4 subroutine gocart_dust_driver(ktau,dt,config_flags,julday,alt,t_phy,moist,u_phy, &
5 v_phy,chem,rho_phy,dz8w,emis_seas,smois,u10,v10,p8w, &
6 xland,xlat,xlong,dx,g, &
7 ids,ide, jds,jde, kds,kde, &
8 ims,ime, jms,jme, kms,kme, &
9 its,ite, jts,jte, kts,kte )
11 USE module_state_description
13 TYPE(grid_config_rec_type), INTENT(IN ) :: config_flags
15 INTEGER, INTENT(IN ) :: julday, ktau, &
16 ids,ide, jds,jde, kds,kde, &
17 ims,ime, jms,jme, kms,kme, &
18 its,ite, jts,jte, kts,kte
19 REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_moist ), &
21 REAL, DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ), &
22 INTENT(INOUT ) :: chem
23 REAL, DIMENSION( ims:ime, 1, jms:jme,num_emis_seas),&
26 REAL, DIMENSION( ims:ime , jms:jme ) , &
35 REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
42 REAL, INTENT(IN ) :: dt,dx,g
46 integer :: nmx,i,j,k,ndt
47 integer,dimension (1,1) :: ilwi
48 real*8, DIMENSION (4) :: tc,bems
49 real*8, dimension (1,1) :: w10m,gwet,airden,airmas
50 real*8, dimension (1) :: dxy
59 ! don't do dust over water!!!
61 if(xland(i,j).gt.1.5)then
63 tc(1)=chem(i,kts,j,p_seas_1)
64 tc(2)=chem(i,kts,j,p_seas_2)
65 tc(3)=chem(i,kts,j,p_seas_3)
66 tc(4)=chem(i,kts,j,p_seas_4)
67 w10m(1,1)=sqrt(u10(i,j)*u10(i,j)+v10(i,j)*v10(i,j))
68 airmas(1,1)=-(p8w(i,kts+1,j)-p8w(i,kts,j))*dx*dx/g
70 ! we don't trust the u10,v10 values, is model layers are very thin near surface
72 if(dz8w(i,kts,j).lt.12.)w10m=sqrt(u_phy(i,kts,j)*u_phy(i,kts,j)+v_phy(i,kts,j)*v_phy(i,kts,j))
75 call source_ss( nmx, dt, tc,ilwi, dxy, w10m, airmas, bems)
76 chem(i,kts,j,p_seas_1)=tc(1)
77 chem(i,kts,j,p_seas_2)=tc(2)
78 chem(i,kts,j,p_seas_3)=tc(3)
79 chem(i,kts,j,p_seas_4)=tc(4)
80 ! for output diagnostics
81 emis_seas(i,1,j,p_edust1)=bems(1)
82 emis_seas(i,1,j,p_edust2)=bems(2)
83 emis_seas(i,1,j,p_edust3)=bems(3)
84 emis_seas(i,1,j,p_edust4)=bems(4)
90 end subroutine gocart_seasalt_driver
92 SUBROUTINE source_ss(nmx, dt1, tc, &
93 ilwi, dxy, w10m, airmas, &
96 ! ****************************************************************************
97 ! * Evaluate the source of each seasalt particles size classes (kg/m3)
100 ! * SSALTDEN Sea salt density (kg/m3)
101 ! * DXY Surface of each grid cell (m2)
102 ! * NDT1 Time step (s)
103 ! * W10m Velocity at the anemometer level (10meters) (m/s)
106 ! * DSRC Source of each sea salt bins (kg/timestep/cell)
109 ! * Number flux density: Original formula by Monahan et al. (1986) adapted
110 ! * by Sunling Gong (JGR 1997 (old) and GBC 2003 (new)). The new version is
111 ! * to better represent emission of sub-micron sea salt particles.
113 ! * dFn/dr = c1*u10**c2/(r**A) * (1+c3*r**c4)*10**(c5*exp(-B**2))
114 ! * where B = (b1 -log(r))/b2
115 ! * see c_old, c_new, b_old, b_new below for the constants.
116 ! * number fluxes are at 80% RH.
118 ! * To calculate the flux:
119 ! * 1) Calculate dFn based on Monahan et al. (1986) and Gong (2003)
120 ! * 2) Assume that wet radius r at 80% RH = dry radius r_d *frh
121 ! * 3) Convert particles flux to mass flux :
122 ! * dFM/dr_d = 4/3*pi*rho_d*r_d^3 *(dr/dr_d) * dFn/dr
123 ! * = 4/3*pi*rho_d*r_d^3 * frh * dFn/dr
124 ! * where rho_p is particle density [kg/m3]
125 ! * The factor 1.e-18 is to convert in micro-meter r_d^3
126 ! ****************************************************************************
129 USE module_data_gocart
133 INTEGER, INTENT(IN) :: nmx
134 INTEGER, INTENT(IN) :: ilwi(imx,jmx)
135 REAL*8, INTENT(IN) :: dxy(jmx), w10m(imx,jmx)
136 REAL*8, INTENT(IN) :: airmas(imx,jmx,lmx)
137 REAL*8, INTENT(INOUT) :: tc(imx,jmx,lmx,nmx)
138 REAL*8, INTENT(OUT) :: bems(imx,jmx,nmx)
140 REAL*8 :: c0(5), b0(2)
141 ! REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.41, 0.057, 1.05, 1.190/)
142 ! REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.41, 0.057, 3.45, 1.607/)
143 ! Change suggested by MC
144 REAL*8, PARAMETER :: c_old(5)=(/1.373, 3.2, 0.057, 1.05, 1.190/)
145 REAL*8, PARAMETER :: c_new(5)=(/1.373, 3.2, 0.057, 3.45, 1.607/)
146 REAL*8, PARAMETER :: b_old(2)=(/0.380, 0.650/)
147 REAL*8, PARAMETER :: b_new(2)=(/0.433, 0.433/)
148 REAL*8, PARAMETER :: dr=5.0E-2 ! um
149 REAL*8, PARAMETER :: theta=30.0
150 ! Swelling coefficient frh (d rwet / d rd)
