNTRL(8)
350 END IF
352 !~~~> STOPPING CRITERION FOR NEWTON'S METHOD
353 IF(RCNTRL(9) == 0.0d0)THEN
354 NewtonTol = 3.0d-2
355 ELSE
356 NewtonTol =RCNTRL(9)
357 END IF
359 !~~~> Qmin AND Qmax: IF Qmin < Hnew/Hold < Qmax, STEP SIZE = CONST.
360 IF(RCNTRL(10) == 0.D0)THEN
361 Qmin=1.D0
362 ELSE
363 Qmin=RCNTRL(10)
364 END IF
365 IF(RCNTRL(11) == 0.D0)THEN
366 Qmax=1.2D0
367 ELSE
368 Qmax=RCNTRL(11)
369 END IF
371 !~~~> Check if tolerances are reasonable
372 IF (ITOL == 0) THEN
373 IF (AbsTol(1) <= 0.D0.OR.RelTol(1) <= 10.D0*Roundoff) THEN
374 PRINT * , ' Scalar AbsTol = ',AbsTol(1)
375 PRINT * , ' Scalar RelTol = ',RelTol(1)
376 CALL SDIRK_ErrorMsg(-5,Tinitial,ZERO,IDID)
377 END IF
378 ELSE
379 DO i=1,N
380 IF (AbsTol(i) <= 0.D0.OR.RelTol(i) <= 10.D0*Roundoff) THEN
381 PRINT * , ' AbsTol(',i,') = ',AbsTol(i)
382 PRINT * , ' RelTol(',i,') = ',RelTol(i)
383 CALL SDIRK_ErrorMsg(-5,Tinitial,ZERO,IDID)
384 END IF
385 END DO
386 END IF
388 IF (IDID < 0) RETURN
391 !~~~> CALL TO CORE INTEGRATOR
392 CALL SDIRK_Integrator( N,Tinitial,Tfinal,Y,Hmin,Hmax,Hstart, &
393 RelTol,AbsTol,ITOL, Max_no_steps, NewtonMaxit, &
394 Roundoff, FacMin, FacMax, FacRej, FacSafe, ThetaMin, &
395 NewtonTol, Qmin, Qmax, Hexit, Texit, IDID )
397 !~~~> Collect run statistics
398 ISTATUS(ifun) = Nfun
399 ISTATUS(ijac) = Njac
400 ISTATUS(istp) = Nstp
401 ISTATUS(iacc) = Nacc
402 ISTATUS(irej) = Nrej
403 ISTATUS(idec) = Ndec
404 ISTATUS(isol) = Nsol
405 ISTATUS(isng) = Nsng
406 !~~~> Last T and H
407 RSTATUS(itexit) = Texit
408 RSTATUS(ihexit) = Hexit
410 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
411 CONTAINS ! PROCEDURES INTERNAL TO SDIRK
412 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
415 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
416 SUBROUTINE SDIRK_Integrator( N,Tinitial,Tfinal,Y,Hmin,Hmax,Hstart, &
417 RelTol,AbsTol,ITOL, Max_no_steps, NewtonMaxit, &
418 Roundoff, FacMin, FacMax, FacRej, FacSafe, ThetaMin, &
419 NewtonTol, Qmin, Qmax, Hexit, Texit, IDID )
420 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
421 ! CORE INTEGRATOR FOR SDIRK4
422 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
424 USE KPP_ROOT_Parameters
425 IMPLICIT NONE
427 !~~~> Arguments:
428 INTEGER :: N
429 KPP_REAL, INTENT(INOUT) :: Y(NVAR)
430 KPP_REAL, INTENT(IN) :: Tinitial, Tfinal, Hmin, Hmax, Hstart, &
431 RelTol(NVAR), AbsTol(NVAR), Roundoff, &
432 FacMin, FacMax, FacRej, FacSafe, ThetaMin, &
433 NewtonTol, Qmin, Qmax
434 KPP_REAL, INTENT(OUT) :: Hexit, Texit
435 INTEGER, INTENT(IN) :: ITOL, Max_no_steps, NewtonMaxit
436 INTEGER, INTENT(OUT) :: IDID
438 !~~~> Local variables:
439 KPP_REAL :: Z(NVAR,5), FV(NVAR,5), CONT(NVAR,4), &
