Merge remote-tracking branch 'origin/release-v4.6.1'
[WRF.git] / var / external / wavelet / awaprogs / chap05 / cd.c
blobf48186852dabf1dcf081a2eae4637068e177f04e
1 /*
2 * Convolution-decimation functions and their adjoints.
4 * Copyright (C) 1991--94 Wickerhauser Consulting. All Rights Reserved.
5 * May be freely copied for noncommercial use. See
6 * ``Adapted Wavelet Analysis from Theory to Software'' ISBN 1-56881-041-5
7 * by Mladen Victor Wickerhauser [AK Peters, Ltd., Wellesley, Mass., 1994]
8 *
9 */
11 #include <assert.h>
12 #include "real.h"
13 #include "cd.h"
14 #include "common.h" /* for `min()' and `max()'. */
16 /***************************************************************
17 * cdai():
19 * [C]onvolution and [D]ecimation by 2;
20 * [A]periodic, sequential [I]nput, superposition.
22 * Basic algorithm:
24 * For J = A to B
25 * Let BEGIN = ICH(J+F.ALPHA)
26 * Let END = IFH(J+F.OMEGA)
27 * For I = BEGIN to END
28 * OUT[I*STEP] += F.F[2*I-J]*IN[J]
30 * Calling sequence:
31 * cdai(out, step, in, a, b, F)
33 * Inputs:
34 * (real *)out This output array must be preallocated so
35 * that `out[step*ICH(a+F->alpha)]' through
36 * `out[step*IFH(b+F->omega)]' are defined.
37 * (int)step This integer is the increment between
38 * `out[]' elements.
39 * (const real *)in This input array must be preallocated
40 * so that `in[a],...,in[b]' are all defined.
41 * (int)a,b These are the first and last valid indices
42 * for array `in[]'.
43 * (const pqf *)F This specifies the QF to use.
45 * Outputs:
46 * (real *)out Computed values are added into this array
47 * by side effect, at elements separated
48 * by offsets of `step' starting at
49 * `out + step*ICH(a + F->alpha)'.
51 extern void
52 cdai(
53 real *out, /* Preallocated output array */
54 int step, /* Increment for `out[]' */
55 const real *in, /* Preallocated input array */
56 int a, /* First valid `in[]' offset */
57 int b, /* Last valid `in[]' offset */
58 const pqf *F ) /* QF data structure */
60 int i, j;
61 real *outp;
62 const real *filt;
64 for( j=a; j<=b; j++ )
66 i=ICH(j+F->alpha);
67 filt = F->f +(2*i-j);
68 outp = out + i*step;
69 while( i<= IFH(j+F->omega) )
71 *outp += (*filt) * in[j];
72 outp += step; filt += 2; ++i;
75 return;
78 /**************************************************************
79 * cdao():
81 * [C]onvolution and [D]ecimation by 2;
82 * [A]periodic, sequential [O]utput, superposition.
84 * Basic algorithm:
86 * Let APRIME = ICH(A+F.ALPHA)
87 * Let BPRIME = IFH(B+F.OMEGA)
88 * For I = APRIME to BPRIME
89 * Let BEGIN = max( F.ALPHA, 2*I-B )
90 * Let END = min( F.OMEGA, 2*I-A )
91 * For J = BEGIN to END
92 * OUT[I*STEP] += F.F[J]*IN[2*I-J]
94 * Calling sequence:
95 * cdao(out, step, in, a, b, F)
97 * Inputs:
98 * (real *)out This output array must be preallocated so
99 * that `out[step*ICH(a+F->alpha)]' through
100 * `out[step*IFH(b+F->omega)]' are defined.
101 * (int)step This integer is the increment between
102 * `out[]' elements.
103 * (const real *)in This input array must be preallocated
104 * so that `in[a],...,in[b]' are all defined.
105 * (int)a,b These are the first and last valid indices
106 * for array `in[]'.
107 * (const pqf *)F This specifies the QF to use.
109 * Outputs:
110 * (real *)out Computed values are added into this array
111 * by side effect, at elements separated
112 * by offsets of `step' starting at
113 * `out + step*ICH(a+F->alpha)'.
115 extern void
116 cdao(
117 real *out, /* Preallocated output array */
118 int step, /* Increment for `out[]' */
119 const real *in, /* Preallocated input array */
120 int a, /* First valid `in[]' offset */
121 int b, /* Last valid `in[]' offset */
122 const pqf *F ) /* QF data structure */
124 int i, j, end;
125 const real *inp;
127 i = ICH(a+F->alpha);
128 out += i*step;
129 while( i <= IFH(b+F->omega) )
131 j = 2*i-b;
132 if(j<F->alpha)
134 j=F->alpha; /* j = max(F->alpha,2*i-b) */
135 inp = in + 2*i-j; /* *inp = in[2*i-j] */
137 else
139 inp = in + b; /* *inp = in[2*i-j] */
141 end = 2*i-a;
142 end = min( F->omega, end );
143 while( j <= end )
144 *out += F->f[j++]*(*inp--);
145 ++i;
146 out += step;
148 return;
151 /**************************************************************
152 * cdae():
154 * [C]onvolution and [D]ecimation by 2;
155 * [A]periodic, set output using [E]quals.
157 * Basic algorithm:
159 * Let APRIME = ICH(A+F.ALPHA)
160 * Let BPRIME = IFH(B+F.OMEGA)
161 * For I = APRIME to BPRIME
162 * Let OUT[I*STEP] = 0
163 * Let BEGIN = max( F.ALPHA, 2*I-B )
164 * Let END = min( F.OMEGA, 2*I-A )
165 * For J = BEGIN to END
166 * OUT[I*STEP] += F.F[J]*IN[2*I-J]
168 * Calling sequence:
169 * cdae(out, step, in, a, b, F)
171 * Inputs:
172 * (real *)out This output array must be preallocated so
173 * that `out[step*ICH(a+F->alpha)]' through
174 * `out[step*IFH(b+F->omega)]' are defined.
