4 subroutine gocart_seasalt_driver(ktau,dt,config_flags,julday,alt,t_phy,moist,u_phy, &
5 v_phy,chem,rho_phy,dz8w,u10,v10,p8w,z_at_w, &
6 xland,xlat,xlong,dx,g,emis_seas,seasin, &
7 ids,ide, jds,jde, kds,kde, &
8 ims,ime, jms,jme, kms,kme, &
9 its,ite, jts,jte, kts,kte )
11 USE module_state_description
12 USE module_model_constants, ONLY: mwdry
14 TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
16 INTEGER, INTENT(IN ) :: julday, ktau, &
17 ids,ide, jds,jde, kds,kde, &
18 ims,ime, jms,jme, kms,kme, &
19 its,ite, jts,jte, kts,kte
20 REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_moist ), &
22 REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ), &
23 INTENT(INOUT ) :: chem
24 REAL, DIMENSION( ims:ime, 1, jms:jme,num_emis_seas),OPTIONAL,&
27 REAL, DIMENSION( ims:ime , jms:jme ) , &
34 REAL, DIMENSION( ims:ime , jms:jme, 5 ), &
35 INTENT(INOUT ) :: seasin
36 REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
43 REAL, INTENT(IN ) :: dt,dx,g
47 integer :: ipr,nmx,i,j,k,ndt,imx,jmx,lmx
48 integer,dimension (1,1) :: ilwi
49 real*8, DIMENSION (4) :: tc,bems
50 real*8, dimension (1,1) :: w10m,gwet,airden,airmas
51 real*8, dimension (1) :: dxy
66 ! don't do dust over water!!!
68 if(xland(i,j).gt.1.5.and.z_at_w(i,kts,j).lt.1.e-3)then
70 if(config_flags%chem_opt == 2 .or. config_flags%chem_opt == 11 ) then
73 tc(1)=chem(i,kts,j,p_seas_1)*conver
74 tc(2)=chem(i,kts,j,p_seas_2)*conver
75 tc(3)=chem(i,kts,j,p_seas_3)*conver
76 tc(4)=chem(i,kts,j,p_seas_4)*conver
78 w10m(1,1)=sqrt(u10(i,j)*u10(i,j)+v10(i,j)*v10(i,j))
79 airmas(1,1)=-(p8w(i,kts+1,j)-p8w(i,kts,j))*dx*dx/g
81 ! we don't trust the u10,v10 values, is model layers are very thin near surface
83 if(dz8w(i,kts,j).lt.12.)w10m=sqrt(u_phy(i,kts,j)*u_phy(i,kts,j)+v_phy(i,kts,j)*v_phy(i,kts,j))
88 call source_ss( imx,jmx,lmx,nmx, dt, tc,ilwi, dxy, w10m, airmas, bems,ipr)
90 if(config_flags%chem_opt == 2 .or. config_flags%chem_opt == 11 ) then
91 seasin(i,j,1:4)=tc(1:4)*converi
93 chem(i,kts,j,p_seas_1)=tc(1)*converi
94 chem(i,kts,j,p_seas_2)=tc(2)*converi
95 chem(i,kts,j,p_seas_3)=tc(3)*converi
96 chem(i,kts,j,p_seas_4)=tc(4)*converi
98 ! for output diagnostics
99 emis_seas(i,1,j,p_eseas1)=bems(1)
100 emis_seas(i,1,j,p_eseas2)=bems(2)
101 emis_seas(i,1,j,p_eseas3)=bems(3)
102 emis_seas(i,1,j,p_eseas4)=bems(4)
108 end subroutine gocart_seasalt_driver
110 SUBROUTINE source_ss(imx,jmx,lmx,nmx, dt1, tc, &
111 ilwi, dxy, w10m, airmas, &
114 ! ****************************************************************************
115 ! * Evaluate the source of each seasalt particles size classes (kg/m3)
116 ! * by soil emission.
118 ! * SSALTDEN Sea salt density (kg/m3)
119 ! * DXY Surface of each grid cell (m2)
120 ! * NDT1 Time step (s)
121 ! * W10m Velocity at the anemometer level (10meters) (m/s)
124 ! * DSRC Source of each sea salt bins (kg/timestep/cell)
127 ! * Number flux density: Original formula by Monahan et al. (1986) adapted
128 ! * by Sunling Gong (JGR 1997 (old) and GBC 2003 (new)). The new version is
129 ! * to better represent emission of sub-micron sea salt particles.
131 ! * dFn/dr = c1*u10**c2/(r**A) * (1+c3*r**c4)*10**(c5*exp(-B**2))
132 ! * where B = (b1 -log(r))/b2
133 ! * see c_old, c_new, b_old, b_new below for the constants.
134 ! * number fluxes are at 80% RH.