440 NewtonFactor(5), SCAL(NVAR), RHS(NVAR), &
441 G(NVAR), Yhat(NVAR), TMP(NVAR), &
442 T, H, Hold, Theta, Hratio, Hmax1, W, &
443 HGammaInv, DYTH, QNEWT, ERR, Fac, Hnew, &
444 Tdirection, NewtonErr, NewtonErrOld
445 INTEGER :: i, j, IER, istage, NewtonIter, IP(NVAR)
446 LOGICAL :: Reject, FIRST, NewtonReject, FreshJac, SkipJacUpdate, SkipLU
448 #ifdef FULL_ALGEBRA
449 KPP_REAL FJAC(NVAR,NVAR), E(NVAR,NVAR)
450 #else
451 KPP_REAL FJAC(LU_NONZERO), E(LU_NONZERO)
452 #endif
453 KPP_REAL, PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
455 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
456 ! INITIALISATIONS
457 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
458 CALL SDIRK_Coefficients
459 T = Tinitial
460 Tdirection = SIGN(1.D0,Tfinal-Tinitial)
461 Hmax1=MIN(ABS(Hmax),ABS(Tfinal-Tinitial))
462 H = MAX(ABS(Hmin),ABS(Hstart))
463 IF (ABS(H) <= 10.D0*Roundoff) H=1.0D-6
464 H=MIN(ABS(H),Hmax1)
465 H=SIGN(H,Tdirection)
466 Hold=H
467 NewtonReject=.FALSE.
468 SkipLU =.FALSE.
469 FreshJac = .FALSE.
470 SkipJacUpdate = .FALSE.
471 Reject=.FALSE.
472 FIRST=.TRUE.
473 NewtonFactor(1:5)=ONE
475 CALL SDIRK_ErrorScale(ITOL, AbsTol, RelTol, Y, SCAL)
477 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
478 !~~~> Time loop begins
479 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
480 Tloop: DO WHILE ( (Tfinal-T)*Tdirection - Roundoff > ZERO )
483 !~~~> Compute E = 1/(h*gamma)-Jac and its LU decomposition
484 IF ( SkipLU ) THEN ! This time around skip the Jac update and LU
485 SkipLU = .FALSE.; FreshJac = .FALSE.; SkipJacUpdate = .FALSE.
486 ELSE
487 CALL SDIRK_PrepareMatrix ( H, T, Y, FJAC, &
488 FreshJac, SkipJacUpdate, E, IP, Reject, IER )
489 IF (IER /= 0) THEN
490 CALL SDIRK_ErrorMsg(-8,T,H,IDID); RETURN
491 END IF
492 END IF
494 IF (Nstp>Max_no_steps) THEN
495 CALL SDIRK_ErrorMsg(-6,T,H,IDID); RETURN
496 END IF
497 IF ( (T+0.1d0*H == T) .OR. (ABS(H) <= Roundoff) ) THEN
498 CALL SDIRK_ErrorMsg(-7,T,H,IDID); RETURN
499 END IF
501 HGammaInv = ONE/(H*rkGamma)
503 !~~~> NEWTON ITERATION
504 stages:DO istage=1,5
506 NewtonFactor(istage) = MAX(NewtonFactor(istage),Roundoff)**0.8d0
508 !~~~> STARTING VALUES FOR NEWTON ITERATION
509 CALL Set2zero(N,G)
510 CALL Set2zero(N,Z(1,istage))
511 IF (istage==1) THEN
512 IF (FIRST.OR.NewtonReject) THEN
513 CALL Set2zero(N,Z(1,istage))
514 ELSE
515 W=ONE+rkGamma*H/Hold
516 DO i=1,N
517 Z(i,istage)=W*(CONT(i,1)+W*(CONT(i,2)+W*(CONT(i,3)+W*CONT(i,4))))-Yhat(i)
518 END DO
519 END IF
520 ELSE
521 DO j = 1, istage-1
522 ! Gj(:) = sum_j Beta(i,j)*Zj(:) = H * sum_j A(i,j)*Fun(Zj(:))
523 CALL WAXPY(N,rkBeta(istage,j),Z(1,j),1,G,1)
524 ! CALL WAXPY(N,H*rkA(istage,j),FV(1,j),1,G,1)
525 ! Zi(:) = sum_j Alpha(i,j)*Zj(:)
