1 # Header section that describes the following GRIB 2 table(s)
3 # Ind | center | subcenter | Master Tbl Version | Local Tbl Version |
4 #-----+--------+-----------+--------------------+-------------------+
5 -1 | 255 | 255 | 1 | 1 |
9 # The precision is controlled by the decimal and binary scale factors.
11 # The decimal scale factor is the number of digits after the decimal point
12 # that are retained. If negative, precision is reduced by 10**dec (i.e.,
13 # -1 would reduce the precision to the nearest factor of 10).
15 # When the decimal scale factor is 0, the binary scale factor indicates the
16 # precision of the data in bits.
18 # The grib2 docuementation, available from http://, describes the decimal
19 # and binary scale factors in more detail.
23 #Dis|Cat|Prm| | |Dec |Bin |
24 #cip|gor|Num| WRF Id(s) | Description |Fctr|Fctr|
25 #---+---+---+-----------+------------------------------------------+----+----+
26 0 | 0 | 0 | T2,TSK | Temperature | 2 | 0 |
27 0 | 0 | 2 | TH2,THZ0,T| Potential Temperature | 1 | 0 |
28 0 | 0 |192| T_INIT | Initial Potential Temperature | 3 | 0 |
29 0 | 0 |193| RTHFTEN | Temp. Tendency in Grell Cumulus [K/s] | 6 | 0 |
30 0 | 0 |194| T_BASE | Base State T in Idealized Cases [K] | 2 | 0 |
31 0 | 0 |195| T_1 | Restart Parameter | 4 | 0 |
32 0 | 0 |196| T_2 | Restart Parameter | 4 | 0 |
33 0 | 0 |197| H_DIABATIC| Previous Timestep Condensational heating | 7 | 0 |
34 0 | 0 |198| RTHCUTEN | Coupled theta tend(cumulus sch)[Pa K s-1]| 3 | 0 |
35 0 | 0 |199| RTHRATEN | Coupled theta tend due to radia [Pa K/s] | 3 | 0 |
36 0 | 0 |200| RTHRATLW | Coupled theta tend due to lw rad [Pa K/s]| 3 | 0 |
37 0 | 0 |201| RTHRATSW | Coupled theta tend due to sw rad [Pa K/s]| 3 | 0 |
38 0 | 0 |202| MOL | TStar in Similarity theory [K] | 3 | 0 |
39 0 | 0 |203| THC | Thermal Inertia [Cal /(cm K s^.5)] | 3 | 0 |
40 0 | 0 |204| RTHBLTEN | Coupled theta tend due to PBL [Pa K/s] | 4 | 0 |
41 0 | 1 | 0 | QSFC | Specific Humidity [kg/kg] | 5 | 0 |
42 0 | 1 | 2 |QVAPOR,Q2,QVG|Humidity Mixing Ratio [kg/kg] | 5 | 0 |
43 0 | 1 | 6 |SFCEVP | Evaporation [kg/m^2] | 3 | 0 |
44 0 | 1 | 9 | RAINNC | Large-scale precip (non-conv)[Kg/m^2] | 2 | 0 |
45 0 | 1 | 10| RAINC | Convective precipitation [kg/m^2] | 2 | 0 |
46 0 | 1 | 13| WEASD,SNOW| Water equivalent of snow depth [kg/m^2] | 2 | 0 |
47 0 | 1 | 15| SNOWNC | Accumulated total grid scale snow/ice[mm]| 1 | 0 |
48 0 | 1 | 11|SNOWH,SNOWCU,ACSNOW|Snow depth [m] | 4 | 0 |
49 0 | 1 | 22| QCLOUD,QCG| Cloud water mixing ratio [kg/kg] | 6 | 0 |
50 0 | 1 | 23| QICE | Ice water mixing ratio [kg/kg] | 5 | 0 |
51 0 | 1 | 24| QRAIN | Rain water mixing ratio [kg/kg] | 5 | 0 |
52 0 | 1 | 25| QSNOW | Snow water mixing ratio [kg/kg] | 5 | 0 |
53 0 | 1 | 32| QGRAUP | Graupel mixing ratio [kg/kg] | 5 | 0 |