136 ! * To calculate the flux:
137 ! * 1) Calculate dFn based on Monahan et al. (1986) and Gong (2003)
138 ! * 2) Assume that wet radius r at 80% RH = dry radius r_d *frh
139 ! * 3) Convert particles flux to mass flux :
140 ! * dFM/dr_d = 4/3*pi*rho_d*r_d^3 *(dr/dr_d) * dFn/dr
141 ! * = 4/3*pi*rho_d*r_d^3 * frh * dFn/dr
142 ! * where rho_p is particle density [kg/m3]
143 ! * The factor 1.e-18 is to convert in micro-meter r_d^3
144 ! ****************************************************************************
147 USE module_data_gocart_seas
151 INTEGER, INTENT(IN) :: nmx,imx,jmx,lmx,ipr
152 INTEGER, INTENT(IN) :: ilwi(imx,jmx)
153 REAL*8, INTENT(IN) :: dxy(jmx), w10m(imx,jmx)
154 REAL*8, INTENT(IN) :: airmas(imx,jmx,lmx)
155 REAL*8, INTENT(INOUT) :: tc(imx,jmx,lmx,nmx)
156 REAL*8, INTENT(OUT) :: bems(imx,jmx,nmx)
158 REAL*8 :: c0(5), b0(2)
159 ! REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.41, 0.057, 1.05, 1.190/)
160 ! REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.41, 0.057, 3.45, 1.607/)
161 ! Change suggested by MC
162 REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.2, 0.057, 1.05, 1.190/)
163 REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.2, 0.057, 3.45, 1.607/)
164 REAL*8, PARAMETER :: b_old(2)=(/0.380, 0.650/)
165 REAL*8, PARAMETER :: b_new(2)=(/0.433, 0.433/)
166 REAL*8, PARAMETER :: dr=5.0D-2 ! um
167 REAL*8, PARAMETER :: theta=30.0
168 ! Swelling coefficient frh (d rwet / d rd)
169 !!! REAL*8, PARAMETER :: frh = 1.65
170 REAL*8, PARAMETER :: frh = 2.d0
171 LOGICAL, PARAMETER :: old=.TRUE., new=.FALSE.
172 REAL*8 :: rho_d, r0, r1, r, r_w, a, b, dfn, r_d, dfm, src
173 INTEGER :: i, j, n, nr, ir
177 REAL*8 :: tcmw(nmx), ar(nmx), tcvv(nmx)
178 REAL*8 :: ar_wetdep(nmx), kc(nmx)
179 CHARACTER(LEN=20) :: tcname(nmx), tcunits(nmx)
180 LOGICAL :: aerosol(nmx)
183 REAL*8 :: tc1(imx,jmx,lmx,nmx)
184 REAL*8, TARGET :: tcms(imx,jmx,lmx,nmx) ! tracer mass (kg; kgS for sulfur case)
185 REAL*8, TARGET :: tcgm(imx,jmx,lmx,nmx) ! g/m3
187 !-----------------------------------------------------------------------
189 !-----------------------------------------------------------------------
190 ! REAL*8, DIMENSION(nmx) :: ra, rb
191 ! REAL*8 :: ch_ss(nmx,12)
193 !-----------------------------------------------------------------------
195 !-----------------------------------------------------------------------
196 REAL*8 :: e_an(imx,jmx,2,nmx), e_bb(imx,jmx,nmx), &
197 e_ac(imx,jmx,lmx,nmx)
199 !-----------------------------------------------------------------------
200 ! diagnostics (budget)
201 !-----------------------------------------------------------------------
202 ! ! tendencies per time step and process
203 ! REAL*8, TARGET :: bems(imx,jmx,nmx), bdry(imx,jmx,nmx), bstl(imx,jmx,nmx)
204 ! REAL*8, TARGET :: bwet(imx,jmx,nmx), bcnv(imx,jmx,nmx)!
206 ! ! integrated tendencies per process
207 ! REAL*8, TARGET :: tems(imx,jmx,nmx), tstl(imx,jmx,nmx)
208 ! REAL*8, TARGET :: tdry(imx,jmx,nmx), twet(imx,jmx,nmx), tcnv(imx,jmx,nmx)
210 ! global mass balance per time step
211 REAL*8 :: tmas0(nmx), tmas1(nmx)
212 REAL*8 :: dtems(nmx), dttrp(nmx), dtdif(nmx), dtcnv(nmx)
213 REAL*8 :: dtwet(nmx), dtdry(nmx), dtstl(nmx)
214 REAL*8 :: dtems2(nmx), dttrp2(nmx), dtdif2(nmx), dtcnv2(nmx)
215 REAL*8 :: dtwet2(nmx), dtdry2(nmx), dtstl2(nmx)
217 ! detailed integrated budgets for individual emissions
218 REAL*8, TARGET :: ems_an(imx,jmx,nmx), ems_bb(imx,jmx,nmx), ems_tp(imx,jmx)
219 REAL*8, TARGET :: ems_ac(imx,jmx,lmx,nmx)
220 REAL*8, TARGET :: ems_co(imx,jmx,nmx)
223 ! executable statements
226 ! if(ipr.eq.1)write(0,*)'in seasalt',n,ipr,ilwi
232 nr = INT((r1-r0)/dr+.001)
233 ! if(ipr.eq.1.and.n.eq.1)write(0,*)'in seasalt',nr,r1,r0,dr,rho_d
238 a = 4.7*(1.0 + theta*r_w)**(-0.017*r_w**(-1.44))
247 b = (b0(1) - LOG10(r_w))/b0(2)
248 dfn = (c0(1)/r_w**a)*(1.0 + c0(3)*r_w**c0(4))* &
249 10**(c0(5)*EXP(-(b**2)))
251 r_d = r_w/frh*1.0D-6 ! um -> m
252 dfm = 4.0/3.0*pi*r_d**3*rho_d*frh*dfn*dr*dt1
255 ! IF (water(i,j) > 0.0) THEN
256 IF (ilwi(i,j) == 0) THEN
257 ! src = dfm*dxy(j)*water(i,j)*w10m(i,j)**c0(2)
258 src = dfm*dxy(j)*w10m(i,j)**c0(2)
259 ! src = ch_ss(n,dt(1)%mn)*dfm*dxy(j)*w10m(i,j)**c0(2)
260 if(src < 0.0 ) src=0.
261 tc(i,j,1,n) = tc(i,j,1,n) + src/airmas(i,j,1)
262 ! if(ipr.eq.1)write(0,*)n,dfm,c0(2),dxy(j),w10m(i,j),src,airmas(i,j,1)
266 bems(i,j,n) = bems(i,j,n) + src
272 END SUBROUTINE source_ss
273 END MODULE GOCART_SEASALT