151 !!! REAL*8, PARAMETER :: frh = 1.65
152 REAL*8, PARAMETER :: frh = 2.0
153 LOGICAL, PARAMETER :: old=.TRUE., new=.FALSE.
154 REAL*8 :: rho_d, r0, r1, r, r_w, a, b, dfn, r_d, dfm, src
155 INTEGER :: i, j, n, nr, ir
159 REAL*8 :: tcmw(nmx), ar(nmx), tcvv(nmx)
160 REAL*8 :: ar_wetdep(nmx), kc(nmx)
161 CHARACTER(LEN=20) :: tcname(nmx), tcunits(nmx)
162 LOGICAL :: aerosol(nmx)
165 REAL*8 :: tc1(imx,jmx,lmx,nmx)
166 REAL*8, TARGET :: tcms(imx,jmx,lmx,nmx) ! tracer mass (kg; kgS for sulfur case)
167 REAL*8, TARGET :: tcgm(imx,jmx,lmx,nmx) ! g/m3
169 !-----------------------------------------------------------------------
171 !-----------------------------------------------------------------------
172 REAL*8, DIMENSION(nmx) :: ssaltden, ssaltreff, ra, rb
173 REAL*8 :: ch_ss(nmx,12)
175 !-----------------------------------------------------------------------
177 !-----------------------------------------------------------------------
178 REAL*8 :: e_an(imx,jmx,2,nmx), e_bb(imx,jmx,nmx), &
179 e_ac(imx,jmx,lmx,nmx)
181 !-----------------------------------------------------------------------
182 ! diagnostics (budget)
183 !-----------------------------------------------------------------------
184 ! ! tendencies per time step and process
185 ! REAL*8, TARGET :: bems(imx,jmx,nmx), bdry(imx,jmx,nmx), bstl(imx,jmx,nmx)
186 ! REAL*8, TARGET :: bwet(imx,jmx,nmx), bcnv(imx,jmx,nmx)!
188 ! ! integrated tendencies per process
189 ! REAL*8, TARGET :: tems(imx,jmx,nmx), tstl(imx,jmx,nmx)
190 ! REAL*8, TARGET :: tdry(imx,jmx,nmx), twet(imx,jmx,nmx), tcnv(imx,jmx,nmx)
192 ! global mass balance per time step
193 REAL*8 :: tmas0(nmx), tmas1(nmx)
194 REAL*8 :: dtems(nmx), dttrp(nmx), dtdif(nmx), dtcnv(nmx)
195 REAL*8 :: dtwet(nmx), dtdry(nmx), dtstl(nmx)
196 REAL*8 :: dtems2(nmx), dttrp2(nmx), dtdif2(nmx), dtcnv2(nmx)
197 REAL*8 :: dtwet2(nmx), dtdry2(nmx), dtstl2(nmx)
199 ! detailed integrated budgets for individual emissions
200 REAL*8, TARGET :: ems_an(imx,jmx,nmx), ems_bb(imx,jmx,nmx), ems_tp(imx,jmx)
201 REAL*8, TARGET :: ems_ac(imx,jmx,lmx,nmx)
202 REAL*8, TARGET :: ems_co(imx,jmx,nmx)
205 ! executable statements
218 a = 4.7*(1.0 + theta*r_w)**(-0.017*r_w**(-1.44))
227 b = (b0(1) - LOG10(r_w))/b0(2)
228 dfn = (c0(1)/r_w**a)*(1.0 + c0(3)*r_w**c0(4))* &
229 10**(c0(5)*EXP(-(b**2)))
231 r_d = r_w/frh*1.0E-6 ! um -> m
232 dfm = 4.0/3.0*pi*r_d**3*rho_d*frh*dfn*dr*dt1
235 ! IF (water(i,j) > 0.0) THEN
236 IF (ilwi(i,j) == 0) THEN
237 ! src = dfm*dxy(j)*water(i,j)*w10m(i,j)**c0(2)
238 src = dfm*dxy(j)*w10m(i,j)**c0(2)
239 ! src = ch_ss(n,dt(1)%mn)*dfm*dxy(j)*w10m(i,j)**c0(2)
240 tc(i,j,1,n) = tc(i,j,1,n) + src/airmas(i,j,1)
244 bems(i,j,n) = bems(i,j,n) + src
250 END SUBROUTINE source_ss
251 END MODULE SEA_SALT_EMIS