175 * (int)step This integer is the increment between
176 * `out[]' elements.
177 * (const real *)in This input array must be preallocated
178 * so that `in[a],...,in[b]' are all defined.
179 * (int)a,b These are the first and last valid indices
180 * for array `in[]'.
181 * (const pqf *)F This specifies the QF to use.
183 * Outputs:
184 * (real *)out Computed values are assigned into this array
185 * by side effect, at elements separated
186 * by offsets of `step' starting at
187 * `out + step*ICH(a+F->alpha)'.
189 extern void
190 cdae(
191 real *out, /* Preallocated output array */
192 int step, /* Increment for `out[]' */
193 const real *in, /* Preallocated input array */
194 int a, /* First valid `in[]' offset */
195 int b, /* Last valid `in[]' offset */
196 const pqf *F ) /* QF data structure */
198 int i, j, end;
199 const real *inp;
201 i = ICH(a+F->alpha);
202 out += i*step;
203 while( i <= IFH(b+F->omega) )
205 *out = 0;
206 j = 2*i-b;
207 if(j<F->alpha)
209 j=F->alpha; /* j = max(F->alpha,2*i-b) */
210 inp = in + 2*i-j; /* *inp = in[2*i-j] */
212 else
214 inp = in + b; /* *inp = in[2*i-j] */
216 end = 2*i-a;
217 end = min( F->omega, end );
218 while( j <= end )
219 *out += F->f[j++]*(*inp--);
220 ++i;
221 out += step;
223 return;
226 /*************************************************************
227 * acdai():
229 * [A]djoint [C]onvolution and [D]ecimation:
230 * [A]periodic, sequential [I]nput, superposition.
232 * Basic algorithm:
234 * For I = C to D
235 * Let BEGIN = 2*I-F.OMEGA
236 * Let END = 2*I-F.ALPHA
237 * For J = BEGIN to END
238 * OUT[J*STEP] += F.F[2*I-J]*IN[I]
240 * We change variables to save operations:
242 * For I = C to D
243 * For J = F.ALPHA to F.OMEGA
244 * OUT[(2*I-J)*STEP] += F.F[J]*IN[I]
246 * Calling sequence:
247 * acdai(out, step, in, c, d, F)
249 * Inputs:
250 * (real *)out This output array must be preallocated so
251 * that `out[step*(2*c-F->omega)]' through
252 * `out[step*(2*d-F->alpha)]' are defined.
253 * (int)step This integer is the increment between
254 * `out[]' elements.
255 * (const real *)in This input array must be preallocated
256 * so that `in[c],...,in[d]' are all defined.
257 * (int)a,b These are the first and last valid indices
258 * for array `in[]'.
259 * (const pqf *)F This specifies the QF to use.
261 * Outputs:
262 * (real *)out Computed values are added into this array
263 * by side effect, at elements separated
264 * by offsets of `step' starting at
265 * `out + (2*c-F->omega)*step'.
267 extern void
268 acdai(
269 real *out, /* Preallocated output array */
270 int step, /* Increment for `out[]' values */
271 const real *in, /* Preallocated input array */
272 int c, /* First valid `in[]' offset */
273 int d, /* Last valid `in[]' offset */
274 const pqf *F ) /* QF data structure */
276 int i, j;
277 real *outp;
279 for( i=c; i <= d ; i++ )
281 j = F->alpha;
282 outp = out + (2*i-j)*step;
283 while( j <= F->omega )
285 *outp += F->f[j++] * in[i];
286 outp -= step;
289 return;
292 /***************************************************************
293 * acdao():
295 * [A]djoint [C]onvolution and [D]ecimation:
296 * [A]periodic, sequential [O]utput, superposition.
298 * Basic algorithm:
300 * Let CPRIME = 2*C-F.OMEGA
301 * Let DPRIME = 2*D-F.ALPHA
302 * For J = CPRIME to DPRIME
303 * Let BEGIN = max( ICH(J+F.ALPHA ), C )
304 * Let END = min( IFH(J+F.OMEGA ), D )
305 * For I = BEGIN to END
306 * OUT[J*STEP] += F.F[2*I-J]*IN[I]
308 * Calling sequence:
309 * acdao(out, step, in, c, d, F)
311 * Inputs:
312 * (real *)out This output array must be preallocated so
313 * that `out[step*(2*c-F->omega)]' through
314 * `out[step*(2*d-F->alpha)]' are defined.
315 * (int)step This integer is the increment between
316 * `out[]' elements.
317 * (const real *)in This input array must be preallocated
318 * so that `in[c],...,in[d]' are all defined.
319 * (int)a,b These are the first and last valid indices
320 * for array `in[]'.
321 * (const pqf *)F This specifies the QF to use.
323 * Outputs:
324 * (real *)out Computed values are added into this array
325 * by side effect, at elements separated
326 * by offsets of `step' starting at
327 * `out + (2*c - F->omega)*step'.
329 extern void
330 acdao(
331 real *out, /* Preallocated output array */
332 int step, /* Increment for `out[]' values */
333 const real *in, /* Preallocated input array */
334 int c, /* First valid `in[]' offset */
335 int d, /* Last valid `in[]' offset */
336 const pqf *F ) /* QF data structure */
338 int end, i, j;
339 const real *filt;
341 j = 2*c - F->omega;
342 out += j*step;
344 while( j <= 2*d-F->alpha )
346 i = ICH( j + F->alpha );
347 i = max( i, c );
348 end = IFH( j + F->omega );
349 end = min( end, d );
350 filt = F->f+2*i-j;
351 while( i<=end )
353 *out += (*filt)*in[i++];
354 filt += 2;
356 out += step;
357 ++j;
359 return;
362 /***************************************************************
363 * acdae():
365 * [A]djoint [C]onvolution and [D]ecimation:
366 * [A]periodic, set output using [E]quals.
