Update version info for release v4.6.1 (#2122)
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / atm_radau5.f
blob2b3a6042afc61f5e284f7f5dadd7ef1d2ba13e55
1 SUBROUTINE INTEGRATE( TIN, TOUT )
3 IMPLICIT KPP_REAL (A-H,O-Z)
4 INCLUDE 'KPP_ROOT_Parameters.h'
5 INCLUDE 'KPP_ROOT_Global.h'
7 C TIN - Start Time
8 KPP_REAL TIN
9 C TOUT - End Time
10 KPP_REAL TOUT, H
11 SAVE H
12 DATA H /0.0d0/
13 INTEGER Nfun, Njac, Nstp, Nacc, Nrej, Ndec, Nsol
14 SAVE Nstp, Nacc, Nrej
15 DATA Nstp /0/
16 DATA Nacc /0/
17 DATA Nrej /0/
18 INTEGER i
20 PARAMETER (LWORK=5*NVAR*NVAR+12*NVAR+20,LIWORK=3*NVAR+20)
21 PARAMETER (LRCONT=4*NVAR+4)
23 KPP_REAL WORK(LWORK), RPAR(1)
24 INTEGER IWORK(LIWORK), IPAR(1)
25 COMMON /CONT/ ICONT(4),RCONT(LRCONT)
26 EXTERNAL FUNC_CHEM,JAC_CHEM,SOLOUT
29 ITOL=1 ! --- VECTOR TOLERANCES
30 IJAC=1 ! --- COMPUTE THE JACOBIAN ANALYTICALLY
31 IMAS=0 ! --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
32 IOUT=0 ! --- OUTPUT ROUTINE IS NOT USED DURING INTEGRATION
33 MLJAC=NVAR ! --- JACOBIAN IS A FULL MATRIX
34 MUJAC=NVAR ! --- JACOBIAN IS A FULL MATRIX
35 MLMAS=NVAR ! --- JACOBIAN IS A FULL MATRIX
36 MUMAS=NVAR ! --- JACOBIAN IS A FULL MATRIX
38 DO i=1,20
39 IWORK(i) = 0
40 WORK(i) = 0.D0
41 ENDDO
43 IWORK(3) = 8 ! Max no. of Newton iterations
44 IWORK(4) = 0 ! Starting values for Newton are interpolated (0) or zero (1)
45 IWORK(8) = 2 ! Gustaffson (1) or classic(2) controller
46 WORK(2) = 0.9 ! Safety factor
48 CALL RADAU5(NVAR,FUNC_CHEM,TIN,VAR,TOUT,H,
49 & RTOL,ATOL,ITOL,
50 & JAC_CHEM ,IJAC,MLJAC,MUJAC,
51 & FUNC_CHEM ,IMAS,MLMAS,MUMAS,
52 & SOLOUT,IOUT,
53 & WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)
56 Nfun = Nfun + IWORK(14)
57 Njac = Njac + IWORK(15)
58 Nstp = Nstp + IWORK(16)
59 Nacc = Nacc + IWORK(17)
60 Nrej = Nrej + IWORK(18)
61 Ndec = Ndec + IWORK(19)
62 Nsol = Nsol + IWORK(20)
64 print("('Nstep=',I5,' Nacc=',I6,' Nrej=',I6)"),Nstp, Nacc, Nrej
66 IF (IDID.LT.0) THEN
67 print *,'RADAU: Unsucessfull exit at T=',
68 & TIN,' (IDID=',IDID,')'
69 ENDIF
71 RETURN
72 END
75 SUBROUTINE RADAU5(N,FCN,X,Y,XEND,H,
76 & RelTol,AbsTol,ITOL,
77 & JAC ,IJAC,MLJAC,MUJAC,
78 & MAS ,IMAS,MLMAS,MUMAS,
79 & SOLOUT,IOUT,
80 & WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)