526 CALL WAXPY(N,rkAlpha(istage,j),Z(1,j),1,Z(1,istage),1)
527 END DO
528 IF (istage==5) CALL WCOPY(N,Z(1,istage),1,Yhat,1) ! Yhat(:) <- Z5(:)
529 END IF
531 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
532 ! LOOP FOR THE SIMPLIFIED NEWTON ITERATION
533 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
534 NewtonIter=0
535 Theta=ABS(ThetaMin)
536 IF (Reject) Theta=2*ABS(ThetaMin)
537 NewtonErr = 1.0e+6 ! To force-enter Newton loop
539 Newton: DO WHILE (NewtonFactor(istage)*NewtonErr > NewtonTol)
541 IF (NewtonIter >= NewtonMaxit) THEN
542 H=H*0.5d0
543 Reject=.TRUE.
544 NewtonReject=.TRUE.
545 CYCLE Tloop
546 END IF
547 NewtonIter=NewtonIter+1
549 !~~~> COMPUTE THE RIGHT-HAND SIDE
550 TMP(1:N) = Y(1:N) + Z(1:N,istage)
551 CALL FUN_CHEM(T+rkC(istage)*H,TMP,RHS)
552 TMP(1:N) = G(1:N) - Z(1:N,istage)
553 CALL WAXPY(N,HGammaInv,TMP,1,RHS,1) ! RHS(:) <- RHS(:) + HGammaInv*(G(:)-Z(:))
555 !~~~> SOLVE THE LINEAR SYSTEMS
556 #ifdef FULL_ALGEBRA
557 CALL DGETRS( 'N', N, 1, E, N, IP, RHS, N, IER )
558 #else
559 CALL KppSolve(E, RHS)
560 #endif
561 Nsol=Nsol+1
563 !~~~> CHECK CONVERGENCE OR IF NUMBER OF ITERATIONS TOO LARGE
564 CALL SDIRK_ErrorNorm(N, RHS, SCAL, NewtonErr)
565 IF ( (NewtonIter >= 2) .AND. (NewtonIter < NewtonMaxit) ) THEN
566 Theta = NewtonErr/NewtonErrOld
567 IF (Theta < 0.99d0) THEN
568 NewtonFactor(istage)=Theta/(ONE-Theta)
569 DYTH = NewtonFactor(istage)*NewtonErr* &
570 Theta**(NewtonMaxit-1-NewtonIter)
571 QNEWT = MAX(1.0d-4,MIN(16.0d0,DYTH/NewtonTol))
572 IF (QNEWT >= ONE) THEN
573 H=.8D0*H*QNEWT**(-ONE/(NewtonMaxit-NewtonIter))
574 Reject=.TRUE.
575 NewtonReject=.TRUE.
576 CYCLE Tloop ! go back to the beginning of DO step
577 END IF
578 ELSE
579 NewtonReject=.TRUE.
580 H=H*0.5d0
581 Reject=.TRUE.
582 CYCLE Tloop ! go back to the beginning of DO step
583 END IF
584 END IF
