Merge remote-tracking branch 'origin/release-v4.6.1'
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / oldies / ros2_cts_adj.f
blob353a0938825374d43e040f26e42493fef5266d4a
1 SUBROUTINE ros2_cts_adj(N,T,Tnext,Hmin,Hmax,Hstart,
2 + y,Lambda,Fix,Rconst,AbsTol,RelTol,
3 + Info)
4 INCLUDE 'KPP_ROOT_params.h'
5 INCLUDE 'KPP_ROOT_global.h'
7 C INPUT ARGUMENTS:
8 C y = Vector of (NVAR) concentrations, contains the
9 C initial values on input
10 C [T, Tnext] = the integration interval
11 C Hmin, Hmax = lower and upper bounds for the selected step-size.
12 C Note that for Step = Hmin the current computed
13 C solution is unconditionally accepted by the error
14 C control mechanism.
15 C AbsTol, RelTol = (NVAR) dimensional vectors of
16 C componentwise absolute and relative tolerances.
17 C FUN = name of routine of derivatives. KPP syntax.
18 C See the header below.
19 C JAC_SP = name of routine that computes the Jacobian, in
20 C sparse format. KPP syntax. See the header below.
21 C Info(1) = 1 for autonomous system
22 C = 0 for nonautonomous system
23 C Info(2) = 1 for third order embedded formula
24 C = 0 for first order embedded formula
26 C Note: Stage 3 used to build strongly A-stable order 3 formula for error control
27 C Embed3 = (Info(2).EQ.1)
28 C IF Embed3 = .true. THEN the third order embedded formula is used
29 C .false. THEN a first order embedded formula is used
32 C OUTPUT ARGUMENTS:
33 C y = the values of concentrations at TEND.
34 C T = equals TEND on output.
35 C Info(2) = # of FUN CALLs.
36 C Info(3) = # of JAC_SP CALLs.
37 C Info(4) = # of accepted steps.
38 C Info(5) = # of rejected steps.
40 INTEGER max_no_steps
41 PARAMETER (max_no_steps = 200)
42 KPP_REAL Trajectory(NVAR,max_no_steps)
43 KPP_REAL StepSize(max_no_steps)
45 KPP_REAL K1(NVAR), K2(NVAR), K3(NVAR)
46 KPP_REAL F1(NVAR), JAC(LU_NONZERO)
47 KPP_REAL DFDT(NVAR)(NRAD)
48 KPP_REAL Fix(NFIX), Rconst(NREACT)
49 KPP_REAL Hmin,Hmax,Hstart,ghinv,uround
50 KPP_REAL y(NVAR), Ynew(NVAR)
51 KPP_REAL AbsTol(NVAR), RelTol(NVAR)
52 KPP_REAL T, Tnext, H, Hold, Tplus
53 KPP_REAL ERR, factor, facmax
54 KPP_REAL Lambda(NVAR), K11(NVAR), JAC1(LU_NONZERO)
55 INTEGER n,nfcn,njac,Naccept,Nreject,i,j
56 INTEGER Info(5)
57 LOGICAL IsReject, Autonomous, Embed3
58 EXTERNAL FUN, JAC_SP
60 KPP_REAL gamma, m1, m2, alpha, beta1, beta2, delta, w, e
61 KPP_REAL ginv
62 c Initialization of counters, etc.
63 Autonomous = Info(1) .EQ. 1
64 Embed3 = Info(2) .EQ. 1
65 uround = 1.d-15
66 dround = dsqrt(uround)