81 C ----------------------------------------------------------
82 C NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
83 C SYSTEM OF FIRST 0RDER ORDINARY DIFFERENTIAL EQUATIONS
84 C M*Y'=F(X,Y).
85 C THE SYSTEM CAN BE (LINEARLY) IMPLICIT (MASS-MATRIX M .NE. I)
86 C OR EXPLICIT (M=I).
87 C THE METHOD USED IS AN IMPLICIT RUNGE-KUTTA METHOD (RADAU IIA)
88 C OF ORDER 5 WITH STEP SIZE CONTROL AND CONTINUOUS OUTPUT.
89 C C.F. SECTION IV.8
91 C AUTHORS: E. HAIRER AND G. WANNER
92 C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
93 C CH-1211 GENEVE 24, SWITZERLAND
94 C E-MAIL: HAIRER@DIVSUN.UNIGE.CH, WANNER@DIVSUN.UNIGE.CH
96 C THIS CODE IS PART OF THE BOOK:
97 C E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
98 C EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
99 C SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS 14,
100 C SPRINGER-VERLAG (1991)
102 C VERSION OF SEPTEMBER 30, 1995
104 C INPUT PARAMETERS
105 C ----------------
106 C N DIMENSION OF THE SYSTEM
108 C FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
109 C VALUE OF F(X,Y):
110 C SUBROUTINE FCN(N,X,Y,F,RPAR,IPAR)
111 C KPP_REAL X,Y(N),F(N)
112 C F(1)=... ETC.
113 C RPAR, IPAR (SEE BELOW)
115 C X INITIAL X-VALUE
117 C Y(N) INITIAL VALUES FOR Y
119 C XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)
121 C H INITIAL STEP SIZE GUESS;
122 C FOR STIFF EQUATIONS WITH INITIAL TRANSIENT,
123 C H=1.D0/(NORM OF F'), USUALLY 1.D-3 OR 1.D-5, IS GOOD.
124 C THIS CHOICE IS NOT VERY IMPORTANT, THE STEP SIZE IS
125 C QUICKLY ADAPTED. (IF H=0.D0, THE CODE PUTS H=1.D-6).
127 C RelTol,AbsTol RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY
128 C CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.
130 C ITOL SWITCH FOR RelTol AND AbsTol:
131 C ITOL=0: BOTH RelTol AND AbsTol ARE SCALARS.
132 C THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
133 C Y(I) BELOW RelTol*ABS(Y(I))+AbsTol
134 C ITOL=1: BOTH RelTol AND AbsTol ARE VECTORS.
135 C THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW
136 C RelTol(I)*ABS(Y(I))+AbsTol(I).
138 C JAC NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
139 C THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO Y
140 C (THIS ROUTINE IS ONLY CALLED IF IJAC=1; SUPPLY
141 C A DUMMY SUBROUTINE IN THE CASE IJAC=0).
142 C FOR IJAC=1, THIS SUBROUTINE MUST HAVE THE FORM
143 C SUBROUTINE JAC(N,X,Y,DFY,LDFY,RPAR,IPAR)
144 C KPP_REAL X,Y(N),DFY(LDFY,N)
145 C DFY(1,1)= ...
146 C LDFY, THE COLUMN-LENGTH OF THE ARRAY, IS
147 C FURNISHED BY THE CALLING PROGRAM.
148 C IF (MLJAC.EQ.N) THE JACOBIAN IS SUPPOSED TO
149 C BE FULL AND THE PARTIAL DERIVATIVES ARE
150 C STORED IN DFY AS
151 C DFY(I,J) = PARTIAL F(I) / PARTIAL Y(J)
152 C ELSE, THE JACOBIAN IS TAKEN AS BANDED AND
153 C THE PARTIAL DERIVATIVES ARE STORED
154 C DIAGONAL-WISE AS
155 C DFY(I-J+MUJAC+1,J) = PARTIAL F(I) / PARTIAL Y(J).
157 C IJAC SWITCH FOR THE COMPUTATION OF THE JACOBIAN:
158 C IJAC=0: JACOBIAN IS COMPUTED INTERNALLY BY FINITE
159 C DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED.
160 C IJAC=1: JACOBIAN IS SUPPLIED BY SUBROUTINE JAC.
162 C MLJAC SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
163 C MLJAC=N: JACOBIAN IS A FULL MATRIX. THE LINEAR
164 C ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
165 C 0<=MLJAC<N: MLJAC IS THE LOWER BANDWITH OF JACOBIAN
166 C MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
167 C THE MAIN DIAGONAL).
169 C MUJAC UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON-
170 C ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
171 C NEED NOT BE DEFINED IF MLJAC=N.
173 C ---- MAS,IMAS,MLMAS, AND MUMAS HAVE ANALOG MEANINGS -----
174 C ---- FOR THE "MASS MATRIX" (THE MATRIX "M" OF SECTION IV.8): -
176 C MAS NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE MASS-
177 C MATRIX M.
178 C IF IMAS=0, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
179 C MATRIX AND NEEDS NOT TO BE DEFINED;
180 C SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
181 C IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
182 C SUBROUTINE MAS(N,AM,LMAS,RPAR,IPAR)
183 C KPP_REAL AM(LMAS,N)
184 C AM(1,1)= ....
185 C IF (MLMAS.EQ.N) THE MASS-MATRIX IS STORED
186 C AS FULL MATRIX LIKE
187 C AM(I,J) = M(I,J)
188 C ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
189 C DIAGONAL-WISE AS
190 C AM(I-J+MUMAS+1,J) = M(I,J).
192 C IMAS GIVES INFORMATION ON THE MASS-MATRIX:
193 C IMAS=0: M IS SUPPOSED TO BE THE IDENTITY
194 C MATRIX, MAS IS NEVER CALLED.
195 C IMAS=1: MASS-MATRIX IS SUPPLIED.
197 C MLMAS SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
198 C MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
199 C ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
200 C 0<=MLMAS<N: MLMAS IS THE LOWER BANDWITH OF THE
201 C MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
202 C THE MAIN DIAGONAL).
203 C MLMAS IS SUPPOSED TO BE .LE. MLJAC.
205 C MUMAS UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-
206 C ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
207 C NEED NOT BE DEFINED IF MLMAS=N.
208 C MUMAS IS SUPPOSED TO BE .LE. MUJAC.
210 C SOLOUT NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