585 NewtonErrOld = NewtonErr
586 CALL WAXPY(N,ONE,RHS,1,Z(1,istage),1) ! Z(:) <-- Z(:)+RHS(:)
588 END DO Newton
590 !~~> END OF SIMPLIFIED NEWTON ITERATION
591 ! Save function values
592 TMP(1:N) = Y(1:N) + Z(1:N,istage)
593 CALL FUN_CHEM(T+rkC(istage)*H,TMP,FV(1,istage))
595 END DO stages
598 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
599 ! ERROR ESTIMATION
600 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
601 Nstp=Nstp+1
602 TMP(1:N)=HGammaInv*(Z(1:N,5)-Yhat(1:N))
604 #ifdef FULL_ALGEBRA
605 CALL DGETRS( 'N', N, 1, E, N, IP, TMP, N, IER )
606 #else
607 CALL KppSolve(E, TMP)
608 #endif
610 CALL SDIRK_ErrorNorm(N, TMP, SCAL, ERR)
612 !~~~> COMPUTATION OF Hnew: WE REQUIRE FacMin <= Hnew/H <= FacMax
613 !Safe = FacSafe*DBLE(1+2*NewtonMaxit)/DBLE(NewtonIter+2*NewtonMaxit)
614 Fac = MAX(FacMin,MIN(FacMax,(ERR)**(-0.25d0)*FacSafe))
615 Hnew = H*Fac
617 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
618 ! ACCEPT/Reject STEP
619 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~
620 accept: IF ( ERR < ONE ) THEN !~~~> STEP IS ACCEPTED
622 FIRST=.FALSE.
623 Nacc=Nacc+1
624 Hold=H
626 !~~~> COEFFICIENTS FOR CONTINUOUS SOLUTION
627 CALL WAXPY(N,ONE,Z(1,5),1,Y,1) ! Y(:) <-- Y(:)+Z5(:)
628 CALL WCOPY(N,Z(1,5),1,Yhat,1) ! Yhat <-- Z5
630 DO i=1,4 ! CONTi <-- Sum_j rkD(i,j)*Zj
631 CALL Set2zero(N,CONT(1,i))
632 DO j = 1,5
633 CALL WAXPY(N,rkD(i,j),Z(1,j),1,CONT(1,i),1)
634 END DO
635 END DO
637 CALL SDIRK_ErrorScale(ITOL, AbsTol, RelTol, Y, SCAL)
639 T=T+H
640 FreshJac=.FALSE.
642 Hnew = Tdirection*MIN(ABS(Hnew),Hmax1)
643 Hexit = Hnew
644 IF (Reject) Hnew=Tdirection*MIN(ABS(Hnew),ABS(H))
645 Reject = .FALSE.
646 NewtonReject = .FALSE.
647 IF ((T+Hnew/Qmin-Tfinal)*Tdirection > 0.D0) THEN
648 H = Tfinal-T
649 ELSE
650 Hratio=Hnew/H
651 ! If step not changed too much, keep it as is;
