1 subroutine d1f4kb ( ido, l1, cc, in1, ch, in2, wa1, wa2, wa3 )
3 !*****************************************************************************80
5 !! D1F4KB is an FFTPACK5 auxiliary routine.
15 ! Original real single precision by Paul Swarztrauber, Richard Valent.
16 ! Real double precision version by John Burkardt.
21 ! Vectorizing the Fast Fourier Transforms,
22 ! in Parallel Computations,
23 ! edited by G. Rodrigue,
24 ! Academic Press, 1982.
27 ! Fast Fourier Transform Algorithms for Vector Computers,
28 ! Parallel Computing, pages 45-63, 1984.
34 integer ( kind = 4 ) ido
35 integer ( kind = 4 ) in1
36 integer ( kind = 4 ) in2
37 integer ( kind = 4 ) l1
39 real ( kind = 8 ) cc(in1,ido,4,l1)
40 real ( kind = 8 ) ch(in2,ido,l1,4)
41 integer ( kind = 4 ) i
42 integer ( kind = 4 ) ic
43 integer ( kind = 4 ) idp2
44 integer ( kind = 4 ) k
45 real ( kind = 8 ) sqrt2
46 real ( kind = 8 ) wa1(ido)
47 real ( kind = 8 ) wa2(ido)
48 real ( kind = 8 ) wa3(ido)
50 sqrt2 = sqrt ( 2.0D+00 )
53 ch(1,1,k,3) = ( cc(1,1,1,k) + cc(1,ido,4,k) ) &
54 - ( cc(1,ido,2,k) + cc(1,ido,2,k) )
55 ch(1,1,k,1) = ( cc(1,1,1,k) + cc(1,ido,4,k) ) &
56 + ( cc(1,ido,2,k) + cc(1,ido,2,k) )
57 ch(1,1,k,4) = ( cc(1,1,1,k) - cc(1,ido,4,k) ) &
58 + ( cc(1,1,3,k) + cc(1,1,3,k) )
59 ch(1,1,k,2) = ( cc(1,1,1,k) - cc(1,ido,4,k) ) &
60 - ( cc(1,1,3,k) + cc(1,1,3,k) )
74 ch(1,i-1,k,1) = (cc(1,i-1,1,k)+cc(1,ic-1,4,k)) &
75 +(cc(1,i-1,3,k)+cc(1,ic-1,2,k))
76 ch(1,i,k,1) = (cc(1,i,1,k)-cc(1,ic,4,k)) &
77 +(cc(1,i,3,k)-cc(1,ic,2,k))
78 ch(1,i-1,k,2) = wa1(i-2)*((cc(1,i-1,1,k)-cc(1,ic-1,4,k)) &
79 -(cc(1,i,3,k)+cc(1,ic,2,k)))-wa1(i-1) &
80 *((cc(1,i,1,k)+cc(1,ic,4,k))+(cc(1,i-1,3,k)-cc(1,ic-1,2,k)))
81 ch(1,i,k,2) = wa1(i-2)*((cc(1,i,1,k)+cc(1,ic,4,k)) &
82 +(cc(1,i-1,3,k)-cc(1,ic-1,2,k)))+wa1(i-1) &
83 *((cc(1,i-1,1,k)-cc(1,ic-1,4,k))-(cc(1,i,3,k)+cc(1,ic,2,k)))
84 ch(1,i-1,k,3) = wa2(i-2)*((cc(1,i-1,1,k)+cc(1,ic-1,4,k)) &
85 -(cc(1,i-1,3,k)+cc(1,ic-1,2,k)))-wa2(i-1) &
86 *((cc(1,i,1,k)-cc(1,ic,4,k))-(cc(1,i,3,k)-cc(1,ic,2,k)))
87 ch(1,i,k,3) = wa2(i-2)*((cc(1,i,1,k)-cc(1,ic,4,k)) &
88 -(cc(1,i,3,k)-cc(1,ic,2,k)))+wa2(i-1) &
89 *((cc(1,i-1,1,k)+cc(1,ic-1,4,k))-(cc(1,i-1,3,k) &
91 ch(1,i-1,k,4) = wa3(i-2)*((cc(1,i-1,1,k)-cc(1,ic-1,4,k)) &
92 +(cc(1,i,3,k)+cc(1,ic,2,k)))-wa3(i-1) &
93 *((cc(1,i,1,k)+cc(1,ic,4,k))-(cc(1,i-1,3,k)-cc(1,ic-1,2,k)))
94 ch(1,i,k,4) = wa3(i-2)*((cc(1,i,1,k)+cc(1,ic,4,k)) &
95 -(cc(1,i-1,3,k)-cc(1,ic-1,2,k)))+wa3(i-1) &
96 *((cc(1,i-1,1,k)-cc(1,ic-1,4,k))+(cc(1,i,3,k)+cc(1,ic,2,k)))
100 if ( mod ( ido, 2 ) == 1 ) then
107 ch(1,ido,k,1) = ( cc(1,ido,1,k) + cc(1,ido,3,k) ) &
108 + ( cc(1,ido,1,k) + cc(1,ido,3,k))
109 ch(1,ido,k,2) = sqrt2 * ( ( cc(1,ido,1,k) - cc(1,ido,3,k) ) &
110 - ( cc(1,1,2,k) + cc(1,1,4,k) ) )
111 ch(1,ido,k,3) = ( cc(1,1,4,k) - cc(1,1,2,k) ) &
112 + ( cc(1,1,4,k) - cc(1,1,2,k) )
113 ch(1,ido,k,4) = -sqrt2 * ( ( cc(1,ido,1,k) - cc(1,ido,3,k) ) &
114 + ( cc(1,1,2,k) + cc(1,1,4,k) ) )