211 C NUMERICAL SOLUTION DURING INTEGRATION.
212 C IF IOUT=1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
213 C SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
214 C IT MUST HAVE THE FORM
215 C SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,
216 C RPAR,IPAR,IRTRN)
217 C KPP_REAL X,Y(N),CONT(LRC)
218 C ....
219 C SOLOUT FURNISHES THE SOLUTION "Y" AT THE NR-TH
220 C GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
221 C THE FIRST GRID-POINT).
222 C "XOLD" IS THE PRECEEDING GRID-POINT.
223 C "IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
224 C IS SET <0, RADAU5 RETURNS TO THE CALLING PROGRAM.
226 C ----- CONTINUOUS OUTPUT: -----
227 C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
228 C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
229 C THE FUNCTION
230 C >>> CONTR5(I,S,CONT,LRC) <<<
231 C WHICH PROVIDES AN APPROXIMATION TO THE I-TH
232 C COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
233 C S SHOULD LIE IN THE INTERVAL [XOLD,X].
234 C DO NOT CHANGE THE ENTRIES OF CONT(LRC), IF THE
235 C DENSE OUTPUT FUNCTION IS USED.
237 C IOUT SWITCH FOR CALLING THE SUBROUTINE SOLOUT:
238 C IOUT=0: SUBROUTINE IS NEVER CALLED
239 C IOUT=1: SUBROUTINE IS AVAILABLE FOR OUTPUT.
241 C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
242 C WORK(1), WORK(2),.., WORK(20) SERVE AS PARAMETERS
243 C FOR THE CODE. FOR STANDARD USE OF THE CODE
244 C WORK(1),..,WORK(20) MUST BE SET TO ZERO BEFORE
245 C CALLING. SEE BELOW FOR A MORE SOPHISTICATED USE.
246 C WORK(21),..,WORK(LWORK) SERVE AS WORKING SPACE
247 C FOR ALL VECTORS AND MATRICES.
248 C "LWORK" MUST BE AT LEAST
249 C N*(LJAC+LMAS+3*LE+12)+20
250 C WHERE
251 C LJAC=N IF MLJAC=N (FULL JACOBIAN)
252 C LJAC=MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.)
253 C AND
254 C LMAS=0 IF IMAS=0
255 C LMAS=N IF IMAS=1 AND MLMAS=N (FULL)
256 C LMAS=MLMAS+MUMAS+1 IF MLMAS<N (BANDED MASS-M.)
257 C AND
258 C LE=N IF MLJAC=N (FULL JACOBIAN)
259 C LE=2*MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.)
261 C IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
262 C MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
263 C STORAGE REQUIREMENT IS
264 C LWORK = 4*N*N+12*N+20.
265 C IF IWORK(9)=M1>0 THEN "LWORK" MUST BE AT LEAST
266 C N*(LJAC+12)+(N-M1)*(LMAS+3*LE)+20
267 C WHERE IN THE DEFINITIONS OF LJAC, LMAS AND LE THE
268 C NUMBER N CAN BE REPLACED BY N-M1.
270 C LWORK DECLARED LENGTH OF ARRAY "WORK".
272 C IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK".
273 C IWORK(1),IWORK(2),...,IWORK(20) SERVE AS PARAMETERS
274 C FOR THE CODE. FOR STANDARD USE, SET IWORK(1),..,
275 C IWORK(20) TO ZERO BEFORE CALLING.
276 C IWORK(21),...,IWORK(LIWORK) SERVE AS WORKING AREA.
277 C "LIWORK" MUST BE AT LEAST 3*N+20.
279 C LIWORK DECLARED LENGTH OF ARRAY "IWORK".
281 C RPAR, IPAR REAL AND INTEGER PARAMETERS (OR PARAMETER ARRAYS) WHICH
282 C CAN BE USED FOR COMMUNICATION BETWEEN YOUR CALLING
283 C PROGRAM AND THE FCN, JAC, MAS, SOLOUT SUBROUTINES.
285 C ----------------------------------------------------------------------
287 C SOPHISTICATED SETTING OF PARAMETERS
288 C -----------------------------------
289 C SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK
290 C WELL. THEY MAY BE DEFINED BY SETTING WORK(1),...
291 C AS WELL AS IWORK(1),... DIFFERENT FROM ZERO.
292 C FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
294 C IWORK(1) IF IWORK(1).NE.0, THE CODE TRANSFORMS THE JACOBIAN
295 C MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY
296 C ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN.
297 C IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC<N)
298 C AND NOT FOR IMPLICIT SYSTEMS (IMAS=1).
300 C IWORK(2) THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS.
301 C THE DEFAULT VALUE (FOR IWORK(2)=0) IS 100000.
303 C IWORK(3) THE MAXIMUM NUMBER OF NEWTON ITERATIONS FOR THE
304 C SOLUTION OF THE IMPLICIT SYSTEM IN EACH STEP.
305 C THE DEFAULT VALUE (FOR IWORK(3)=0) IS 7.
307 C IWORK(4) IF IWORK(4).EQ.0 THE EXTRAPOLATED COLLOCATION SOLUTION
308 C IS TAKEN AS STARTING VALUE FOR NEWTON'S METHOD.
309 C IF IWORK(4).NE.0 ZERO STARTING VALUES ARE USED.
310 C THE LATTER IS RECOMMENDED IF NEWTON'S METHOD HAS
311 C DIFFICULTIES WITH CONVERGENCE (THIS IS THE CASE WHEN
312 C NSTEP IS LARGER THAN NACCPT + NREJCT; SEE OUTPUT PARAM.).
313 C DEFAULT IS IWORK(4)=0.
315 C THE FOLLOWING 3 PARAMETERS ARE IMPORTANT FOR
316 C DIFFERENTIAL-ALGEBRAIC SYSTEMS OF INDEX > 1.
317 C THE FUNCTION-SUBROUTINE SHOULD BE WRITTEN SUCH THAT
318 C THE INDEX 1,2,3 VARIABLES APPEAR IN THIS ORDER.
319 C IN ESTIMATING THE ERROR THE INDEX 2 VARIABLES ARE
320 C MULTIPLIED BY H, THE INDEX 3 VARIABLES BY H**2.
322 C IWORK(5) DIMENSION OF THE INDEX 1 VARIABLES (MUST BE > 0). FOR
323 C ODE'S THIS EQUALS THE DIMENSION OF THE SYSTEM.
324 C DEFAULT IWORK(5)=N.
326 C IWORK(6) DIMENSION OF THE INDEX 2 VARIABLES. DEFAULT IWORK(6)=0.
328 C IWORK(7) DIMENSION OF THE INDEX 3 VARIABLES. DEFAULT IWORK(7)=0.
330 C IWORK(8) SWITCH FOR STEP SIZE STRATEGY
331 C IF IWORK(8).EQ.1 MOD. PREDICTIVE CONTROLLER (GUSTAFSSON)
332 C IF IWORK(8).EQ.2 CLASSICAL STEP SIZE CONTROL
333 C THE DEFAULT VALUE (FOR IWORK(8)=0) IS IWORK(8)=1.