54 0 | 1 |192| LH | Latent heat flux [W/m^2] | 2 | 0 |
55 0 | 1 |193| ACSNOM | Accumulated melted snow [cm] | 2 | 0 |
56 0 | 1 |194| RAINNCV | Large-scale precip rate [kg/m^2/s] | 7 | 0 |
57 0 | 1 |195| RAINCV | Convective precip rate [kg/m^2/s] | 7 | 0 |
58 0 | 1 |196| QFX | Upward moisture flux [kg/m^s] | 6 | 0 |
59 0 | 1 |197| HFX | Upward heat flux at the surface [W/m^2] | 1 | 0 |
60 0 | 1 |198| QNI | Ice crystal number concentration | 0 | 0 |
61 0 | 1 |199| QV_BASE | Base State QV in Idealized Cases | 5 | 0 |
62 0 | 1 |200| CT | Countergradient term [K] | 5 | 0 |
63 0 | 1 |201| QZ0 | Specific humidity at rough length [kg/kg]| 5 | 0 |
64 0 | 1 |202| CUPPT | Acc cnv rain since last call to rad | 4 | 0 |
65 0 | 1 |203| F_ICE_PHY | Fraction of Ice (eta mp state variable) | 2 | 0 |
66 0 | 1 |204| F_RAIN_PHY| Fraction of Rain (eta mp state variable) | 2 | 0 |
67 0 | 1 |205|F_RIMEF_PHY| Mass Ratio of Rimed Ice(eta mp variable) | 2 | 0 |
68 0 | 1 |206| RQVCUTEN | Coupled QV tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 |
69 0 | 1 |207| RQRCUTEN | Coupled QR tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 |
70 0 | 1 |208| RQCCUTEN | Coupled QC tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 |
71 0 | 1 |209| RQSCUTEN | Coupled QS tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 |
72 0 | 1 |210| RQICUTEN | Coupled QI tend(cum sch)[Pa kg kg-1 s-1] | 6 | 0 |
73 0 | 1 |211| RAINBL | Acc pcp over BL time step [kg/m^2] | 2 | 0 |
74 0 | 1 |212| NCA | Counter of cloud relax in KF | 2 | 0 |
75 0 | 1 |213| APR_GR | Precip from closure (old grell) [mm/hr] | 4 | 0 |
76 0 | 1 |214| APR_W | Precip from closure W [mm/hr] | 4 | 0 |
77 0 | 1 |215| APR_MC | Precip from closure Krish MV [mm/hr] | 4 | 0 |
78 0 | 1 |216| APR_ST | Precip from closure Stability [mm/hr] | 4 | 0 |
79 0 | 1 |217| APR_AS | Precip from closure AS-Type [mm/hr] | 4 | 0 |
80 0 | 1 |218| APR_CAPMA | Precip from max CAP [mm/hr] | 4 | 0 |
81 0 | 1 |219| APR_CAPME | Precip from mean CAP [mm/hr] | 4 | 0 |
82 0 | 1 |220| APR_CAPMI | Precip from min CAP [mm/hr] | 4 | 0 |
83 0 | 1 |221| PR_ENS | Precip rate in Grell | 4 | 0 |
84 0 | 1 |222| RQVFTEN | Moisture tendency in Grell [kg/s] | 6 | 0 |
85 0 | 1 |223| CLDEFI | Precipitation efficiency in BMJ | 4 | 0 |
86 0 | 1 |224| RQVBLTEN | Coupled QV tend due to PBL [Pa kg/(kg s)]| 0 | 24 |
87 0 | 1 |225| RQCBLTEN | Coupled QC tend due to PBL [Pa kg/(kg s)]| 0 | 24 |
88 0 | 1 |226| RQIBLTEN | Coupled QI tend due to PBL [Pa kg/(kg s)]| 0 | 24 |
89 0 | 1 |227| FLQC | Surface exchange coefficient for moisture| 6 | 0 |
90 0 | 1 |228| QSG | Surface saturation wv mixing ratio[kg/kg]| 6 | 0 |
91 0 | 1 |229| MAVAIL | Surface moisture availability | 4 | 0 |
92 0 | 1 |230| SR | Fraction of frozen precip | 2 | 0 |