368 * Basic algorithm:
370 * Let CPRIME = 2*C-F.OMEGA
371 * Let DPRIME = 2*D-F.ALPHA
372 * For J = CPRIME to DPRIME
373 * Let OUT[J*STEP] = 0
374 * Let BEGIN = max( ICH(J+F.ALPHA ), C )
375 * Let END = min( IFH(J+F.OMEGA ), D )
376 * For I = BEGIN to END
377 * OUT[J*STEP] += F.F[2*I-J]*IN[I]
379 * Calling sequence:
380 * acdae(out, step, in, c, d, F)
382 * Inputs:
383 * (real *)out This output array must be preallocated so
384 * that `out[step*(2*c-F->omega)]' through
385 * `out[step*(2*d-F->alpha)]' are defined.
386 * (int)step This integer is the increment between
387 * `out[]' elements.
388 * (const real *)in This input array must be preallocated
389 * so that `in[c],...,in[d]' are all defined.
390 * (int)a,b These are the first and last valid indices
391 * for array `in[]'.
392 * (const pqf *)F This specifies the QF to use.
394 * Outputs:
395 * (real *)out Computed values are added into this array
396 * by side effect, at elements separated
397 * by offsets of `step' starting at
398 * `out + (2*c - F->omega)*step'.
400 extern void
401 acdae(
402 real *out, /* Preallocated output array */
403 int step, /* Increment for `out[]' values */
404 const real *in, /* Preallocated input array */
405 int c, /* First valid `in[]' offset */
406 int d, /* Last valid `in[]' offset */
407 const pqf *F ) /* QF data structure */
409 int end, i, j;
410 const real *filt;
412 j = 2*c - F->omega;
413 out += j*step;
415 while( j <= 2*d-F->alpha )
417 *out = 0;
418 i = ICH( j + F->alpha );
419 i = max( i, c );
420 end = IFH( j + F->omega );
421 end = min( end, d );
422 filt = F->f+2*i-j;
423 while( i<=end )
425 *out += (*filt)*in[i++];
426 filt += 2;
428 out += step;
429 ++j;
431 return;
434 /*******************************************************
435 * cdmi():
437 * [C]onvolution and [D]ecimation by 2, using the
438 * [M]od operator, sequential [I]nput, superposition.
440 * Basic algorithm:
442 * Let Q2 = Q/2
443 * If Q > F.OMEGA-F.ALPHA then
444 * Let FILTER = F.F
445 * For J = 0 to Q-1
446 * Let JA2 = ICH(J+F.ALPHA)
447 * Let JO2 = IFH(J+F.OMEGA)
448 * For I = 0 to JO2-Q2
449 * OUT[I*STEP] += FILTER[Q+2*I-J]*IN[J]
450 * For I = max(0,JA2) to min(Q2-1,JO2)
451 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
452 * For I = JA2+Q2 to Q2-1
453 * OUT[I*STEP] += FILTER[2*I-J-Q]*IN[J]
454 * Else
455 * Let FILTER = F.FP+PQFO(Q2)
456 * For J = 0 to Q-1
457 * For I = 0 to Q2-1
458 * OUT[I*STEP] += FILTER[(Q+2*I-J)%Q]*IN[J]
460 * Calling sequence:
461 * cdmi(out, step, in, q, F)
463 * Inputs:
464 * (real *)out This output array must be preallocated so
465 * that elements `out[0]' through
466 * `out[step*(q/2-1)]' are defined.
467 * (int)step This integer is the increment between
468 * `out[]' elements.
469 * (const real *)in This input array must be preallocated
470 * so that `in[0],...,in[q-1]' are defined.
471 * (int)q This is the period of the input array.
472 * (const pqf *)F This specifies the periodized QF struct.
474 * Outputs:
475 * (real *)out Computed values are added into this array
476 * by side effect, at elements separated
477 * by offsets of `step' starting at `out'.
479 * Assumptions: We assume that `q' is even.
481 extern void
482 cdmi(
483 real *out, /* Preallocated array, length `q/2' */
484 int step, /* Increment between `out[]' values */
485 const real *in, /* Preallocated array, length `q' */
486 int q, /* Number of inputs---must be even */
487 const pqf *F ) /* Periodized QF data structure */
489 int i, j, q2;
490 const real *filt;
491 real *outp;
493 assert( (q&1)==0 ); /* Assume `q' is even. */
495 q2 = q/2; /* Number of outputs. */
496 if( q > F->omega-F->alpha ) /* Long input case. */
498 int ja2, jo2;
500 for( j=0; j<q; j++ )
502 ja2 = ICH(j+F->alpha);
503 jo2 = IFH(j+F->omega);
505 i=0; outp = out; filt = F->f + q-j;
506 while( i <= jo2-q2 )
508 *outp += (*filt) * (*in);
509 ++i; outp += step; filt += 2;
512 i = max(0, ja2); outp = out+i*step; filt = F->f + 2*i-j;
513 while( i <= min(q2-1,jo2) )
515 *outp += (*filt) * (*in);
516 ++i; outp += step; filt += 2;
519 i = ja2+q2; outp = out+i*step; filt = F->f + 2*i-j-q;
520 while( i < q2 )
522 *outp +=(*filt) * (*in);
523 ++i; outp += step; filt += 2;
526 ++in;
529 else /* Short input case. */
531 filt = F->fp + PQFO(q2);
532 for( j=0; j<q; j++ )
534 outp = out;
535 for( i=0; i<q2; i++ )
537 *outp += filt[(q+2*i-j)%q]*(*in);
538 outp += step;
540 ++in;
543 return;
546 /************************************************************
547 * cdmo():
549 * [C]onvolution and [D]ecimation by 2, using the
550 * [M]od operator, sequential [O]utput, superposition.