334 C THE CHOICE IWORK(8).EQ.1 SEEMS TO PRODUCE SAFER RESULTS;
335 C FOR SIMPLE PROBLEMS, THE CHOICE IWORK(8).EQ.2 PRODUCES
336 C OFTEN SLIGHTLY FASTER RUNS
338 C IF THE DIFFERENTIAL SYSTEM HAS THE SPECIAL STRUCTURE THAT
339 C Y(I)' = Y(I+M2) FOR I=1,...,M1,
340 C WITH M1 A MULTIPLE OF M2, A SUBSTANTIAL GAIN IN COMPUTERTIME
341 C CAN BE ACHIEVED BY SETTING THE FOLLOWING TWO PARAMETERS. E.G.,
342 C FOR SECOND ORDER SYSTEMS P'=V, V'=G(P,V), WHERE P AND V ARE
343 C VECTORS OF DIMENSION N/2, ONE HAS TO PUT M1=M2=N/2.
344 C FOR M1>0 SOME OF THE INPUT PARAMETERS HAVE DIFFERENT MEANINGS:
345 C - JAC: ONLY THE ELEMENTS OF THE NON-TRIVIAL PART OF THE
346 C JACOBIAN HAVE TO BE STORED
347 C IF (MLJAC.EQ.N-M1) THE JACOBIAN IS SUPPOSED TO BE FULL
348 C DFY(I,J) = PARTIAL F(I+M1) / PARTIAL Y(J)
349 C FOR I=1,N-M1 AND J=1,N.
350 C ELSE, THE JACOBIAN IS BANDED ( M1 = M2 * MM )
351 C DFY(I-J+MUJAC+1,J+K*M2) = PARTIAL F(I+M1) / PARTIAL Y(J+K*M2)
352 C FOR I=1,MLJAC+MUJAC+1 AND J=1,M2 AND K=0,MM.
353 C - MLJAC: MLJAC=N-M1: IF THE NON-TRIVIAL PART OF THE JACOBIAN IS FULL
354 C 0<=MLJAC<N-M1: IF THE (MM+1) SUBMATRICES (FOR K=0,MM)
355 C PARTIAL F(I+M1) / PARTIAL Y(J+K*M2), I,J=1,M2
356 C ARE BANDED, MLJAC IS THE MAXIMAL LOWER BANDWIDTH
357 C OF THESE MM+1 SUBMATRICES
358 C - MUJAC: MAXIMAL UPPER BANDWIDTH OF THESE MM+1 SUBMATRICES
359 C NEED NOT BE DEFINED IF MLJAC=N-M1
360 C - MAS: IF IMAS=0 THIS MATRIX IS ASSUMED TO BE THE IDENTITY AND
361 C NEED NOT BE DEFINED. SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
362 C IT IS ASSUMED THAT ONLY THE ELEMENTS OF RIGHT LOWER BLOCK OF
363 C DIMENSION N-M1 DIFFER FROM THAT OF THE IDENTITY MATRIX.
364 C IF (MLMAS.EQ.N-M1) THIS SUBMATRIX IS SUPPOSED TO BE FULL
365 C AM(I,J) = M(I+M1,J+M1) FOR I=1,N-M1 AND J=1,N-M1.
366 C ELSE, THE MASS MATRIX IS BANDED
367 C AM(I-J+MUMAS+1,J) = M(I+M1,J+M1)
368 C - MLMAS: MLMAS=N-M1: IF THE NON-TRIVIAL PART OF M IS FULL
369 C 0<=MLMAS<N-M1: LOWER BANDWIDTH OF THE MASS MATRIX
370 C - MUMAS: UPPER BANDWIDTH OF THE MASS MATRIX
371 C NEED NOT BE DEFINED IF MLMAS=N-M1
373 C IWORK(9) THE VALUE OF M1. DEFAULT M1=0.
375 C IWORK(10) THE VALUE OF M2. DEFAULT M2=M1.
377 C ----------
379 C WORK(1) UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
381 C WORK(2) THE SAFETY FACTOR IN STEP SIZE PREDICTION,
382 C DEFAULT 0.9D0.
384 C WORK(3) DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
385 C INCREASE WORK(3), TO 0.1 SAY, WHEN JACOBIAN EVALUATIONS
386 C ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER
387 C (0.001D0, SAY). NEGATIV WORK(3) FORCES THE CODE TO
388 C COMPUTE THE JACOBIAN AFTER EVERY ACCEPTED STEP.
389 C DEFAULT 0.001D0.
391 C WORK(4) STOPPING CRITERION FOR NEWTON'S METHOD, USUALLY CHOSEN <1.
392 C SMALLER VALUES OF WORK(4) MAKE THE CODE SLOWER, BUT SAFER.
393 C DEFAULT 0.03D0.
395 C WORK(5) AND WORK(6) : IF WORK(5) < HNEW/HOLD < WORK(6), THEN THE
396 C STEP SIZE IS NOT CHANGED. THIS SAVES, TOGETHER WITH A
397 C LARGE WORK(3), LU-DECOMPOSITIONS AND COMPUTING TIME FOR
398 C LARGE SYSTEMS. FOR SMALL SYSTEMS ONE MAY HAVE
399 C WORK(5)=1.D0, WORK(6)=1.2D0, FOR LARGE FULL SYSTEMS
400 C WORK(5)=0.99D0, WORK(6)=2.D0 MIGHT BE GOOD.
401 C DEFAULTS WORK(5)=1.D0, WORK(6)=1.2D0 .
403 C WORK(7) MAXIMAL STEP SIZE, DEFAULT XEND-X.
405 C WORK(8), WORK(9) PARAMETERS FOR STEP SIZE SELECTION
406 C THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
407 C WORK(8) <= HNEW/HOLD <= WORK(9)
408 C DEFAULT VALUES: WORK(8)=0.2D0, WORK(9)=8.D0
410 C-----------------------------------------------------------------------
412 C OUTPUT PARAMETERS
413 C -----------------
414 C X X-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED
415 C (AFTER SUCCESSFUL RETURN X=XEND).
417 C Y(N) NUMERICAL SOLUTION AT X
419 C H PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP
421 C IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
422 C IDID= 1 COMPUTATION SUCCESSFUL,
423 C IDID= 2 COMPUT. SUCCESSFUL (INTERRUPTED BY SOLOUT)
424 C IDID=-1 INPUT IS NOT CONSISTENT,
425 C IDID=-2 LARGER NMAX IS NEEDED,
426 C IDID=-3 STEP SIZE BECOMES TOO SMALL,
427 C IDID=-4 MATRIX IS REPEATEDLY SINGULAR.
429 C IWORK(14) NFCN NUMBER OF FUNCTION EVALUATIONS (THOSE FOR NUMERICAL
430 C EVALUATION OF THE JACOBIAN ARE NOT COUNTED)
431 C IWORK(15) NJAC NUMBER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY
432 C OR NUMERICALLY)
433 C IWORK(16) NSTEP NUMBER OF COMPUTED STEPS
434 C IWORK(17) NACCPT NUMBER OF ACCEPTED STEPS
435 C IWORK(18) NREJCT NUMBER OF REJECTED STEPS (DUE TO ERROR TEST),
436 C (STEP REJECTIONS IN THE FIRST STEP ARE NOT COUNTED)
437 C IWORK(19) NDEC NUMBER OF LU-DECOMPOSITIONS OF BOTH MATRICES
438 C IWORK(20) NSOL NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS, OF BOTH
439 C SYSTEMS; THE NSTEP FORWARD-BACKWARD SUBSTITUTIONS,
440 C NEEDED FOR STEP SIZE SELECTION, ARE NOT COUNTED
441 C-----------------------------------------------------------------------
442 C *** *** *** *** *** *** *** *** *** *** *** *** ***
443 C DECLARATIONS
444 C *** *** *** *** *** *** *** *** *** *** *** *** ***
445 IMPLICIT KPP_REAL (A-H,O-Z)
446 DIMENSION Y(N),AbsTol(*),RelTol(*),WORK(LWORK),IWORK(LIWORK)
447 DIMENSION RPAR(*),IPAR(*)