93 0 | 1 |231| POTEVP | Accumulated potential evaporation [W/m^2]| 4 | 0 |
94 0 | 1 |232| SNOPCX | Snow phase change heat flux [W/m^2] | 2 | 0 |
95 0 | 1 |233| RHOSN | Snow Density [kg/m^3] | 2 | 0 |
96 0 | 1 |234|QNDROPSOURCE|Droplet number source [#/kg/s] | 3 | 0 |
97 0 | 1 |235| PRATEC | Convective precip rate[kg/m^2/s] | 7 | 0 |
98 0 | 1 |236| GRAUPELNC | Accumulated total grid scale graupel [mm]| 1 | 0 |
99 0 | 1 |237| RAINSH | Accumulated Shallow Cumulus Precip [mm] | 2 | 0 |
100 0 | 1 |238| HAILNC | Accumulated total grid scale hail [mm] | 2 | 0 |
101 0 | 1 |239| GRAUPELNC | Accumulated total grid scale graupel [mm]| 2 | 0 |
102 0 | 2 | 2 | U,U10,UZ0 | U-component of wind [m/s] | 2 | 0 |
103 0 | 2 | 3 | V,V10,VZ0 | V-component of wind [m/s] | 2 | 0 |
104 0 | 2 | 7 | WW | Sigma coordinate vertical velocity [s^-1]| 3 | 0 |
105 0 | 2 | 9 | W | Geometric vertical velocity [m/s] | 4 | 0 |
106 0 | 2 |192| U_BASE | Base State X Wind in Idealized Cases | 3 | 0 |
107 0 | 2 |193| V_BASE | Base State Y Wind in Idealized Cases | 3 | 0 |
108 0 | 2 |194| U_1 | Restart Parameter | 4 | 0 |
109 0 | 2 |195| U_2 | Restart Parameter | 4 | 0 |
110 0 | 2 |196| V_1 | Restart Parameter | 4 | 0 |
111 0 | 2 |197| V_2 | Restart Parameter | 4 | 0 |
112 0 | 2 |198| W_1 | Restart Parameter | 0 | 24 |
113 0 | 2 |199| W_2 | Restart Parameter | 0 | 24 |
114 0 | 2 |200| SFCEXC | Exchange coefficient [m/s] | 5 | 0 |
115 0 | 2 |201| AKHS | Sfc exchange coefficient for heat [m/s] | 5 | 0 |
116 0 | 2 |202| AKMS | Sfc exch coefficient for momentum [m/s] | 3 | 0 |
117 0 | 2 |203| W0AVG | Average VV for KF Cum Scheme [m/s] | 6 | 0 |
118 0 | 2 |204| MASS_FLUX | Downdraft mass flux in grell [mb/hr] | 4 | 0 |
119 0 | 2 |205| RUBLTEN | Coupled X-wind tend due to PBL [Pa m/s^2]| 2 | 0 |
120 0 | 2 |206| RVBLTEN | Coupled X-wind tend due to PBL [Pa m/s^2]| 2 | 0 |
121 0 | 2 |207| UST | UStar in Similarity theory [m/s] | 4 | 0 |
122 0 | 2 |208| FLHC | Surface exchange coefficient for heat | 3 | 0 |
123 0 | 3 | 0 | P,PSFC | Pressure [Pa] | 1 | 0 |
124 0 | 3 | 1 | PMSL | Pressure reduced to MSL [Pa] | 1 | 0 |
125 0 | 3 | 4 | PHP | Geopotential [m^2/s^2] | 3 | 0 |
126 0 | 3 |192| PHB | Base-state geopotential [m^2/s^2] | 0 | 0 |
127 0 | 3 |193| PH | Perturbation geopotential [m^2/s^2] | 1 | 0 |
128 0 | 3 |194| MUB | Base-state dry air mass in column [Pa] | 1 | 0 |
129 0 | 3 |195| MU | Perturbation dry air mass in column [Pa] | 1 | 0 |
130 0 | 3 |196| MU0 | Initial dry air mass in column [Pa] | 0 | 0 |
131 0 | 3 |197| PB | Base-state pressure [Pa] | 0 | 0 |
132 0 | 3 |198| GRDFLX | Ground heat flux [W/m^2] | 1 | 0 |
133 0 | 3 |199| Z_BASE | Base State Height in Idealized Cases | 5 | 0 |
134 0 | 3 |200| PH_1 | Restart Parameter | 3 | 0 |
135 0 | 3 |201| PH_2 | Restart Parameter | 3 | 0 |