652 ! do not update Jacobian and reuse LU
653 IF ( (Theta <= ThetaMin) .AND. (Hratio >= Qmin) &
654 .AND. (Hratio <= Qmax) ) THEN
655 SkipJacUpdate = .TRUE.
656 SkipLU = .TRUE.
657 ELSE
658 H = Hnew
659 END IF
660 END IF
661 ! If convergence is fast enough, do not update Jacobian
662 IF (Theta <= ThetaMin) SkipJacUpdate = .TRUE.
664 ELSE accept !~~~> STEP IS REJECTED
666 Reject=.TRUE.
667 IF (FIRST) THEN
668 H=H*FacRej
669 ELSE
670 H=Hnew
671 END IF
672 IF (Nacc >= 1) Nrej=Nrej+1
674 END IF accept
676 END DO Tloop
678 ! Successful return
679 Texit = T
680 IDID = 1
682 END SUBROUTINE SDIRK_Integrator
685 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
686 SUBROUTINE SDIRK_ErrorScale(ITOL, AbsTol, RelTol, Y, SCAL)
687 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
688 IMPLICIT NONE
689 INTEGER :: i, ITOL
690 KPP_REAL :: AbsTol(NVAR), RelTol(NVAR), &
691 Y(NVAR), SCAL(NVAR)
692 IF (ITOL == 0) THEN
693 DO i=1,NVAR
694 SCAL(i) = 1.0d0 / ( AbsTol(1)+RelTol(1)*ABS(Y(i)) )
695 END DO
696 ELSE
697 DO i=1,NVAR
698 SCAL(i) = 1.0d0 / ( AbsTol(i)+RelTol(i)*ABS(Y(i)) )
699 END DO
700 END IF
701 END SUBROUTINE SDIRK_ErrorScale
704 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
705 SUBROUTINE SDIRK_ErrorNorm(N, Y, SCAL, ERR)
706 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
708 INTEGER :: i, N
709 KPP_REAL :: Y(N), SCAL(N), ERR
710 ERR=0.0d0
711 DO i=1,N
712 ERR = ERR+(Y(i)*SCAL(i))**2
713 END DO
714 ERR = MAX( SQRT(ERR/DBLE(N)), 1.0d-10 )
716 END SUBROUTINE SDIRK_ErrorNorm
719 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
720 SUBROUTINE SDIRK_ErrorMsg(Code,T,H,IERR)
721 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
722 ! Handles all error messages
723 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
725 KPP_REAL, INTENT(IN) :: T, H
726 INTEGER, INTENT(IN) :: Code
727 INTEGER, INTENT(OUT) :: IERR
729 IERR = Code
730 PRINT * , &
731 'Forced exit from SDIRK due to the following error:'