448 LOGICAL IMPLCT,JBAND,ARRET,STARTN,PRED
449 EXTERNAL FCN,JAC,MAS,SOLOUT
450 C *** *** *** *** *** *** ***
451 C SETTING THE PARAMETERS
452 C *** *** *** *** *** *** ***
453 NFCN=0
454 NJAC=0
455 NSTEP=0
456 NACCPT=0
457 NREJCT=0
458 NDEC=0
459 NSOL=0
460 ARRET=.FALSE.
461 C -------- NMAX , THE MAXIMAL NUMBER OF STEPS -----
462 IF (IWORK(2).EQ.0) THEN
463 NMAX=100000
464 ELSE
465 NMAX=IWORK(2)
466 IF (NMAX.LE.0) THEN
467 WRITE(6,*)' WRONG INPUT IWORK(2)=',IWORK(2)
468 ARRET=.TRUE.
469 END IF
470 END IF
471 C -------- NIT MAXIMAL NUMBER OF NEWTON ITERATIONS
472 IF (IWORK(3).EQ.0) THEN
473 NIT=7
474 ELSE
475 NIT=IWORK(3)
476 IF (NIT.LE.0) THEN
477 WRITE(6,*)' CURIOUS INPUT IWORK(3)=',IWORK(3)
478 ARRET=.TRUE.
479 END IF
480 END IF
481 C -------- STARTN SWITCH FOR STARTING VALUES OF NEWTON ITERATIONS
482 IF(IWORK(4).EQ.0)THEN
483 STARTN=.FALSE.
484 ELSE
485 STARTN=.TRUE.
486 END IF
487 C -------- PARAMETER FOR DIFFERENTIAL-ALGEBRAIC COMPONENTS
488 NIND1=IWORK(5)
489 NIND2=IWORK(6)
490 NIND3=IWORK(7)
491 IF (NIND1.EQ.0) NIND1=N
492 IF (NIND1+NIND2+NIND3.NE.N) THEN
493 WRITE(6,*)' CURIOUS INPUT FOR IWORK(5,6,7)=',NIND1,NIND2,NIND3
494 ARRET=.TRUE.
495 END IF
496 C -------- PRED STEP SIZE CONTROL
497 IF(IWORK(8).LE.1)THEN
498 PRED=.TRUE.
499 ELSE
500 PRED=.FALSE.
501 END IF
502 C -------- PARAMETER FOR SECOND ORDER EQUATIONS
503 M1=IWORK(9)
504 M2=IWORK(10)
505 NM1=N-M1
506 IF (M1.EQ.0) M2=N
507 IF (M2.EQ.0) M2=M1
508 IF (M1.LT.0.OR.M2.LT.0.OR.M1+M2.GT.N) THEN
509 WRITE(6,*)' CURIOUS INPUT FOR IWORK(9,10)=',M1,M2
510 ARRET=.TRUE.
511 END IF
512 C -------- UROUND SMALLEST NUMBER SATISFYING 1.0D0+UROUND>1.0D0
513 IF (WORK(1).EQ.0.0D0) THEN
514 UROUND=1.0D-16
515 ELSE
516 UROUND=WORK(1)
517 IF (UROUND.LE.1.0D-19.OR.UROUND.GE.1.0D0) THEN
518 WRITE(6,*)' COEFFICIENTS HAVE 20 DIGITS, UROUND=',WORK(1)
519 ARRET=.TRUE.
520 END IF
521 END IF
522 C --------- SAFE SAFETY FACTOR IN STEP SIZE PREDICTION
523 IF (WORK(2).EQ.0.0D0) THEN
524 SAFE=0.9D0
525 ELSE
526 SAFE=WORK(2)
527 IF (SAFE.LE.0.001D0.OR.SAFE.GE.1.0D0) THEN
528 WRITE(6,*)' CURIOUS INPUT FOR WORK(2)=',WORK(2)
529 ARRET=.TRUE.
530 END IF
531 END IF
532 C ------ THET DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
533 IF (WORK(3).EQ.0.D0) THEN
534 THET=0.001D0
535 ELSE
536 THET=WORK(3)
537 IF (THET.LE.0.0D0.OR.THET.GE.1.0D0) THEN
538 WRITE(6,*)' CURIOUS INPUT FOR WORK(3)=',WORK(3)
539 ARRET=.TRUE.
540 END IF
541 END IF
542 C --- FNEWT STOPPING CRIERION FOR NEWTON'S METHOD, USUALLY CHOSEN <1.
543 IF (WORK(4).EQ.0.D0) THEN
544 FNEWT=0.03D0
545 ELSE
546 FNEWT=WORK(4)
547 IF (FNEWT.LE.UROUND) THEN
548 WRITE(6,*)' CURIOUS INPUT FOR WORK(4)=',WORK(4)
549 ARRET=.TRUE.
550 END IF
551 END IF
552 C --- QUOT1 AND QUOT2: IF QUOT1 < HNEW/HOLD < QUOT2, STEP SIZE = CONST.
553 IF (WORK(5).EQ.0.D0) THEN
554 QUOT1=1.D0
555 ELSE
556 QUOT1=WORK(5)
557 END IF
558 IF (WORK(6).EQ.0.D0) THEN
559 QUOT2=1.2D0
560 ELSE
561 QUOT2=WORK(6)
562 END IF
563 IF (QUOT1.GT.1.0D0.OR.QUOT2.LT.1.0D0) THEN
564 WRITE(6,*)' CURIOUS INPUT FOR WORK(5,6)=',QUOT1,QUOT2
565 ARRET=.TRUE.
566 END IF
567 C -------- MAXIMAL STEP SIZE
568 IF (WORK(7).EQ.0.D0) THEN
569 HMAX=XEND-X
570 ELSE
571 HMAX=WORK(7)
572 END IF
573 C ------- FACL,FACR PARAMETERS FOR STEP SIZE SELECTION
574 IF(WORK(8).EQ.0.D0)THEN
575 FACL=5.D0
576 ELSE
577 FACL=1.D0/WORK(8)
578 END IF
579 IF(WORK(9).EQ.0.D0)THEN
580 FACR=1.D0/8.0D0
581 ELSE
582 FACR=1.D0/WORK(9)
583 END IF
584 IF (FACL.LT.1.0D0.OR.FACR.GT.1.0D0) THEN
585 WRITE(6,*)' CURIOUS INPUT WORK(8,9)=',WORK(8),WORK(9)
586 ARRET=.TRUE.
587 END IF
588 C --------- CHECK IF TOLERANCES ARE O.K.
589 IF (ITOL.EQ.0) THEN
590 IF (AbsTol(1).LE.0.D0.OR.RelTol(1).LE.10.D0*UROUND) THEN
591 WRITE (6,*) ' TOLERANCES ARE TOO SMALL'
592 ARRET=.TRUE.
593 END IF
594 ELSE
595 DO I=1,N
596 IF (AbsTol(I).LE.0.D0.OR.RelTol(I).LE.10.D0*UROUND) THEN
597 WRITE (6,*) ' TOLERANCES(',I,') ARE TOO SMALL'
598 ARRET=.TRUE.
599 END IF
600 END DO
601 END IF
602 C *** *** *** *** *** *** *** *** *** *** *** *** ***
603 C COMPUTATION OF ARRAY ENTRIES
604 C *** *** *** *** *** *** *** *** *** *** *** *** ***
605 C ---- IMPLICIT, BANDED OR NOT ?
606 IMPLCT=IMAS.NE.0
607 JBAND=MLJAC.LT.NM1
608 C -------- COMPUTATION OF THE ROW-DIMENSIONS OF THE 2-ARRAYS ---
609 C -- JACOBIAN AND MATRICES E1, E2
610 IF (JBAND) THEN
611 LDJAC=MLJAC+MUJAC+1
612 LDE1=MLJAC+LDJAC
613 ELSE
614 MLJAC=NM1
615 MUJAC=NM1
616 LDJAC=NM1
617 LDE1=NM1
618 END IF
619 C -- MASS MATRIX
620 IF (IMPLCT) THEN
621 IF (MLMAS.NE.NM1) THEN
622 LDMAS=MLMAS+MUMAS+1
623 IF (JBAND) THEN
624 IJOB=4
625 ELSE
626 IJOB=3
627 END IF
628 ELSE
629 LDMAS=NM1
630 IJOB=5
631 END IF
632 C ------ BANDWITH OF "MAS" NOT SMALLER THAN BANDWITH OF "JAC"
633 IF (MLMAS.GT.MLJAC.OR.MUMAS.GT.MUJAC) THEN
634 WRITE (6,*) 'BANDWITH OF "MAS" NOT SMALLER THAN BANDWITH OF
635 & "JAC"'
636 ARRET=.TRUE.
637 END IF
638 ELSE
639 LDMAS=0
640 IF (JBAND) THEN
641 IJOB=2
642 ELSE
643 IJOB=1
644 IF (N.GT.2.AND.IWORK(1).NE.0) IJOB=7
645 END IF
646 END IF
647 LDMAS2=MAX(1,LDMAS)
648 C ------ HESSENBERG OPTION ONLY FOR EXPLICIT EQU. WITH FULL JACOBIAN
649 IF ((IMPLCT.OR.JBAND).AND.IJOB.EQ.7) THEN
650 WRITE(6,*)' HESSENBERG OPTION ONLY FOR EXPLICIT EQUATIONS WITH
651 &FULL JACOBIAN'