136 0 | 3 |202| PH0 | Initial geopotential | 1 | 0 |
137 0 | 3 |203| MU_1 | Restart Parameter | 3 | 0 |
138 0 | 3 |204| MU_2 | Restart Parameter | 3 | 0 |
139 0 | 3 |205| AL | Inverse perturbation density [m3 kg-1] | 5 | 0 |
140 0 | 3 |206| ALT | Inverse density [m3 kg-1] | 4 | 0 |
141 0 | 3 |207| XF_ENS | Mass flux PDF in GRELL | 4 | 0 |
142 0 | 3 |208| P_HYD | Hydrostatic pressure [Pa] | 0 | 0 |
143 0 | 4 | 0 | GSW | Net short wave flux [W/m^2] | 3 | 0 |
144 0 | 4 |192| SWDOWN | Downward short wave flux [W/m^2] | 1 | 0 |
145 0 | 4 |193| TOTSWDN | Radiation State Variable | 2 | 0 |
146 0 | 4 |194| RSWTOA | Radiation State Variable | 4 | 0 |
147 0 | 4 |195| RLWTOA | Radiation State Variable | 4 | 0 |
148 0 | 4 |196| CZMEAN | Radiation State Variable | 4 | 0 |
149 0 | 4 |197| CFRACL | Radiation State Variable | 4 | 0 |
150 0 | 4 |198| CFRACM | Radiation State Variable | 4 | 0 |
151 0 | 4 |199| CFRACH | Radiation State Variable | 4 | 0 |
152 0 | 4 |200| ACFRST | Radiation State Variable | 4 | 0 |
153 0 | 4 |201| NCFRST | Radiation State Variable | 4 | 0 |
154 0 | 4 |202| ACFRCV | Radiation State Variable | 4 | 0 |
155 0 | 4 |203| NCFRCV | Radiation State Variable | 4 | 0 |
156 0 | 4 |204| SWNORM | Normal sw flux at ground (slope dep.) | 3 | 0 |
157 0 | 4 |205| NOAHRES | Resid. of NOAH sfc energy budget [W/m^w] | 3 | 0 |
158 0 | 4 |206| ACHFX | Acc. upward heat flx at sfc [J/m^2] | 4 | 0 |
159 0 | 4 |207| ACLHF | Acc. upward latent heat flx at sf [J/m^2]| 4 | 0 |
160 0 | 4 |208| SWDOWNC | Down clear-sky SW flux at ground [W/m^2] | 1 | 0 |
161 0 | 5 | 0 | GLW | Net long wave flux [W/m^2] | 2 | 0 |
162 0 | 5 |193| TOTLWDN | Radiation State Variable | 4 | 0 |
163 0 | 5 |194| OLR | TOA Outgoing Long Wave [W/m^2] | 1 | 0 |
164 0 | 5 |195|ACGRDFLX | Accumulated Ground Heat Flux [J / m^2] | 3 | 0 |
165 0 | 6 | 1 | CLDFRA | Total Cloud Cover [%] | 2 | 0 |
166 0 | 6 |192| TAUCLDI | Cloud optical thickness for ice | 2 | 0 |
167 0 | 6 |193| TAUCLDC | Cloud optical thickness for water | 2 | 0 |
168 0 | 13|192|MASS_AER_WATER| aerosol liquid water content | 6 | 0 |
169 0 | 13|193|MASS_AER_DRY| dry aerosol mass | 6 | 0 |
170 0 | 15| 1|REFL_10CM | Radar reflectivity (lambda = 10cm) [dBz] | 1 | 0 |
171 0 | 19| 1| ALBEDO | Albedo [%] | 2 | 0 |
172 0 | 19| 3| EL_PBL | Mixing length from PBL scheme [m] | 1 | 0 |
173 0 | 19| 11|TKE,TKE_MYJ| Turbulent Kinetic Energy [J/kg] | 3 | 0 |
174 0 | 19|192| ALBBCK | Background Albedo [%] | 4 | 0 |
175 0 | 19|193| TKE_1 | Restart Parameter | 3 | 0 |
176 0 | 19|194| TKE_2 | Restart Parameter | 3 | 0 |
177 0 | 19|195| TKE_PBL | Turbulent Kinetic Energy from PBL [J/kg] | 3 | 0 |
178 0 |191|192| CFN | CFN from WRF [?] | 3 | 0 |
179 0 |191|193| CFN1 | CFN1 from WRF [?] | 3 | 0 |
180 0 |191|194| ZNU | Eta values on half (mass) levels | 6 | 0 |