552 * Basic algorithm:
554 * Let Q2 = Q/2
555 * If Q > F.OMEGA-F.ALPHA then
556 * Let FILTER = F.F
557 * For I = 0 to Q2-1
558 * For J = F.ALPHA to F.OMEGA
559 * OUT[I*STEP] += FILTER[J]*IN[(Q+2*I-J)%Q]
560 * Else
561 * Let FILTER = F.FP + PQFO[Q2]
562 * For I = 0 to Q2-1
563 * For J = 0 to Q-1
564 * OUT[I*STEP] += FILTER[J]*IN[(Q+2*I-J)%Q]
566 * Calling sequence:
567 * cdmo(out, step, in, q, F)
569 * Inputs:
570 * (real *)out This output array must be preallocated so
571 * that elements `out[0]' through
572 * `out[step*(q/2-1)]' are defined.
573 * (int)step This integer is the increment between
574 * `out[]' elements.
575 * (const real *)in This input array must be preallocated
576 * so that `in[0],...,in[q-1]' are defined.
577 * (int)q This is the period of the input array.
578 * (const pqf *)F This specifies the periodized QF struct.
580 * Outputs:
581 * (real *)out Computed values are added into this array
582 * by side effect, at elements separated
583 * by offsets of `step' starting at `out'.
585 * Assumptions: We assume that `q' is even.
587 extern void
588 cdmo(
589 real *out, /* Preallocated array, length `q/2' */
590 int step, /* Increment between `out[]' values */
591 const real *in, /* Preallocated array, length `q' */
592 int q, /* Number of inputs---must be even */
593 const pqf *F ) /* Periodized QF data structure */
595 int i, j, k, q2;
597 assert( (q&1)==0 ); /* Test that `q' is even. */
599 q2 = q/2;
600 if( q > F->omega - F->alpha ) /* Long input case. */
602 for( i=0; i<q2; i++)
604 j = F->alpha;
605 k = q+2*i-j;
606 while( j <= F->omega)
607 *out += F->f[j++]*in[(k--)%q];
608 out += step;
611 else /* Short input case. */
613 for(i=0; i<q2; i++)
615 j = PQFO(q2); /* q-periodized coefs. */
616 k = q+2*i;
617 while( k > 2*i)
618 *out += F->fp[j++]*in[(k--)%q];
619 out += step;
622 return;
625 /************************************************************
626 * cdpi():
628 * [C]onvolution and [D]ecimation by 2:
629 * [P]eriodic, sequential [I]nput, superposition.
631 * Basic algorithm:
633 * Let Q2 = Q/2
634 * If Q > F.OMEGA-F.ALPHA then
635 * Let FILTER = F.F
636 * For J = 0 to Q-1
637 * Let JA2 = ICH(J+F.ALPHA)
638 * Let JO2 = IFH(J+F.OMEGA)
639 * For I = 0 to JO2-Q2
640 * OUT[I*STEP] += FILTER[Q+2*I-J]*IN[J]
641 * For I = max(0,JA2) to min(Q2-1,JO2)
642 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
643 * For I = JA2+Q2 to Q2-1
644 * OUT[I*STEP] += FILTER[2*I-J-Q]*IN[J]
645 * Else
646 * Let FILTER = F.FP+PQFO(Q2)
647 * For J = 0 to Q-1
648 * For I = 0 to Q2-1
649 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
651 * Calling sequence:
652 * cdpi(out, step, in, q, F)
654 * Inputs:
655 * (real *)out This output array must be preallocated so
656 * that elements `out[0]' through
657 * `out[step*(q/2-1)]' are defined.
658 * (int)step This integer is the increment between
659 * `out[]' elements.
660 * (const real *)in This input array must be preallocated
661 * so that `in[0],...,in[q-1]' are defined.
662 * (int)q This is the period of the input array.
663 * (const pqf *)F This specifies the periodized QF struct.
665 * Outputs:
666 * (real *)out Computed values are added into this array
667 * by side effect, at elements separated
668 * by offsets of `step' starting at `out'.
670 * Assumptions: We assume that `q' is even.
672 extern void
673 cdpi(
674 real *out, /* Preallocated array, length `q/2' */
675 int step, /* Increment between `out[]' values */
676 const real *in, /* Preallocated array, length `q' */
677 int q, /* Number of inputs---must be even */
678 const pqf *F ) /* Periodized QF data structure */
680 int i, j, q2;
681 const real *filt;
682 real *outp;
684 assert( (q&1)==0 ); /* Test that `q' is even. */
686 q2 = q/2; /* Number of outputs. */
687 if( q > F->omega-F->alpha ) /* Long input case. */
689 int ja2, jo2;
691 for( j=0; j<q; j++ )
693 ja2 = ICH(j+F->alpha);
694 jo2 = IFH(j+F->omega);
696 i=0; outp = out; filt = F->f + q-j;
697 while( i<=jo2-q2 )
699 *outp += (*filt) * (*in);
700 ++i; outp += step; filt += 2;
703 i = max(0, ja2); outp = out+i*step; filt = F->f + 2*i-j;
704 while( i<=min(q2-1,jo2) )
706 *outp += (*filt) * (*in);
707 ++i; outp += step; filt += 2;
710 i = ja2+q2; outp = out+i*step; filt = F->f + 2*i-j-q;
711 while( i<q2 )
713 *outp +=(*filt) * (*in);
714 ++i; outp += step; filt += 2;
717 ++in;
720 else /* Short input case. */
722 for( j=0; j<q; j++ )
724 filt = F->fp + PQFO(q2) - j;
725 outp = out;
726 for( i=0; i<q2; i++ )
728 *outp += (*filt) * (*in);
729 filt += 2; outp += step;
731 ++in;
734 return;
737 /*********************************************************
738 * cdpo1():
740 * [C]onvolution and [D]ecimation by 2:
741 * [P]eriodic, sequential [O]utput, superposition (1).