67 H = DMAX1(Hstart,DMAX1(1.d-8, Hmin))
68 Tplus = T
69 IsReject = .false.
70 Naccept = 0
71 Nreject = 0
72 Nfcn = 0
73 Njac = 0
75 C Method Parameters
76 gamma = 1.d0 + 1.d0/sqrt(2.d0)
77 a21 = - 1.d0/gamma
78 m1 = -3.d0/(2.d0*gamma)
79 m2 = -1.d0/(2.d0*gamma)
80 c31 = -1.0D0/gamma**2*(1.0D0-7.0D0*gamma+9.0D0*gamma**2)
81 & /(-1.0D0+2.0D0*gamma)
82 c32 = -1.0D0/gamma**2*(1.0D0-6.0D0*gamma+6.0D0*gamma**2)
83 & /(-1.0D0+2.0D0*gamma)/2
84 gamma3 = 0.5D0 - 2*gamma
85 d1 = ((-9.0D0*gamma+8.0D0*gamma**2+2.0D0)/gamma**2/
86 & (-1.0D0+2*gamma))/6.0D0
87 d2 = ((-1.0D0+3.0D0*gam)/gamma**2/
88 & (-1.0D0+2.0D0*gamma))/6.0D0
89 d3 = -1.0D0/(3.0D0*gamma)
91 Trajectory(1:NVAR,1) = Ynew(1)
93 C === Starting the time loop ===
94 10 CONTINUE
95 Tplus = T + H
96 IF ( Tplus .gt. Tnext ) THEN
97 H = Tnext - T
98 Tplus = Tnext
99 END IF
101 CALL Jac_SP( Y, Fix, Rconst, JAC )
103 Njac = Njac+1
104 ghinv = -1.0d0/(gamma*H)
105 DO 20 j=1,NVAR
106 JAC(LU_DIAG_V(j)) = JAC(LU_DIAG_V(j)) + ghinv
107 20 CONTINUE
108 CALL KppDecomp (NVAR, JAC, ier)
110 IF (ier.ne.0) THEN
111 IF ( H.gt.Hmin) THEN
112 H = 5.0d-1*H
113 GO TO 10
114 else
115 PRINT *,'IER <> 0, H=',H
116 STOP
117 END IF
118 END IF
120 CALL Fun( Y, Fix, Rconst, F1 )
122 C ====== NONAUTONOMOUS CASE ===============
123 IF (.not. Autonomous) THEN
124 tau = dsign(dround*dmax1( 1.0d-6, dabs(T) ), T)
125 CALL Fun( Y, Fix, Rconst, K2 )
126 nfcn=nfcn+1
127 DO 30 j = 1,NVAR
128 DFDT(j) = ( K2(j)-F1(j) )/tau
129 30 CONTINUE
130 END IF ! .NOT.Autonomous
132 C ----- STAGE 1 -----
133 DO 40 j = 1,NVAR
134 K1(j) = F1(j)
135 40 CONTINUE
136 IF (.NOT.Autonomous) THEN
137 delta = gamma*H
138 DO 45 j = 1,NVAR
139 K1(j) = K1(j) + delta*DFDT(j)
140 45 CONTINUE
141 END IF ! .NOT.Autonomous
142 CALL KppSolve (JAC, K1)
144 C ----- STAGE 2 -----
145 DO 50 j = 1,NVAR
146 Ynew(j) = y(j) + a21*K1(j)
147 50 CONTINUE
148 CALL Fun( Ynew, Fix, Rconst, F1 )
149 nfcn=nfcn+1
150 beta = 2.d0/(gamma*H)
151 delta = -gamma*H
152 DO 55 j = 1,NVAR
153 K2(j) = F1(j) + beta*K1(j)
154 55 CONTINUE
155 IF (.NOT.Autonomous) THEN
156 DO 56 j = 1,NVAR
157 K2(j) = K2(j) + delta*DFDT(j)
158 56 CONTINUE
159 END IF ! .NOT.Autonomous
160 CALL KppSolve (JAC, K2)
162 C ----- STAGE 3 -----
163 IF (Embed3) THEN
164 beta1 = -c31/H
165 beta2 = -c32/H
166 delta = gamma3*H
167 DO 57 j = 1,NVAR
168 K3(j) = F1(j) + beta1*K1(j) + beta2*K2(j)
169 57 CONTINUE
170 IF (.NOT.Autonomous) THEN
171 DO 58 j = 1,NVAR
172 K3(j) = K3(j) + delta*DFDT(j)
173 58 CONTINUE
174 END IF ! .NOT.Autonomous
175 CALL KppSolve (JAC, K3)
176 END IF ! Embed3
179 C ---- The Solution ---
180 DO 120 j = 1,NVAR
181 Ynew(j) = y(j) + m1*K1(j) + m2*K2(j)
182 120 CONTINUE
185 C ====== Error estimation ========
187 ERR=0.d0
188 DO 130 i=1,NVAR
189 w = AbsTol(i) + RelTol(i)*DMAX1(DABS(y(i)),DABS(Ynew(i)))
190 IF ( Embed3 ) THEN
191 e = d1*K1(i) + d2*K2(i) + d3*K3(i)
192 ELSE
193 e = 1.d0/(2.d0*gamma)*(K1(i)+K2(i))
194 END IF ! Embed3
195 ERR = ERR + ( e/w )**2
196 130 CONTINUE
197 ERR = DMAX1( uround, DSQRT( ERR/NVAR ) )
199 C ======= Choose the stepsize ===============================
201 IF ( Embed3 ) THEN
202 elo = 3.0D0 ! estimator local order
203 ELSE
204 elo = 2.0D0
205 END IF
206 factor = DMAX1(2.0D-1,DMIN1(6.0D0,ERR**(1.0D0/elo)/.9D0))