732 IF ((Code>=-8).AND.(Code<=-1)) THEN
733 PRINT *, IERR_NAMES(Code)
734 ELSE
735 PRINT *, 'Unknown Error code: ', Code
736 ENDIF
738 PRINT *, "T=", T, "and H=", H
740 END SUBROUTINE SDIRK_ErrorMsg
743 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
744 SUBROUTINE SDIRK_PrepareMatrix ( H, T, Y, FJAC, &
745 FreshJac, SkipJacUpdate, E, IP, Reject, IER )
746 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
748 IMPLICIT NONE
750 KPP_REAL, INTENT(INOUT) :: H
751 KPP_REAL, INTENT(IN) :: T, Y(NVAR)
752 LOGICAL, INTENT(INOUT) :: FreshJac, SkipJacUpdate
753 INTEGER, INTENT(OUT) :: IER, IP(NVAR)
754 LOGICAL, INTENT(INOUT) :: Reject
755 #ifdef FULL_ALGEBRA
756 KPP_REAL, INTENT(INOUT) :: FJAC(NVAR,NVAR)
757 KPP_REAL, INTENT(OUT) :: E(NVAR,NVAR)
758 #else
759 KPP_REAL, INTENT(INOUT) :: FJAC(LU_NONZERO)
760 KPP_REAL, INTENT(OUT) :: E(LU_NONZERO)
761 #endif
762 KPP_REAL :: HGammaInv
763 INTEGER :: i, j, ConsecutiveSng
764 KPP_REAL, PARAMETER :: ONE = 1.0d0
766 20 CONTINUE
768 !~~~> COMPUTE THE JACOBIAN
769 IF (SkipJacUpdate) THEN
770 SkipJacUpdate = .FALSE.
771 ELSE IF ( .NOT.FreshJac ) THEN
772 CALL JAC_CHEM( T, Y, FJAC )
773 FreshJac = .TRUE.
774 END IF
776 !~~~> Compute the matrix E = 1/(H*GAMMA)*Jac, and its decomposition
777 ConsecutiveSng = 0
778 IER = 1
780 Hloop: DO WHILE (IER /= 0)
782 HGammaInv = ONE/(H*rkGamma)
784 #ifdef FULL_ALGEBRA
785 DO j=1,NVAR
786 DO i=1,NVAR
787 E(i,j)=-FJAC(i,j)
788 END DO
789 E(j,j)=E(j,j)+HGammaInv
790 END DO
791 CALL DGETRF( NVAR, NVAR, E, NVAR, IP, IER )
792 #else
793 DO i = 1,LU_NONZERO
794 E(i) = -FJAC(i)
795 END DO
796 DO i = 1,NVAR
797 j = LU_DIAG(i); E(j) = E(j) + HGammaInv
798 END DO
799 CALL KppDecomp ( E, IER)
800 IP(1) = 1
801 #endif
802 Ndec=Ndec+1
804 IF (IER /= 0) THEN
805 WRITE (6,*) ' MATRIX IS SINGULAR, IER=',IER,' T=',T,' H=',H
806 Nsng = Nsng+1; ConsecutiveSng = ConsecutiveSng + 1
807 IF (ConsecutiveSng >= 6) RETURN ! Failure
808 H=H*0.5d0
809 Reject=.TRUE.
810 !~~~> Update Jacobian if not fresh
811 IF ( .NOT.FreshJac ) GOTO 20
812 END IF
814 END DO Hloop
816 END SUBROUTINE SDIRK_PrepareMatrix
819 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
820 SUBROUTINE SDIRK_Coefficients
821 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
822 rkGamma=4.0d0/15.0d0
824 rkA(1,1)= 4.d0/15.d0
825 rkA(2,1)= 1.d0/2.d0
826 rkA(2,2)= 4.d0/15.d0
827 rkA(3,1)= 51069.d0/144200.d0
828 rkA(3,2)=-7809.d0/144200.d0
829 rkA(3,3)= 4.d0/15.d0
830 rkA(4,1)= 12047244770625658.d0/141474406359725325.d0
831 rkA(4,2)=-3057890203562191.d0/47158135453241775.d0
832 rkA(4,3)= 2239631894905804.d0/28294881271945065.d0
833 rkA(4,4)= 4.d0/15.d0
834 rkA(5,1)= 181513.d0/86430.d0
835 rkA(5,2)=-89074.d0/116015.d0
836 rkA(5,3)= 83636.d0/34851.d0
837 rkA(5,4)=-69863904375173.d0/23297141763930.d0
838 rkA(5,5)= 4.d0/15.d0
840 rkB(1)= 181513.d0/86430.d0
841 rkB(2)=-89074.d0/116015.d0
842 rkB(3)= 83636.d0/34851.d0
843 rkB(4)=-69863904375173.d0/23297141763930.d0
844 rkB(5)= 4/15.d0
846 rkC(1)=4.d0/15.d0
847 rkC(2)=23.d0/30.d0
848 rkC(3)=17.d0/30.d0
849 rkC(4)=707.d0/1931.d0
850 rkC(5)=1.d0