743 * Basic algorithm:
745 * Let Q2 = Q/2
746 * If Q > F.OMEGA-F.ALPHA then
747 * Let FILTER = F.F
748 * For I = 0 to Q2-1
749 * Let A2I = 2*I-F.ALPHA
750 * Let O2I = 2*I-F.OMEGA
751 * For J = 0 to A2I-Q
752 * OUT[I*STEP] += FILTER[2*I-J-Q]*IN[J]
753 * For J = max(0,O2I) to min(Q-1,A2I)
754 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
755 * For J = O2I+Q to Q-1
756 * OUT[I*STEP] += FILTER[Q+2*I-J]*IN[J]
757 * Else
758 * Let FILTER = F.FP+PQFO(Q2)
759 * For I = 0 to Q2-1
760 * For J = 0 to Q-1
761 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
764 * Calling sequence:
765 * cdpo1(out, step, in, q, F)
767 * Inputs:
768 * (real *)out This output array must be preallocated so
769 * that elements `out[0]' through
770 * `out[step*(q/2-1)]' are defined.
771 * (int)step This integer is the increment between
772 * `out[]' elements.
773 * (const real *)in This input array must be preallocated
774 * so that `in[0],...,in[q-1]' are defined.
775 * (int)q This is the period of the input array.
776 * (const pqf *)F This specifies the periodized QF struct.
778 * Outputs:
779 * (real *)out Computed values are added into this array
780 * by side effect, at elements separated
781 * by offsets of `step' starting at `out'.
783 * Assumptions: We assume that `q' is even.
785 extern void
786 cdpo1(
787 real *out, /* Preallocated array, length `q/2' */
788 int step, /* Increment between `out[]' values */
789 const real *in, /* Preallocated array, length `q' */
790 int q, /* Number of inputs---must be even */
791 const pqf *F ) /* Periodized QF data structure */
793 int ii, j;
794 const real *filt;
795 int q2;
797 assert( (q&1)==0 ); /* Test that `q' is even. */
799 q2 = q/2;
800 if( q > F->omega-F->alpha ) /* Long input case. */
802 int a2i, o2i;
804 for( ii=0; ii<q; ii+=2 )
806 a2i = ii - F->alpha;
807 o2i = ii - F->omega;
809 filt = F->f + ii-q;
810 for( j=0; j<=a2i-q; j++ )
811 *out += (*filt--)* in[j];
813 j = max(0, o2i); filt = F->f + ii-j;
814 for( ; j<=min(q-1,a2i); j++ )
815 *out += (*filt--)* in[j];
817 j = o2i + q; filt = F->f + q+ii-j;
818 for( ; j<q; j++ )
819 *out += (*filt--) * in[j];
821 out += step;
824 else /* Short input case. */
826 for( ii=0; ii<q; ii+=2 )
828 filt = F->fp + PQFO(q2) + ii;
829 for( j=0; j<q; j++ )
830 *out += (*filt--) * in[j];
831 out += step;
834 return;
837 /*********************************************************
838 * cdpo2():
840 * [C]onvolution and [D]ecimation by 2:
841 * [P]eriodic, sequential [O]utput, superposition (2).
843 * Basic algorithm:
845 * Let Q2 = Q/2
846 * If Q > F.OMEGA-F.ALPHA then
847 * Let FILTER = F.F
848 * For I = 0 to Q2-1
849 * Let END = 2*I-Q
850 * For J = F.ALPHA to END
851 * OUT[I*STEP] += FILTER[J]*IN[2*I-J-Q]
852 * Let BEGIN = max(F.ALPHA, END+1)
853 * Let END = min(F.OMEGA, 2*I)
854 * For J = BEGIN to END
855 * OUT[I*STEP] += FILTER[J]*IN[2*I-J]
856 * Let BEGIN = 2*I+1
857 * For J = BEGIN to F.OMEGA
858 * OUT[I*STEP] += FILTER[J]*IN[Q+2*I-J]
859 * Else
860 * Let FILTER = F.FP + PQFO(Q2)
861 * For I = 0 to Q2-1
862 * For J = 0 to Q-1
863 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
865 * Calling sequence:
866 * cdpo2(out, step, in, q, F)
868 * Inputs:
869 * (real *)out This output array must be preallocated so
870 * that elements `out[0]' through
871 * `out[step*(q/2-1)]' are defined.
872 * (int)step This integer is the increment between
873 * `out[]' elements.
874 * (const real *)in This input array must be preallocated
875 * so that `in[0],...,in[q-1]' are defined.
876 * (int)q This is the period of the input array.
877 * (const pqf *)F This specifies the periodized QF struct.
879 * Outputs:
880 * (real *)out Computed values are added into this array
881 * by side effect, at elements separated
882 * by offsets of `step' starting at `out'.
884 * Assumptions: We assume that `q' is even.
886 extern void
887 cdpo2(
888 real *out, /* Preallocated array, length `q/2' */
889 int step, /* Increment between `out[]' values */
890 const real *in, /* Preallocated array, length `q' */
891 int q, /* Number of inputs---must be even */
892 const pqf *F ) /* Periodized QF data structure */
894 int ii, j;
895 const real *ptr;
896 int q2;
898 assert( (q&1)==0 ); /* Test that `q' is even. */
900 q2 = q/2;
901 if( q > F->omega-F->alpha ) /* Long input case. */
903 int end;
905 for( ii=0; ii<q; ii+=2 )
907 end = ii-q;
908 ptr = in + end;
909 for( j=F->alpha; j<=end; j++ )
910 *out += F->f[j]* (*ptr--);
912 j = max(F->alpha, j);
913 end = min(F->omega, ii);
914 ptr = in + ii - j;
915 for( ; j<=end; j++ )
916 *out += F->f[j]* (*ptr--);
918 j = ii + 1;
919 ptr = in + q - 1;
920 for( ; j<=F->omega; j++ )
921 *out += F->f[j] * (*ptr--);
923 out += step;
926 else /* Short input case. */
928 for( ii=0; ii<q; ii+=2 )
930 ptr = F->fp + PQFO(q2) + ii;
931 for( j=0; j<q; j++ )
932 *out += (*ptr--) * in[j];
933 out += step;
936 return;
939 /*********************************************************
940 * cdpe1():
942 * [C]onvolution and [D]ecimation by 2:
943 * [P]eriodic, set output using [E]quals (1).