181 0 |191|195| ZNW | Eta values on full (w) levels | 6 | 0 |
182 0 |191|196| DN | DN values [dimensionless] | 4 | 0 |
183 0 |191|197| DNW | DNW values [dimensionless] | 4 | 0 |
184 0 |191|198| RDN | Inverse DN values [dimensionless] | 3 | 0 |
185 0 |191|199| RDNW | Inverse d(eta) values for full (w) levels| 3 | 0 |
186 0 |191|200| FNP | Lower weight for vertical strection [dim]| 5 | 0 |
187 0 |191|201| FNM | Upper weight for vertical strection [dim]| 5 | 0 |
188 0 |191|202| MAPFAC_M | Map Scale Factor [dimensionless] | 4 | 0 |
189 0 |191|203| MAPFAC_U | Map Scale Factor [dimensionless] | 4 | 0 |
190 0 |191|204| MAPFAC_V | Map Scale Factor [dimensionless] | 4 | 0 |
191 0 |191|205| F | Coriolis sine latitude term | 6 | 0 |
192 0 |191|206| E | Coriolis cosine latitude term | 6 | 0 |
193 0 |191|207| PBLH | Planetary boundary layer height [m] | 0 | 0 |
194 0 |191|208| ZS | Depths of centers of soil layers [m] | 3 | 0 |
195 0 |191|209| DZS | Thicknesses of soil layers [m] | 3 | 0 |
196 0 |191|210| XLAT,XLAT_U,XLAT_V| Latitude [deg] | 4 | 0 |
197 0 |191|211| XLONG,XLONG_U,XLONG_V| Longitude [deg] | 4 | 0 |
198 0 |191|212| COSALPHA | Local cosine of map rotation | 6 | 0 |
199 0 |191|213| SINALPHA | Local sine of map rotation | 6 | 0 |
200 0 |191|214| NEST_POS | Nest Position | 0 | 0 |
201 0 |191|215| ALB | Restart Parameter (??) | 4 | 0 |
202 0 |191|216| EXCH_H | Exchange coefficients | 3 | 0 |
203 0 |191|217| KPBL | Level of PBL top [m] | 1 | 0 |
204 0 |191|218| HTOP | Top of convection level | 1 | 0 |
205 0 |191|219| HBOT | Bottom of convection level | 1 | 0 |
206 0 |191|220| TKESFCF | TKE at the surface [m^/s^2] | 3 | 0 |
207 0 |191|221| MAPFAC_MX | Map Scale Factor [dimensionless] | 4 | 0 |
208 0 |191|222| MAPFAC_UX | Map Scale Factor [dimensionless] | 4 | 0 |
209 0 |191|223| MAPFAC_VX | Map Scale Factor [dimensionless] | 4 | 0 |
210 0 |191|224| MAPFAC_MY | Map Scale Factor [dimensionless] | 4 | 0 |
211 0 |191|225| MAPFAC_UY | Map Scale Factor [dimensionless] | 4 | 0 |
212 0 |191|226| MAPFAC_VY | Map Scale Factor [dimensionless] | 4 | 0 |
213 0 |191|227| MF_VX_INV | Inverse Map Scale Factor | 4 | 0 |
214 0 |191|228|HT_SHAD_BXS| Bdy Height of Orographic Shadow | 2 | 0 |
215 0 |191|229|HT_SHAD_BXE| Bdy Height of Orographic Shadow | 2 | 0 |
216 0 |191|230|HT_SHAD_BYS| Bdy Height of Orographic Shadow | 2 | 0 |
217 0 |191|231|HT_SHAD_BYE| Bdy Height of Orographic Shadow | 2 | 0 |
218 0 |191|232|HT_SHAD_BTXS|Bdy Height of Orographic Shadow | 2 | 0 |
219 0 |191|233|HT_SHAD_BTXE|Bdy Height of Orographic Shadow | 2 | 0 |
220 0 |191|234|HT_SHAD_BTYS|Bdy Height of Orographic Shadow | 2 | 0 |
221 0 |191|235|HT_SHAD_BTYE|Bdy Height of Orographic Shadow | 2 | 0 |
222 0 |191|236| HGT_SHAD | Height of Orographic Shadow | 2 | 0 |