652 ARRET=.TRUE.
653 END IF
654 C ------- PREPARE THE ENTRY-POINTS FOR THE ARRAYS IN WORK -----
655 IEZ1=21
656 IEZ2=IEZ1+N
657 IEZ3=IEZ2+N
658 IEY0=IEZ3+N
659 IESCAL=IEY0+N
660 IEF1=IESCAL+N
661 IEF2=IEF1+N
662 IEF3=IEF2+N
663 IECON=IEF3+N
664 IEJAC=IECON+4*N
665 IEMAS=IEJAC+N*LDJAC
666 IEE1=IEMAS+NM1*LDMAS
667 IEE2R=IEE1+NM1*LDE1
668 IEE2I=IEE2R+NM1*LDE1
669 C ------ TOTAL STORAGE REQUIREMENT -----------
670 ISTORE=IEE2I+NM1*LDE1-1
671 IF(ISTORE.GT.LWORK)THEN
672 WRITE(6,*)' INSUFFICIENT STORAGE FOR WORK, MIN. LWORK=',ISTORE
673 ARRET=.TRUE.
674 END IF
675 C ------- ENTRY POINTS FOR INTEGER WORKSPACE -----
676 IEIP1=21
677 IEIP2=IEIP1+NM1
678 IEIPH=IEIP2+NM1
679 C --------- TOTAL REQUIREMENT ---------------
680 ISTORE=IEIPH+NM1-1
681 IF (ISTORE.GT.LIWORK) THEN
682 WRITE(6,*)' INSUFF. STORAGE FOR IWORK, MIN. LIWORK=',ISTORE
683 ARRET=.TRUE.
684 END IF
685 C ------ WHEN A FAIL HAS OCCURED, WE RETURN WITH IDID=-1
686 IF (ARRET) THEN
687 IDID=-1
688 RETURN
689 END IF
690 C -------- CALL TO CORE INTEGRATOR ------------
691 CALL RADCOR(N,FCN,X,Y,XEND,HMAX,H,RelTol,AbsTol,ITOL,
692 & JAC,IJAC,MLJAC,MUJAC,MAS,MLMAS,MUMAS,SOLOUT,IOUT,IDID,
693 & NMAX,UROUND,SAFE,THET,FNEWT,QUOT1,QUOT2,NIT,IJOB,STARTN,
694 & NIND1,NIND2,NIND3,PRED,FACL,FACR,M1,M2,NM1,
695 & IMPLCT,JBAND,LDJAC,LDE1,LDMAS2,WORK(IEZ1),WORK(IEZ2),
696 & WORK(IEZ3),WORK(IEY0),WORK(IESCAL),WORK(IEF1),WORK(IEF2),
697 & WORK(IEF3),WORK(IEJAC),WORK(IEE1),WORK(IEE2R),WORK(IEE2I),
698 & WORK(IEMAS),IWORK(IEIP1),IWORK(IEIP2),IWORK(IEIPH),
699 & WORK(IECON),NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL,RPAR,IPAR)
700 IWORK(14)=NFCN
701 IWORK(15)=NJAC
702 IWORK(16)=NSTEP
703 IWORK(17)=NACCPT
704 IWORK(18)=NREJCT
705 IWORK(19)=NDEC
706 IWORK(20)=NSOL
707 C ----------- RETURN -----------
708 RETURN
711 C END OF SUBROUTINE RADAU5
713 C ***********************************************************
715 SUBROUTINE RADCOR(N,FCN,X,Y,XEND,HMAX,H,RelTol,AbsTol,ITOL,
716 & JAC,IJAC,MLJAC,MUJAC,MAS,MLMAS,MUMAS,SOLOUT,IOUT,IDID,
717 & NMAX,UROUND,SAFE,THET,FNEWT,QUOT1,QUOT2,NIT,IJOB,STARTN,
718 & NIND1,NIND2,NIND3,PRED,FACL,FACR,M1,M2,NM1,
719 & IMPLCT,BANDED,LDJAC,LDE1,LDMAS,Z1,Z2,Z3,
720 & Y0,SCAL,F1,F2,F3,FJAC,E1,E2R,E2I,FMAS,IP1,IP2,IPHES,
721 & CONT,NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL,RPAR,IPAR)
722 C ----------------------------------------------------------
723 C CORE INTEGRATOR FOR RADAU5
724 C PARAMETERS SAME AS IN RADAU5 WITH WORKSPACE ADDED
725 C ----------------------------------------------------------
726 C DECLARATIONS
727 C ----------------------------------------------------------
728 IMPLICIT KPP_REAL (A-H,O-Z)
729 DIMENSION Y(N),Z1(N),Z2(N),Z3(N),Y0(N),SCAL(N),F1(N),F2(N),F3(N)
730 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),CONT(4*N)