945 * Basic algorithm:
947 * Let Q2 = Q/2
948 * If Q > F.OMEGA-F.ALPHA then
949 * Let FILTER = F.F
950 * For I = 0 to Q2-1
951 * Let OUT[I*STEP] = 0
952 * Let A2I = 2*I-F.ALPHA
953 * Let O2I = 2*I-F.OMEGA
954 * For J = 0 to A2I-Q
955 * OUT[I*STEP] += FILTER[2*I-J-Q]*IN[J]
956 * For J = max(0,O2I) to min(Q-1,A2I)
957 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
958 * For J = O2I+Q to Q-1
959 * OUT[I*STEP] += FILTER[Q+2*I-J]*IN[J]
960 * Else
961 * Let FILTER = F.FP+PQFO(Q2)
962 * For I = 0 to Q2-1
963 * Let OUT[I*STEP] = 0
964 * For J = 0 to Q-1
965 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
968 * Calling sequence:
969 * cdpe1(out, step, in, q, F)
971 * Inputs:
972 * (real *)out This output array must be preallocated so
973 * that elements `out[0]' through
974 * `out[step*(q/2-1)]' are defined.
975 * (int)step This integer is the increment between
976 * `out[]' elements.
977 * (const real *)in This input array must be preallocated
978 * so that `in[0],...,in[q-1]' are defined.
979 * (int)q This is the period of the input array.
980 * (const pqf *)F This specifies the periodized QF struct.
982 * Outputs:
983 * (real *)out Computed values are assigned into this array
984 * by side effect, at elements separated
985 * by offsets of `step' starting at `out'.
987 * Assumptions: We assume that `q' is even.
989 extern void
990 cdpe1(
991 real *out, /* Preallocated array, length `q/2' */
992 int step, /* Increment between `out[]' values */
993 const real *in, /* Preallocated array, length `q' */
994 int q, /* Number of inputs---must be even */
995 const pqf *F ) /* Periodized QF data structure */
997 int ii, j;
998 const real *filt;
999 int q2;
1001 assert( (q&1)==0 ); /* Test that `q' is even. */
1003 q2 = q/2;
1004 if( q > F->omega-F->alpha ) /* Long input case. */
1006 int a2i, o2i;
1008 for( ii=0; ii<q; ii+=2 )
1010 *out = 0;
1011 a2i = ii - F->alpha;
1012 o2i = ii - F->omega;
1014 filt = F->f + ii-q;
1015 for( j=0; j<=a2i-q; j++ )
1016 *out += (*filt--)* in[j];
1018 j = max(0, o2i); filt = F->f + ii-j;
1019 for( ; j<=min(q-1,a2i); j++ )
1020 *out += (*filt--)* in[j];
1022 j = o2i + q; filt = F->f + q+ii-j;
1023 for( ; j<q; j++ )
1024 *out += (*filt--) * in[j];
1026 out += step;
1029 else /* Short input case. */
1031 for( ii=0; ii<q; ii+=2 )
1033 *out = 0;
1034 filt = F->fp + PQFO(q2) + ii;
1035 for( j=0; j<q; j++ )
1036 *out += (*filt--) * in[j];
1037 out += step;
1040 return;
1043 /*********************************************************
1044 * cdpe2():
1046 * [C]onvolution and [D]ecimation by 2:
1047 * [P]eriodic, output set by [E]qual sign (2).
1049 * Basic algorithm:
1051 * Let Q2 = Q/2
1052 * If Q > F.OMEGA-F.ALPHA then
1053 * Let FILTER = F.F
1054 * For I = 0 to Q2-1
1055 * Let OUT[I*STEP] = 0
1056 * Let END = 2*I-Q
1057 * For J = F.ALPHA to END
1058 * OUT[I*STEP] += FILTER[J]*IN[2*I-J-Q]
1059 * Let BEGIN = max(F.ALPHA, END+1)
1060 * Let END = min(F.OMEGA, 2*I)
1061 * For J = BEGIN to END
1062 * OUT[I*STEP] += FILTER[J]*IN[2*I-J]
1063 * Let BEGIN = 2*I+1
1064 * For J = BEGIN to F.OMEGA
1065 * OUT[I*STEP] += FILTER[J]*IN[Q+2*I-J]
1066 * Else
1067 * Let FILTER = F.FP + PQFO(Q2)
1068 * For I = 0 to Q2-1
1069 * Let OUT[I*STEP] = 0
1070 * For J = 0 to Q-1
1071 * OUT[I*STEP] += FILTER[2*I-J]*IN[J]
1073 * Calling sequence:
1074 * cdpe2(out, step, in, q, F)
1076 * Inputs:
1077 * (real *)out This output array must be preallocated so
1078 * that elements `out[0]' through
1079 * `out[step*(q/2-1)]' are defined.
1080 * (int)step This integer is the increment between
1081 * `out[]' elements.
1082 * (const real *)in This input array must be preallocated
1083 * so that `in[0],...,in[q-1]' are defined.
1084 * (int)q This is the period of the input array.
1085 * (const pqf *)F This specifies the periodized QF struct.
1087 * Outputs:
1088 * (real *)out Computed values are assigned into this array
1089 * by side effect, at elements separated
1090 * by offsets of `step' starting at `out'.
1092 * Assumptions: We assume that `q' is even.