223 0 |191|237| EDT_OUT | EDT from GD scheme | 5 | 0 |
224 0 |191|253|WRF_SCALAR | Scalar Output data in local section | 0 | 0 |
225 0 |191|254|WRF_GLOBAL | Global Output data in local section | 0 | 0 |
226 0 |192| 1 | U_BXS | | 0 | 0 |
227 0 |192| 2 | U_BXE | | 0 | 0 |
228 0 |192| 3 | U_BYS | | 0 | 0 |
229 0 |192| 4 | U_BYE | | 0 | 0 |
230 0 |192| 5 | U_BTXS | | 2 | 0 |
231 0 |192| 6 | U_BTXE | | 2 | 0 |
232 0 |192| 7 | U_BTYS | | 2 | 0 |
233 0 |192| 8 | U_BTYE | | 2 | 0 |
234 0 |192| 9 | V_BXS | | 0 | 0 |
235 0 |192| 10| V_BXE | | 0 | 0 |
236 0 |192| 11| V_BYS | | 0 | 0 |
237 0 |192| 12| V_BYE | | 0 | 0 |
238 0 |192| 13| V_BTXS | | 2 | 0 |
239 0 |192| 14| V_BTXE | | 2 | 0 |
240 0 |192| 15| V_BTYS | | 2 | 0 |
241 0 |192| 16| V_BTYE | | 2 | 0 |
242 0 |192| 17| W_BXS | | 4 | 0 |
243 0 |192| 18| W_BXE | | 4 | 0 |
244 0 |192| 19| W_BYS | | 4 | 0 |
245 0 |192| 20| W_BYE | | 4 | 0 |
246 0 |192| 21| W_BTXS | | 5 | 0 |
247 0 |192| 22| W_BTXE | | 5 | 0 |
248 0 |192| 23| W_BTYS | | 5 | 0 |
249 0 |192| 24| W_BTYE | | 5 | 0 |
250 0 |192| 25| PH_BXS | | -2 | 0 |
251 0 |192| 26| PH_BXE | | -2 | 0 |
252 0 |192| 27| PH_BYS | | -2 | 0 |
253 0 |192| 28| PH_BYE | | -2 | 0 |
254 0 |192| 29| PH_BTXS | | 0 | 0 |
255 0 |192| 30| PH_BTXE | | 0 | 0 |
256 0 |192| 31| PH_BTYS | | 0 | 0 |
257 0 |192| 32| PH_BTYE | | 0 | 0 |
258 0 |192| 33| T_BXS | | -1 | 0 |
259 0 |192| 34| T_BXE | | -1 | 0 |
260 0 |192| 35| T_BYS | | -1 | 0 |
261 0 |192| 36| T_BYE | | -1 | 0 |
262 0 |192| 37| T_BTXS | | 2 | 0 |
263 0 |192| 38| T_BTXE | | 2 | 0 |
264 0 |192| 39| T_BTYS | | 2 | 0 |
265 0 |192| 40| T_BTYE | | 2 | 0 |
266 0 |192| 41| MU_BXS | | 2 | 0 |
267 0 |192| 42| MU_BXE | | 2 | 0 |
268 0 |192| 43| MU_BYS | | 2 | 0 |
269 0 |192| 44| MU_BYE | | 4 | 0 |
270 0 |192| 45| MU_BTXS | | 4 | 0 |
271 0 |192| 46| MU_BTXE | | 4 | 0 |
272 0 |192| 47| MU_BTYS | | 4 | 0 |
273 0 |192| 48| MU_BTYE | | 4 | 0 |
274 0 |192| 49| QVAPOR_BXS| | 1 | 0 |
275 0 |192| 50| QVAPOR_BXE| | 1 | 0 |
276 0 |192| 51| QVAPOR_BYS| | 1 | 0 |
277 0 |192| 52| QVAPOR_BYE| | 1 | 0 |
278 0 |192| 53|QVAPOR_BTXS| | 6 | 0 |
279 0 |192| 54|QVAPOR_BTXE| | 6 | 0 |
280 0 |192| 55|QVAPOR_BTYS| | 6 | 0 |
281 0 |192| 56|QVAPOR_BTYE| | 6 | 0 |
282 0 |192| 57| QCLOUD_BXS| | 1 | 0 |
283 0 |192| 58| QCLOUD_BXE| | 1 | 0 |
284 0 |192| 59| QCLOUD_BYS| | 1 | 0 |
285 0 |192| 60| QCLOUD_BYE| | 1 | 0 |
286 0 |192| 61|QCLOUD_BTXS| | 7 | 0 |
287 0 |192| 62|QCLOUD_BTXE| | 7 | 0 |
288 0 |192| 63|QCLOUD_BTYS| | 7 | 0 |
289 0 |192| 64|QCLOUD_BTYE| | 7 | 0 |
290 0 |192| 65| QRAIN_BXS | | 1 | 0 |
291 0 |192| 66| QRAIN_BXE | | 1 | 0 |
292 0 |192| 67| QRAIN_BYS | | 1 | 0 |
293 0 |192| 68| QRAIN_BYE | | 1 | 0 |
294 0 |192| 69| QRAIN_BTXS| | 7 | 0 |
295 0 |192| 70| QRAIN_BTXE| | 7 | 0 |
296 0 |192| 71| QRAIN_BTYS| | 7 | 0 |
297 0 |192| 72| QRAIN_BTYE| | 7 | 0 |