207 Hnew = DMIN1(Hmax,DMAX1(Hmin, H/factor))
208 Hold = H
210 C ======= Rejected/Accepted Step ============================
212 IF ( (ERR.gt.1).and.(H.gt.Hmin) ) THEN
213 IsReject = .true.
214 H = DMIN1(H/10,Hnew)
215 Nreject = Nreject+1
216 ELSE
217 DO 140 i=1,NVAR
218 y(i) = Ynew(i)
219 140 CONTINUE
220 T = Tplus
221 IF (.NOT.IsReject) THEN
222 H = Hnew ! Do not increase stepsize IF previous step was rejected
223 END IF
224 IsReject = .false.
225 Naccept = Naccept+1
226 IF (Naccept+1>max_no_steps) THEN
227 PRINT*,'Error in Adjoint Ros2: more steps than allowed'
228 STOP
229 END IF
230 Trajectory(1:NVAR,Naccept+1) = Ynew(1:NVAR)
231 StepSize(Naccept) = Hold
232 ! CALL TRAJISTORE(y,hold)
233 END IF
234 C ======= END of the time loop ===============================
235 IF ( T .lt. Tnext ) GO TO 10
237 C ======= Output Information =================================
238 Info(2) = Nfcn
239 Info(3) = Njac
240 Info(4) = Naccept
241 Info(5) = Nreject
243 ginv = 1.d0/gamma
244 C -- The backwards loop for the CONTINUOUS ADJOINT
245 DO istep = Naccept,1,-1
247 h = StepSize(istep)
248 y(1:NVAR) = Trajectory(1:NVAR,istep+1)
249 gHinv = -ginv/H
251 CALL Jac_SP(Y, Fix, Rconst, JAC)
252 JAC1(1:LU_NONZERO)=JAC(1:LU_NONZERO)
253 DO j=1,NVAR
254 JAC(lu_diag_v(j)) = JAC(lu_diag_v(j)) + gHinv
255 END DO
256 CALL KppDecomp (NVAR,JAC,ier)
257 ccc equivalent to function evaluation in forward integration
258 ccc is J^T*Lambda in backward integration
259 CALL JacTR_SP_Vec ( JAC1, Lambda, F1)
261 C ----- STAGE 1 (AUTONOMOUS) -----
262 K11(1:NVAR) = F1(1:NVAR)
263 CALL KppSolveTR (JAC,K11,K1)
264 C ----- STAGE 2 (AUTONOMOUS) -----
265 y(1:NVAR) = Trajectory(1:NVAR,istep)
266 CALL Jac_SP(Y, Fix, Rconst, JAC1)
267 Ynew(1:NVAR) = Lambda(1:NVAR) - ginv*K1(1:NVAR)
268 CALL JacTR_SP_Vec ( JAC1, Ynew, F1)
269 beta = -2.d0*ghinv
270 K11(1:NVAR) = F1(1:NVAR) + beta*K1(1:NVAR)
271 CALL KppSolveTR (JAC,K11,K2)
272 c ---- The solution
273 Lambda(1:NVAR) = Lambda(1:NVAR)+m1*K1(1:NVAR)+m2*K2(1:NVAR)
275 END DO ! istep
278 RETURN
282 SUBROUTINE FUNC_CHEM(N, T, Y, P)
283 INCLUDE 'KPP_ROOT_params.h'
284 INCLUDE 'KPP_ROOT_global.h'
285 INTEGER N
286 KPP_REAL T, Told
287 KPP_REAL Y(NVAR), P(NVAR)
288 Told = TIME
289 TIME = T
290 CALL Update_SUN()
291 CALL Update_RCONST()
292 CALL Fun( Y, FIX, RCONST, P )
293 TIME = Told
294 RETURN
298 SUBROUTINE JAC_CHEM(N, T, Y, J)
299 INCLUDE 'KPP_ROOT_params.h'
300 INCLUDE 'KPP_ROOT_global.h'
301 INTEGER N
302 KPP_REAL Told, T
303 KPP_REAL Y(NVAR), J(LU_NONZERO)
304 Told = TIME
305 TIME = T
306 CALL Update_SUN()
307 CALL Update_RCONST()
308 CALL Jac_SP( Y, FIX, RCONST, J )
309 TIME = Told
310 RETURN
311 END