1094 extern void
1095 cdpe2(
1096 real *out, /* Preallocated array, length `q/2' */
1097 int step, /* Increment between `out[]' values */
1098 const real *in, /* Preallocated array, length `q' */
1099 int q, /* Number of inputs---must be even */
1100 const pqf *F ) /* Periodized QF data structure */
1102 int ii, j;
1103 const real *ptr;
1104 int q2;
1106 assert( (q&1)==0 ); /* Test that `q' is even. */
1108 q2 = q/2;
1109 if( q > F->omega-F->alpha ) /* Long input case. */
1111 int end;
1113 for( ii=0; ii<q; ii+=2 )
1115 *out = 0;
1116 end = ii-q;
1117 ptr = in + end;
1118 for( j=F->alpha; j<=end; j++ )
1119 *out += F->f[j]* (*ptr--);
1121 j = max(F->alpha, j);
1122 end = min(F->omega, ii);
1123 ptr = in + ii - j;
1124 for( ; j<=end; j++ )
1125 *out += F->f[j]* (*ptr--);
1127 j = ii + 1;
1128 ptr = in + q - 1;
1129 for( ; j<=F->omega; j++ )
1130 *out += F->f[j] * (*ptr--);
1132 out += step;
1135 else /* Short input case. */
1137 for( ii=0; ii<q; ii+=2 )
1139 *out = 0;
1140 ptr = F->fp + PQFO(q2) + ii;
1141 for( j=0; j<q; j++ )
1142 *out += (*ptr--) * in[j];
1143 out += step;
1146 return;
1149 /************************************************************
1150 * acdpi():
1152 * [A]djoint [C]onvolution-[D]ecimation:
1153 * [P]eriodic, sequential [I]nput, superposition.
1155 * Basic algorithm:
1157 * Let Q = 2*Q2
1158 * If Q > F.OMEGA-F.ALPHA then
1159 * Let FILTER = F.F
1160 * For I = 0 to Q2-1
1161 * Let A2I = 2*I-F.ALPHA
1162 * Let O2I = 2*I-F.OMEGA
1163 * For J = 0 to A2I-Q
1164 * OUT[J*STEP] += FILTER[2*I-J-Q]*IN[I]
1165 * For J = max(0,O2I) to min(Q-1,A2I)
1166 * OUT[J*STEP] += FILTER[2*I-J]*IN[I]
1167 * For J = O2I+Q to Q-1
1168 * OUT[J*STEP] += FILTER[Q+2*I-J]*IN[I]
1169 * Else
1170 * Let FILTER = F.FP + PQFO(Q2)
1171 * For I = 0 to Q2-1
1172 * For J = 0 to Q-1
1173 * OUT[J*STEP] += FILTER[2*I-J]*IN[I]
1176 * Calling sequence:
1177 * acdpi(out, step, in, q2, F)
1179 * Inputs:
1180 * (real *)out This output array must be preallocated so
1181 * that elements `out[0]' through
1182 * `out[step*(q-1)]' are defined, q=2*q2.
1183 * (int)step This integer is the increment between
1184 * `out[]' elements.
1185 * (const real *)in This input array must be preallocated
1186 * so that `in[0],...,in[q2-1]' are defined.
1187 * (int)q2 This is the period of the input array.
1188 * (const pqf *)F This specifies the periodized QF struct.
1190 * Outputs:
1191 * (real *)out Computed values are added into this array
1192 * by side effect, at elements separated
1193 * by offsets of `step' starting at `out'.
1195 extern void
1196 acdpi(
1197 real *out, /* Preallocated array, length `2*q2' */
1198 int step, /* Increment between `out[]' values */
1199 const real *in, /* Preallocated array, length `q2' */
1200 int q2, /* Number of elements of `in[]' */
1201 const pqf *F ) /* Periodized QF data structure */
1203 int ii, j, q;
1204 real *outp;
1205 const real *filt;
1207 q = 2*q2; /* Output array length. */
1208 if( q > F->omega-F->alpha ) /* Long signal case: */
1210 int a2i, o2i;
1212 for( ii=0; ii<q; ii+=2 )
1214 a2i = ii - F->alpha;
1215 o2i = ii - F->omega;
1217 j = 0; outp = out; filt = F->f + ii-q;
1218 while( j<=a2i-q )
1220 *outp += (*filt--) * (*in);
1221 outp += step; ++j;
1224 j = max(0, o2i); outp = out+j*step; filt = F->f +ii-j;
1225 while( j<=min(a2i, q-1) )
1227 *outp += (*filt--) * (*in);
1228 outp += step; ++j;
1231 j = o2i+q; outp = out+j*step; filt = F->f + q+ii-j;
1232 while( j<q )
1234 *outp += (*filt--) * (*in);
1235 outp += step; ++j;
1237 ++in;
1240 else /* Short signal case: */
1242 for( ii=0; ii<q; ii+=2 )
1244 outp = out; filt = F->fp + PQFO(q2) + ii;
1245 for( j=0; j<q; j++)
1247 *outp += (*filt--) * (*in);
1248 outp += step;
1250 ++in;
1253 return;
1256 /*************************************************************
1257 * acdpo():
1259 * [A]djoint [C]onvolution-[D]ecimation:
1260 * [P]eriodic, sequential [O]utput, superposition.
1262 * Basic algorithm:
1264 * Let Q = 2*Q2
1265 * If Q > F.OMEGA-F.ALPHA then
1266 * Let FILTER = F.F
1267 * For J = 0 to Q-1
1268 * Let JA2 = ICH(J+F.ALPHA)
1269 * Let JO2 = IFH(J+F.OMEGA)
1270 * For I = 0 to JO2-Q2
1271 * OUT[J*STEP] += FILTER[Q+2*I-J]*IN[I]
1272 * For I = max(0,JA2) to min(Q2-1,JO2)
1273 * OUT[J*STEP] += FILTER[2*I-J]*IN[I]
1274 * For I = JA2+Q2 to Q2-1
1275 * OUT[J*STEP] += FILTER[2*I-J-Q]*IN[I]
1276 * Else
1277 * Let FILTER = F.FP+PQFO(Q2)
1278 * For J = 0 to Q-1
1279 * For I = 0 to Q2-1
1280 * OUT[J*STEP] += FILTER[2*I-J]*IN[I]
1282 * Calling sequence:
1283 * acdpo(out, step, in, q2, F)
1285 * Inputs:
1286 * (real *)out This output array must be preallocated so
1287 * that elements `out[0]' through
1288 * `out[step*(q-1)]' are defined, q=2*q2.