298 0 |192| 73| QICE_BXS | | 2 | 0 |
299 0 |192| 74| QICE_BXE | | 2 | 0 |
300 0 |192| 75| QICE_BYS | | 2 | 0 |
301 0 |192| 76| QICE_BYE | | 2 | 0 |
302 0 |192| 77| QICE_BTXS | | 7 | 0 |
303 0 |192| 78| QICE_BTXE | | 7 | 0 |
304 0 |192| 79| QICE_BTYS | | 7 | 0 |
305 0 |192| 80| QICE_BTYE | | 7 | 0 |
306 0 |192| 81| QSNOW_BXS | | 2 | 0 |
307 0 |192| 82| QSNOW_BXE | | 2 | 0 |
308 0 |192| 83| QSNOW_BYS | | 2 | 0 |
309 0 |192| 84| QSNOW_BYE | | 2 | 0 |
310 0 |192| 85| QSNOW_BTXS| | 7 | 0 |
311 0 |192| 86| QSNOW_BTXE| | 7 | 0 |
312 0 |192| 87| QSNOW_BTYS| | 7 | 0 |
313 0 |192| 88| QSNOW_BTYE| | 7 | 0 |
314 0 |192| 89| QGRAUP_BXS| | 2 | 0 |
315 0 |192| 90| QGRAUP_BXE| | 2 | 0 |
316 0 |192| 91| QGRAUP_BYS| | 2 | 0 |
317 0 |192| 92| QGRAUP_BYE| | 2 | 0 |
318 0 |192| 93|QGRAUP_BTXS| | 7 | 0 |
319 0 |192| 94|QGRAUP_BTXE| | 7 | 0 |
320 0 |192| 95|QGRAUP_BTYS| | 7 | 0 |
321 0 |192| 96|QGRAUP_BTYE| | 7 | 0 |
322 0 |192| 97| QNICE_BXS | | 4 | 0 |
323 0 |192| 98| QNICE_BXE | | 4 | 0 |
324 0 |192| 99| QNICE_BYS | | 4 | 0 |
325 0 |192|100| QNICE_BYE | | 4 | 0 |
326 0 |192|101| QNICE_BTXS| | 7 | 0 |
327 0 |192|102| QNICE_BTXE| | 7 | 0 |
328 0 |192|103| QNICE_BTYS| | 7 | 0 |
329 0 |192|104| QNICE_BTYE| | 7 | 0 |
330 0 |192|105| TSHLTR | Shelter theta from MYJ [K] | 2 | 0 |
331 0 |192|106| QSHLTR | Shelter specific humidity from MYJ[kg/kg]| 6 | 0 |
332 0 |192|107| PSHLTR | Shelter pressure from MYJ [Pa] | 0 | 0 |
333 0 |192|108| TH10 | 10-M Theta from MYJ [K] | 2 | 0 |
334 0 |192|109| Q10 | 10-M Specific humidity from MYJ [kg/kg] | 6 | 0 |
335 0 |192|110| CLAT | Computational Grid Latitude | 5 | 0 |
336 0 |192|111| CLON | Computational Grid Longitude | 5 | 0 |
337 0 |193|192| FCX | Relaxation term for boundary zone | 4 | 0 |
338 0 |193|193| GCX | 2nd Relaxation term for boundary zone | 4 | 0 |
339 0 |193|194|MP_RESTART_STATE|state vect for microphysics restarts | 4 | 0 |
340 0 |193|195|TBPVS_STATE| state for etampnew microphysics | 4 | 0 |
341 0 |193|196|TBPVS0_STATE| state for etampnew microphysics | 4 | 0 |
342 1 | 0 | 1 | SFROFF | Storm surface runoff [kg/m^2] | 4 | 0 |
343 1 | 0 |192| SOILT1 | Temperature inside snow | 2 | 0 |
344 1 | 0 |193| TSNAV | Average snow temperature | 2 | 0 |
345 1 | 0 |194| UDROFF | Baseflow-groundwater runoff [kg/m^2] | 4 | 0 |
346 2 | 0 | 0 | LANDMASK | Land Cover (1=land,2=sea) | 1 | 0 |
347 2 | 0 | 1 | ZNT | Time Varying Roughness length [m] | 6 | 0 |
348 2 | 0 | 4 | VEGFRA | Vegetation [%] | 1 | 0 |
349 2 | 0 | 7 |HGT,SOILHGT,DIST| Terrain Height [m] | 2 | 0 |
350 2 | 0 |192| LU_INDEX | Land Use Index [Cat] | 1 | 0 |
351 2 | 0 |193| CANWAT | Plant Canopy Surface Water [kg/m^2] | 4 | 0 |
352 2 | 0 |194| SNOWC | Snow cover [%] | 1 | 0 |
353 2 | 0 |195| XLAND | Land cover (land=1; sea=0) [fraction] | 1 | 0 |