731 DIMENSION E1(LDE1,NM1),E2R(LDE1,NM1),E2I(LDE1,NM1)
732 DIMENSION AbsTol(*),RelTol(*),RPAR(*),IPAR(*)
733 INTEGER IP1(NM1),IP2(NM1),IPHES(NM1)
734 COMMON /CONRA5/NN,NN2,NN3,NN4,XSOL,HSOL,C2M1,C1M1
735 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
736 LOGICAL REJECT,FIRST,IMPLCT,BANDED,CALJAC,STARTN,CALHES
737 LOGICAL INDEX1,INDEX2,INDEX3,LAST,PRED
738 EXTERNAL FCN, JAC, MAS, SOLOUT
739 C *** *** *** *** *** *** ***
740 C INITIALISATIONS
741 C *** *** *** *** *** *** ***
742 C --------- DUPLIFY N FOR COMMON BLOCK CONT -----
743 NN=N
744 NN2=2*N
745 NN3=3*N
746 LRC=4*N
747 C -------- CHECK THE INDEX OF THE PROBLEM -----
748 INDEX1=NIND1.NE.0
749 INDEX2=NIND2.NE.0
750 INDEX3=NIND3.NE.0
751 C ------- COMPUTE MASS MATRIX FOR IMPLICIT CASE ----------
752 IF (IMPLCT) CALL MAS(NM1,FMAS,LDMAS,RPAR,IPAR)
753 C ---------- CONSTANTS ---------
754 SQ6=DSQRT(6.D0)
755 C1=(4.D0-SQ6)/10.D0
756 C2=(4.D0+SQ6)/10.D0
757 C1M1=C1-1.D0
758 C2M1=C2-1.D0
759 C1MC2=C1-C2
760 DD1=-(13.D0+7.D0*SQ6)/3.D0
761 DD2=(-13.D0+7.D0*SQ6)/3.D0
762 DD3=-1.D0/3.D0
763 U1=(6.D0+81.D0**(1.D0/3.D0)-9.D0**(1.D0/3.D0))/30.D0
764 ALPH=(12.D0-81.D0**(1.D0/3.D0)+9.D0**(1.D0/3.D0))/60.D0
765 BETA=(81.D0**(1.D0/3.D0)+9.D0**(1.D0/3.D0))*DSQRT(3.D0)/60.D0
766 CNO=ALPH**2+BETA**2
767 U1=1.0D0/U1
768 ALPH=ALPH/CNO
769 BETA=BETA/CNO
770 T11=9.1232394870892942792D-02
771 T12=-0.14125529502095420843D0
772 T13=-3.0029194105147424492D-02
773 T21=0.24171793270710701896D0
774 T22=0.20412935229379993199D0
775 T23=0.38294211275726193779D0
776 T31=0.96604818261509293619D0
777 TI11=4.3255798900631553510D0
778 TI12=0.33919925181580986954D0
779 TI13=0.54177053993587487119D0
780 TI21=-4.1787185915519047273D0
781 TI22=-0.32768282076106238708D0
782 TI23=0.47662355450055045196D0
783 TI31=-0.50287263494578687595D0
784 TI32=2.5719269498556054292D0
785 TI33=-0.59603920482822492497D0
786 IF (M1.GT.0) IJOB=IJOB+10
787 POSNEG=SIGN(1.D0,XEND-X)
788 HMAXN=MIN(ABS(HMAX),ABS(XEND-X))
789 IF (ABS(H).LE.10.D0*UROUND) H=1.0D-6
790 H=MIN(ABS(H),HMAXN)
791 H=SIGN(H,POSNEG)
792 HOLD=H
793 REJECT=.FALSE.
794 FIRST=.TRUE.
795 LAST=.FALSE.
796 IF ((X+H*1.0001D0-XEND)*POSNEG.GE.0.D0) THEN
797 H=XEND-X
798 LAST=.TRUE.
799 END IF
800 FACCON=1.D0
801 CFAC=SAFE*(1+2*NIT)
802 NSING=0
803 XOLD=X
804 IF (IOUT.NE.0) THEN
805 IRTRN=1
806 NRSOL=1
807 XOSOL=XOLD
808 XSOL=X
809 DO I=1,N
810 CONT(I)=Y(I)
811 END DO
812 NSOLU=N
813 HSOL=HOLD
814 CALL SOLOUT(NRSOL,XOSOL,XSOL,Y,CONT,LRC,NSOLU,
815 & RPAR,IPAR,IRTRN)
816 IF (IRTRN.LT.0) GOTO 179
817 END IF
818 MLE=MLJAC
819 MUE=MUJAC
820 MBJAC=MLJAC+MUJAC+1
821 MBB=MLMAS+MUMAS+1
822 MDIAG=MLE+MUE+1
823 MDIFF=MLE+MUE-MUMAS
824 MBDIAG=MUMAS+1
825 N2=2*N
826 N3=3*N
827 IF (ITOL.EQ.0) THEN
828 DO I=1,N
829 SCAL(I)=AbsTol(1)+RelTol(1)*ABS(Y(I))
830 END DO
831 ELSE
832 DO I=1,N
833 SCAL(I)=AbsTol(I)+RelTol(I)*ABS(Y(I))
834 END DO
835 END IF
836 HHFAC=H
837 CALL FCN(N,X,Y,Y0,RPAR,IPAR)
838 NFCN=NFCN+1
839 C --- BASIC INTEGRATION STEP
840 10 CONTINUE
841 C *** *** *** *** *** *** ***
842 C COMPUTATION OF THE JACOBIAN
843 C *** *** *** *** *** *** ***
844 NJAC=NJAC+1
845 IF (IJAC.EQ.0) THEN
846 C --- COMPUTE JACOBIAN MATRIX NUMERICALLY
847 IF (BANDED) THEN
848 C --- JACOBIAN IS BANDED
849 MUJACP=MUJAC+1
850 MD=MIN(MBJAC,M2)
851 DO MM=1,M1/M2+1
852 DO K=1,MD
853 J=K+(MM-1)*M2
854 12 F1(J)=Y(J)