1289 * (int)step This integer is the increment between
1290 * `out[]' elements.
1291 * (const real *)in This input array must be preallocated
1292 * so that `in[0],...,in[q2-1]' are defined.
1293 * (int)q2 This is the period of the input array.
1294 * (const pqf *)F This specifies the periodized QF struct.
1296 * Outputs:
1297 * (real *)out Computed values are added into this array
1298 * by side effect, at elements separated
1299 * by offsets of `step' starting at `out'.
1301 extern void
1302 acdpo(
1303 real *out, /* Preallocated array, length `2*q2' */
1304 int step, /* Increment between `out[]' values */
1305 const real *in, /* Preallocated array, length `q2' */
1306 int q2, /* Number of elements of `in[]' */
1307 const pqf *F ) /* Periodized qf data structure */
1309 int i, j, q;
1310 const real *inp;
1311 const real *filt;
1313 q = 2*q2; /* Output array length. */
1314 if( q > F->omega-F->alpha ) /* Long signal case: */
1316 int ja2, jo2;
1318 for( j=0; j<q; j++ )
1320 ja2 = ICH(j+F->alpha);
1321 jo2 = IFH(j+F->omega);
1323 i=0; filt = F->f +q-j; inp = in;
1324 while( i<=jo2-q2 )
1326 *out += (*filt) * (*inp++);
1327 filt +=2; ++i;
1330 i=max(0, ja2); filt = F->f + 2*i-j; inp = in+i;
1331 while( i<=min(q2-1,jo2) )
1333 *out += (*filt) * (*inp++);
1334 filt +=2; ++i;
1337 i=q2+ja2; filt = F->f+2*i-j-q; inp = in+i;
1338 while( i<q2 )
1340 *out += (*filt) * (*inp++);
1341 filt +=2; ++i;
1343 out += step;
1346 else /* Short signal case: */
1348 for( j=0; j<q; j++ )
1350 inp = in; filt = F->fp + PQFO(q2) - j;
1351 for( i=0; i<q2; i++)
1353 *out += (*filt) * (*inp++);
1354 filt += 2;
1356 out += step;
1359 return;
1362 /*************************************************************
1363 * acdpe():
1365 * [A]djoint [C]onvolution-[D]ecimation:
1366 * [P]eriodic, assign output with [E]quals.
1368 * Basic algorithm:
1370 * Let Q = 2*Q2
1371 * If Q > F.OMEGA-F.ALPHA then
1372 * Let FILTER = F.F
1373 * Let OUT[J*STEP] = 0
1374 * For J = 0 to Q-1
1375 * Let JA2 = ICH(J+F.ALPHA)
1376 * Let JO2 = IFH(J+F.OMEGA)
1377 * For I = 0 to JO2-Q2
1378 * OUT[J*STEP] += FILTER[Q+2*I-J]*IN[I]
1379 * For I = max(0,JA2) to min(Q2-1,JO2)
1380 * OUT[J*STEP] += FILTER[2*I-J]*IN[I]
1381 * For I = JA2+Q2 to Q2-1
1382 * OUT[J*STEP] += FILTER[2*I-J-Q]*IN[I]
1383 * Else
1384 * Let FILTER = F.FP+PQFO(Q2)
1385 * For J = 0 to Q-1
1386 * Let OUT[J*STEP] = 0
1387 * For I = 0 to Q2-1
1388 * OUT[J*STEP] += FILTER[2*I-J]*IN[I]
1390 * Calling sequence:
1391 * acdpe(out, step, in, q2, F)
1393 * Inputs:
1394 * (real *)out This output array must be preallocated so
1395 * that elements `out[0]' through
1396 * `out[step*(q-1)]' are defined, q=2*q2.
1397 * (int)step This integer is the increment between
1398 * `out[]' elements.
1399 * (const real *)in This input array must be preallocated
1400 * so that `in[0],...,in[q2-1]' are defined.
1401 * (int)q2 This is the period of the input array.
1402 * (const pqf *)F This specifies the periodized QF struct.
1404 * Outputs:
1405 * (real *)out Computed values are assigned into this array
1406 * by side effect, at elements separated
1407 * by offsets of `step' starting at `out'.
1409 extern void
1410 acdpe(
1411 real *out, /* Preallocated array, length `2*q2' */
1412 int step, /* Increment between `out[]' values */
1413 const real *in, /* Preallocated array, length `q2' */
1414 int q2, /* Number of elements of `in[]' */
1415 const pqf *F ) /* Periodized QF data structure */
1417 int i, j, q;
1418 const real *inp;
1419 const real *filt;
1421 q = 2*q2; /* Output array length. */
1422 if( q > F->omega-F->alpha ) /* Long signal case: */
1424 int ja2, jo2;
1426 for( j=0; j<q; j++ )
1428 *out = 0;
1429 ja2 = ICH(j+F->alpha);
1430 jo2 = IFH(j+F->omega);
1432 i=0; filt = F->f +q-j; inp = in;
1433 while( i<=jo2-q2 )
1435 *out += (*filt) * (*inp++);
1436 filt +=2; ++i;
1439 i=max(0, ja2); filt = F->f + 2*i-j; inp = in+i;
1440 while( i<=min(q2-1,jo2) )
1442 *out += (*filt) * (*inp++);
1443 filt +=2; ++i;
1446 i=q2+ja2; filt = F->f+2*i-j-q; inp = in+i;
1447 while( i<q2 )
1449 *out += (*filt) * (*inp++);
1450 filt +=2; ++i;
1452 out += step;
1455 else /* Short signal case: */
1457 for( j=0; j<q; j++ )
1459 *out = 0;
1460 inp = in; filt = F->fp + PQFO(q2) - j;
1461 for( i=0; i<q2; i++)
1463 *out += (*filt) * (*inp++);
1464 filt += 2;
1466 out += step;
1469 return;