354 2 | 0 |196| TOPOSTDV | Standard Deviation of topography | 3 | 0 |
355 2 | 0 |197| TOPOSLPX | Sub-gridscale mean topographic slope | 6 | 0 |
356 2 | 0 |198| TOPOSLPY | Sub-gridscale mean topographic slope | 6 | 0 |
357 2 | 0 |200| LANDUSEF | Land use categorical fraction on mass gr | 3 | 0 |
358 2 | 0 |201| SOILCTOP | Top layer soil type as a categ. fraction | 3 | 0 |
359 2 | 0 |202| SOILCBOT | Bot layer soil type as a categ. fraction | 3 | 0 |
360 2 | 0 |203| RMOL | 1./Monin Ob. Length [dimensionless] | 2 | 0 |
361 2 | 0 |204| SHDMAX | Annual MAX veg fraction | 3 | 0 |
362 2 | 0 |205| SHDMIN | Annual MIN veg fraction | 3 | 0 |
363 2 | 0 |206| Z0 | Background Roughness length [m] | 6 | 0 |
364 2 | 0 |207| EMISS | Surface Emissivity | 4 | 0 |
365 2 | 0 |208|VAR_SSO | variance of subgrid-scale orography [m^2]| 3 | 0 |
366 2 | 0 |209|LAP_HGT | Laplacian of orography [m] | 2 | 0 |
367 2 | 0 |210|LAI | Leaf area index [area / area] | 3 | 0 |
368 2 | 0 |211|VAR | Oragraphic Variance | 3 | 0 |
369 2 | 3 | 0 | ISLTYP | Soil Type | 1 | 0 |
370 2 | 3 | 1 |TSLB,ST000010,ST010040,ST040100,ST100200|Soil Temperature|1| 0 |
371 2 | 3 | 2 | SMSTOT | Soil Moisture content [kg/m^2] | 3 | 0 |
372 2 | 3 | 4 | SOILTB | Bottom soil temperature [K] | 2 | 0 |
373 2 | 3 |192| TMN | Ground Reservoir Temperature | 1 | 0 |
374 2 | 3 |192| SOILW | Volumetric soil moisture [fraction] | 4 | 0 |
375 2 | 3 |193| SOILL | Liquid volumetric soil moisture[fraction]| 4 | 0 |
376 2 | 3 |194| SMSTAV | Moisture availability [%] | 4 | 0 |
377 2 | 3 |195| IVGTYP | Vegetation type | 1 | 0 |
378 2 | 3 |196| SOILCAT | Soil Category | 1 | 0 |
379 2 | 3 |197| VEGCAT | Vegetation Category | 1 | 0 |
380 2 | 3 |198| SH2O | Soil liquid water [m^3/m^3] | 3 | 0 |
381 2 | 3 |199| SMOIS | Soil moisture [m^3/m^3] | 3 | 0 |
382 2 | 3 |200| SNOALB | Annual MAX snow albedor in fraction | 4 | 0 |
383 2 | 3 |201| SMFR3D | Soil Ice | 2 | 0 |
384 2 | 3 |202|KEEPFR3DFLAG| Flag - 1. Forzen Soil Yes, 0 - NO | 1 | 0 |
385 2 | 3 |203| CAPG | Heat capacity for soil [j /(K m^3)] | 0 | 0 |
386 2 | 3 |204| SMCREL | Relative Soil Moisture | 2 | 0 |
387 10 | 2 | 0 |XICE,SEAICE| Ice Concentration [fraction] | 1 | 0 |
388 10 | 2 | 1 | ICEDEPTH | Sea Ice Thickness [m] | 3 | 0 |
389 10 | 3 | 0 | SST,SSTSK | Temperature | 2 | 0 |
390 10 | 3 |192|XICEM | Sea Ice Flag - previous step | 0 | 0 |
391 10 | 2 |193|ALBSI | Sea Ice Albedo | 2 | 0 |
392 10 | 2 |194|SNOWSI | Snow Depth on Sea Ice [m] | 2 | 0 |
393 192 |192|192|OM_ML | OM_ML?? | 3 | 0 |
394 192 |192|193|DLF2 | DLF2?? | 3 | 0 |
395 192 |192|194|AODTOT | AODTOT?? | 3 | 0 |
398 # Ind | center | subcenter | Master Tbl Version | Local Tbl Version |
399 #-----+--------+-----------+--------------------+-------------------+
400 -1 | 252 | 255 | 1 | 1 |
402 # Another table could go here.