1 SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
3 ! -- LAPACK routine (version 3.1) --
4 ! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
7 ! .. Scalar Arguments ..
9 INTEGER INFO, LDA, LWORK, N
11 ! .. Array Arguments ..
12 DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ), &
19 ! DSYTRD reduces a real symmetric matrix A to real symmetric
20 ! tridiagonal form T by an orthogonal similarity transformation:
26 ! UPLO (input) CHARACTER*1
27 ! = 'U': Upper triangle of A is stored;
28 ! = 'L': Lower triangle of A is stored.
31 ! The order of the matrix A. N >= 0.
33 ! A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
34 ! On entry, the symmetric matrix A. If UPLO = 'U', the leading
35 ! N-by-N upper triangular part of A contains the upper
36 ! triangular part of the matrix A, and the strictly lower
37 ! triangular part of A is not referenced. If UPLO = 'L', the
38 ! leading N-by-N lower triangular part of A contains the lower
39 ! triangular part of the matrix A, and the strictly upper
40 ! triangular part of A is not referenced.
41 ! On exit, if UPLO = 'U', the diagonal and first superdiagonal
42 ! of A are overwritten by the corresponding elements of the
43 ! tridiagonal matrix T, and the elements above the first
44 ! superdiagonal, with the array TAU, represent the orthogonal
45 ! matrix Q as a product of elementary reflectors; if UPLO
46 ! = 'L', the diagonal and first subdiagonal of A are over-
47 ! written by the corresponding elements of the tridiagonal
48 ! matrix T, and the elements below the first subdiagonal, with
49 ! the array TAU, represent the orthogonal matrix Q as a product
50 ! of elementary reflectors. See Further Details.
53 ! The leading dimension of the array A. LDA >= max(1,N).
55 ! D (output) DOUBLE PRECISION array, dimension (N)
56 ! The diagonal elements of the tridiagonal matrix T:
59 ! E (output) DOUBLE PRECISION array, dimension (N-1)
60 ! The off-diagonal elements of the tridiagonal matrix T:
61 ! E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
63 ! TAU (output) DOUBLE PRECISION array, dimension (N-1)
64 ! The scalar factors of the elementary reflectors (see Further
67 ! WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
68 ! On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
70 ! LWORK (input) INTEGER
71 ! The dimension of the array WORK. LWORK >= 1.
72 ! For optimum performance LWORK >= N*NB, where NB is the
75 ! If LWORK = -1, then a workspace query is assumed; the routine
76 ! only calculates the optimal size of the WORK array, returns
77 ! this value as the first entry of the WORK array, and no error
78 ! message related to LWORK is issued by XERBLA.
80 ! INFO (output) INTEGER
81 ! = 0: successful exit
82 ! < 0: if INFO = -i, the i-th argument had an illegal value
87 ! If UPLO = 'U', the matrix Q is represented as a product of elementary
90 ! Q = H(n-1) . . . H(2) H(1).
92 ! Each H(i) has the form
94 ! H(i) = I - tau * v * v'
96 ! where tau is a real scalar, and v is a real vector with
97 ! v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
98 ! A(1:i-1,i+1), and tau in TAU(i).
100 ! If UPLO = 'L', the matrix Q is represented as a product of elementary
103 ! Q = H(1) H(2) . . . H(n-1).
105 ! Each H(i) has the form
107 ! H(i) = I - tau * v * v'
109 ! where tau is a real scalar, and v is a real vector with
110 ! v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
113 ! The contents of A on exit are illustrated by the following examples
116 ! if UPLO = 'U': if UPLO = 'L':
118 ! ( d e v2 v3 v4 ) ( d )
119 ! ( d e v3 v4 ) ( e d )
120 ! ( d e v4 ) ( v1 e d )
121 ! ( d e ) ( v1 v2 e d )
122 ! ( d ) ( v1 v2 v3 e d )
124 ! where d and e denote diagonal and off-diagonal elements of T, and vi
125 ! denotes an element of the vector defining H(i).
127 ! =====================================================================
131 PARAMETER ( ONE = 1.0D+0 )
133 ! .. Local Scalars ..
134 LOGICAL LQUERY, UPPER
135 INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB, &
138 ! .. External Subroutines ..
139 ! EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA
141 ! .. Intrinsic Functions ..
144 ! .. External Functions ..
147 ! EXTERNAL LSAME, ILAENV
149 ! .. Executable Statements ..
151 ! Test the input parameters
154 UPPER = LSAME( UPLO, 'U' )
155 LQUERY = ( LWORK.EQ.-1 )
156 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
158 ELSE IF( N.LT.0 ) THEN
160 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
162 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
168 ! Determine the block size.
170 NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
176 CALL XERBLA( 'DSYTRD', -INFO )
178 ELSE IF( LQUERY ) THEN
182 ! Quick return if possible
191 IF( NB.GT.1 .AND. NB.LT.N ) THEN
193 ! Determine when to cross over from blocked to unblocked code
194 ! (last block is always handled by unblocked code).
196 NX = MAX( NB, ILAENV( 3, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
199 ! Determine if workspace is large enough for blocked code.
203 IF( LWORK.LT.IWS ) THEN
205 ! Not enough workspace to use optimal NB: determine the
206 ! minimum value of NB, and reduce NB or force use of
207 ! unblocked code by setting NX = N.
209 NB = MAX( LWORK / LDWORK, 1 )
210 NBMIN = ILAENV( 2, 'DSYTRD', UPLO, N, -1, -1, -1 )
223 ! Reduce the upper triangle of A.
224 ! Columns 1:kk are handled by the unblocked method.
226 KK = N - ( ( N-NX+NB-1 ) / NB )*NB
227 DO 20 I = N - NB + 1, KK + 1, -NB
229 ! Reduce columns i:i+nb-1 to tridiagonal form and form the
230 ! matrix W which is needed to update the unreduced part of
233 CALL DLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK, &
236 ! Update the unreduced submatrix A(1:i-1,1:i-1), using an
237 ! update of the form: A := A - V*W' - W*V'
239 CALL DSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ), &
240 LDA, WORK, LDWORK, ONE, A, LDA )
242 ! Copy superdiagonal elements back into A, and diagonal
245 DO 10 J = I, I + NB - 1
246 A( J-1, J ) = E( J-1 )
251 ! Use unblocked code to reduce the last or only block
253 CALL DSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
256 ! Reduce the lower triangle of A
258 DO 40 I = 1, N - NX, NB
260 ! Reduce columns i:i+nb-1 to tridiagonal form and form the
261 ! matrix W which is needed to update the unreduced part of
264 CALL DLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ), &
265 TAU( I ), WORK, LDWORK )
267 ! Update the unreduced submatrix A(i+ib:n,i+ib:n), using
268 ! an update of the form: A := A - V*W' - W*V'
270 CALL DSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE, &
271 A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE, &
272 A( I+NB, I+NB ), LDA )
274 ! Copy subdiagonal elements back into A, and diagonal
277 DO 30 J = I, I + NB - 1
283 ! Use unblocked code to reduce the last or only block
285 CALL DSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ), &
294 END SUBROUTINE DSYTRD