852 rkBeta(2,1)=15.0d0/8.0d0
853 rkBeta(3,1)=1577061.0d0/922880.0d0
854 rkBeta(3,2)=-23427.0d0/115360.0d0
855 rkBeta(4,1)=647163682356923881.0d0/2414496535205978880.0d0
856 rkBeta(4,2)=-593512117011179.0d0/3245291041943520.0d0
857 rkBeta(4,3)=559907973726451.0d0/1886325418129671.0d0
858 rkBeta(5,1)=724545451.0d0/796538880.0d0
859 rkBeta(5,2)=-830832077.0d0/267298560.0d0
860 rkBeta(5,3)=30957577.0d0/2509272.0d0
861 rkBeta(5,4)=-69863904375173.0d0/6212571137048.0d0
863 rkAlpha(2,1)= 23.d0/8.d0
864 rkAlpha(3,1)= 0.9838473040915402d0
865 rkAlpha(3,2)= 0.3969226768377252d0
866 rkAlpha(4,1)= 0.6563374010466914d0
867 rkAlpha(4,2)= 0.0d0
868 rkAlpha(4,3)= 0.3372498196189311d0
869 rkAlpha(5,1)=7752107607.0d0/11393456128.0d0
870 rkAlpha(5,2)=-17881415427.0d0/11470078208.0d0
871 rkAlpha(5,3)=2433277665.0d0/179459416.0d0
872 rkAlpha(5,4)=-96203066666797.0d0/6212571137048.0d0
874 rkD(1,1)= 24.74416644927758d0
875 rkD(1,2)= -4.325375951824688d0
876 rkD(1,3)= 41.39683763286316d0
877 rkD(1,4)= -61.04144619901784d0
878 rkD(1,5)= -3.391332232917013d0
879 rkD(2,1)= -51.98245719616925d0
880 rkD(2,2)= 10.52501981094525d0
881 rkD(2,3)= -154.2067922191855d0
882 rkD(2,4)= 214.3082125319825d0
883 rkD(2,5)= 14.71166018088679d0
884 rkD(3,1)= 33.14347947522142d0
885 rkD(3,2)= -19.72986789558523d0
886 rkD(3,3)= 230.4878502285804d0
887 rkD(3,4)= -287.6629744338197d0
888 rkD(3,5)= -18.99932366302254d0
889 rkD(4,1)= -5.905188728329743d0
890 rkD(4,2)= 13.53022403646467d0
891 rkD(4,3)= -117.6778956422581d0
892 rkD(4,4)= 134.3962081008550d0
893 rkD(4,5)= 8.678995715052762d0
895 END SUBROUTINE SDIRK_Coefficients
897 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
898 END SUBROUTINE SDIRK ! AND ALL ITS INTERNAL PROCEDURES
899 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
901 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
902 SUBROUTINE FUN_CHEM( T, Y, P )
903 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
905 USE KPP_ROOT_Global, ONLY: NVAR
906 USE KPP_ROOT_Function
908 INTEGER N
909 KPP_REAL T !, Told
910 KPP_REAL Y(NVAR), P(NVAR)
912 !Told = TIME
913 !TIME = T
914 !CALL Update_SUN()
915 !CALL Update_RCONST()
917 CALL Fun( Y, FIX, RCONST, P )
919 !TIME = Told
920 Nfun=Nfun+1
922 END SUBROUTINE FUN_CHEM
925 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
926 SUBROUTINE JAC_CHEM( T, Y, JV )
927 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
929 USE KPP_ROOT_Global, ONLY: NVAR
930 USE KPP_ROOT_Jacobian
932 INTEGER N
933 KPP_REAL T !, Told
934 KPP_REAL Y(NVAR)
935 #ifdef FULL_ALGEBRA
936 KPP_REAL :: JS(LU_NONZERO), JV(NVAR,NVAR)
937 INTEGER :: i, j
938 #else
939 KPP_REAL :: JV(LU_NONZERO)
940 #endif
942 !Told = TIME
943 !TIME = T
944 !CALL Update_SUN()
945 !CALL Update_RCONST()
947 #ifdef FULL_ALGEBRA
948 CALL Jac_SP(Y, FIX, RCONST, JS)
949 DO j=1,NVAR
950 DO j=1,NVAR
951 JV(i,j) = 0.0D0
952 END DO
953 END DO
954 DO i=1,LU_NONZERO
955 JV(LU_IROW(i),LU_ICOL(i)) = JS(i)
956 END DO
957 #else
958 CALL Jac_SP(Y, FIX, RCONST, JV)
959 #endif
960 !TIME = Told
961 Njac = Njac+1
963 END SUBROUTINE JAC_CHEM
965 END MODULE KPP_ROOT_Integrator