855 F2(J)=DSQRT(UROUND*MAX(1.D-5,ABS(Y(J))))
856 Y(J)=Y(J)+F2(J)
857 J=J+MD
858 IF (J.LE.MM*M2) GOTO 12
859 CALL FCN(N,X,Y,CONT,RPAR,IPAR)
860 J=K+(MM-1)*M2
861 J1=K
862 LBEG=MAX(1,J1-MUJAC)+M1
863 14 LEND=MIN(M2,J1+MLJAC)+M1
864 Y(J)=F1(J)
865 MUJACJ=MUJACP-J1-M1
866 DO L=LBEG,LEND
867 FJAC(L+MUJACJ,J)=(CONT(L)-Y0(L))/F2(J)
868 END DO
869 J=J+MD
870 J1=J1+MD
871 LBEG=LEND+1
872 IF (J.LE.MM*M2) GOTO 14
873 END DO
874 END DO
875 ELSE
876 C --- JACOBIAN IS FULL
877 DO I=1,N
878 YSAFE=Y(I)
879 DELT=DSQRT(UROUND*MAX(1.D-5,ABS(YSAFE)))
880 Y(I)=YSAFE+DELT
881 CALL FCN(N,X,Y,CONT,RPAR,IPAR)
882 DO J=M1+1,N
883 FJAC(J-M1,I)=(CONT(J)-Y0(J))/DELT
884 END DO
885 Y(I)=YSAFE
886 END DO
887 END IF
888 ELSE
889 C --- COMPUTE JACOBIAN MATRIX ANALYTICALLY
890 CALL JAC_CHEM(N,X,Y,FJAC,LDJAC,RPAR,IPAR)
891 END IF
892 CALJAC=.TRUE.
893 CALHES=.TRUE.
894 20 CONTINUE
895 C --- COMPUTE THE MATRICES E1 AND E2 AND THEIR DECOMPOSITIONS
896 FAC1=U1/H
897 ALPHN=ALPH/H
898 BETAN=BETA/H
899 CALL DECOMR(N,FJAC,LDJAC,FMAS,LDMAS,MLMAS,MUMAS,
900 & M1,M2,NM1,FAC1,E1,LDE1,IP1,IER,IJOB,CALHES,IPHES)
901 IF (IER.NE.0) GOTO 78
902 CALL DECOMC(N,FJAC,LDJAC,FMAS,LDMAS,MLMAS,MUMAS,
903 & M1,M2,NM1,ALPHN,BETAN,E2R,E2I,LDE1,IP2,IER,IJOB)
904 IF (IER.NE.0) GOTO 78
905 NDEC=NDEC+1
906 30 CONTINUE
907 NSTEP=NSTEP+1
908 IF (NSTEP.GT.NMAX) GOTO 178
909 IF (0.1D0*ABS(H).LE.ABS(X)*UROUND) GOTO 177
910 IF (INDEX2) THEN
911 DO I=NIND1+1,NIND1+NIND2
912 SCAL(I)=SCAL(I)/HHFAC
913 END DO
914 END IF
915 IF (INDEX3) THEN
916 DO I=NIND1+NIND2+1,NIND1+NIND2+NIND3
917 SCAL(I)=SCAL(I)/(HHFAC*HHFAC)
918 END DO
919 END IF
920 XPH=X+H
921 C *** *** *** *** *** *** ***
922 C STARTING VALUES FOR NEWTON ITERATION
923 C *** *** *** *** *** *** ***
924 IF (FIRST.OR.STARTN) THEN
925 DO I=1,N
926 Z1(I)=0.D0
927 Z2(I)=0.D0
928 Z3(I)=0.D0
929 F1(I)=0.D0
930 F2(I)=0.D0
931 F3(I)=0.D0
932 END DO
933 ELSE
934 C3Q=H/HOLD
935 C1Q=C1*C3Q
936 C2Q=C2*C3Q
937 DO I=1,N
938 AK1=CONT(I+N)
939 AK2=CONT(I+N2)
940 AK3=CONT(I+N3)
941 Z1I=C1Q*(AK1+(C1Q-C2M1)*(AK2+(C1Q-C1M1)*AK3))
942 Z2I=C2Q*(AK1+(C2Q-C2M1)*(AK2+(C2Q-C1M1)*AK3))
943 Z3I=C3Q*(AK1+(C3Q-C2M1)*(AK2+(C3Q-C1M1)*AK3))
944 Z1(I)=Z1I
945 Z2(I)=Z2I
946 Z3(I)=Z3I
947 F1(I)=TI11*Z1I+TI12*Z2I+TI13*Z3I
948 F2(I)=TI21*Z1I+TI22*Z2I+TI23*Z3I
949 F3(I)=TI31*Z1I+TI32*Z2I+TI33*Z3I
950 END DO
951 END IF
952 C *** *** *** *** *** *** ***
953 C LOOP FOR THE SIMPLIFIED NEWTON ITERATION
954 C *** *** *** *** *** *** ***
955 NEWT=0
956 FACCON=MAX(FACCON,UROUND)**0.8D0
957 THETA=ABS(THET)
958 40 CONTINUE
959 IF (NEWT.GE.NIT) GOTO 78
960 C --- COMPUTE THE RIGHT-HAND SIDE
961 DO I=1,N
962 CONT(I)=Y(I)+Z1(I)
963 END DO
964 CALL FCN(N,X+C1*H,CONT,Z1,RPAR,IPAR)
965 DO I=1,N
966 CONT(I)=Y(I)+Z2(I)
967 END DO
968 CALL FCN(N,X+C2*H,CONT,Z2,RPAR,IPAR)
969 DO I=1,N
970 CONT(I)=Y(I)+Z3(I)
971 END DO
972 CALL FCN(N,XPH,CONT,Z3,RPAR,IPAR)
973 NFCN=NFCN+3
974 C --- KppSolve THE LINEAR SYSTEMS
975 DO I=1,N
976 A1=Z1(I)
977 A2=Z2(I)
978 A3=Z3(I)
979 Z1(I)=TI11*A1+TI12*A2+TI13*A3
980 Z2(I)=TI21*A1+TI22*A2+TI23*A3
981 Z3(I)=TI31*A1+TI32*A2+TI33*A3
982 END DO
983 CALL SLVRAD(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
984 & M1,M2,NM1,FAC1,ALPHN,BETAN,E1,E2R,E2I,LDE1,Z1,Z2,Z3,
985 & F1,F2,F3,CONT,IP1,IP2,IPHES,IER,IJOB)
986 NSOL=NSOL+1
987 NEWT=NEWT+1
988 DYNO=0.D0
989 DO I=1,N
990 DENOM=SCAL(I)
991 DYNO=DYNO+(Z1(I)/DENOM)**2+(Z2(I)/DENOM)**2
992 & +(Z3(I)/DENOM)**2
993 END DO
994 DYNO=DSQRT(DYNO/N3)
995 C --- BAD CONVERGENCE OR NUMBER OF ITERATIONS TO LARGE
996 IF (NEWT.GT.1.AND.NEWT.LT.NIT) THEN
997 THQ=DYNO/DYNOLD
998 IF (NEWT.EQ.2) THEN
999 THETA=THQ
1000 ELSE
1001 THETA=SQRT(THQ*THQOLD)
1002 END IF
1003 THQOLD=THQ
1004 IF (THETA.LT.0.99D0) THEN
1005 FACCON=THETA/(1.0D0-THETA)
1006 DYTH=FACCON*DYNO*THETA**(NIT-1-NEWT)/FNEWT
1007 IF (DYTH.GE.1.0D0) THEN
1008 QNEWT=DMAX1(1.0D-4,DMIN1(20.0D0,DYTH))
1009 HHFAC=.8D0*QNEWT**(-1.0D0/(4.0D0+NIT-1-NEWT))
1010 H=HHFAC*H
1011 REJECT=.TRUE.
1012 LAST=.FALSE.
1013 IF (CALJAC) GOTO 20
1014 GOTO 10
1015 END IF
1016 ELSE
1017 GOTO 78
1018 END IF
1019 END IF
1020 DYNOLD=MAX(DYNO,UROUND)
1021 DO I=1,N
1022 F1I=F1(I)+Z1(I)
1023 F2I=F2(I)+Z2(I)
1024 F3I=F3(I)+Z3(I)
1025 F1(I)=F1I
1026 F2(I)=F2I
1027 F3(I)=F3I
1028 Z1(I)=T11*F1I+T12*F2I+T13*F3I
1029 Z2(I)=T21*F1I+T22*F2I+T23*F3I
1030 Z3(I)=T31*F1I+ F2I
1031 END DO
1032 IF (FACCON*DYNO.GT.FNEWT) GOTO 40
1033 C --- ERROR ESTIMATION
1034 CALL ESTRAD (N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
1035 & H,DD1,DD2,DD3,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,
1036 & E1,LDE1,Z1,Z2,Z3,CONT,F1,F2,IP1,IPHES,SCAL,ERR,
1037 & FIRST,REJECT,FAC1,RPAR,IPAR)
1038 C --- COMPUTATION OF HNEW
1039 C --- WE REQUIRE .2<=HNEW/H<=8.
1040 FAC=MIN(SAFE,CFAC/(NEWT+2*NIT))
1041 QUOT=MAX(FACR,MIN(FACL,ERR**.25D0/FAC))
1042 HNEW=H/QUOT
1043 C *** *** *** *** *** *** ***
1044 C IS THE ERROR SMALL ENOUGH ?
1045 C *** *** *** *** *** *** ***
1046 IF (ERR.LT.1.D0) THEN
1047 C --- STEP IS ACCEPTED
1048 FIRST=.FALSE.
1049 NACCPT=NACCPT+1
1050 IF (PRED) THEN
1051 C --- PREDICTIVE CONTROLLER OF GUSTAFSSON
1052 IF (NACCPT.GT.1) THEN
1053 FACGUS=(HACC/H)*(ERR**2/ERRACC)**0.25D0/SAFE
1054 FACGUS=MAX(FACR,MIN(FACL,FACGUS))
1055 QUOT=MAX(QUOT,FACGUS)
1056 HNEW=H/QUOT
1057 END IF
1058 HACC=H
1059 ERRACC=MAX(1.0D-2,ERR)
1060 END IF
1061 XOLD=X
1062 HOLD=H
1063 X=XPH
1064 DO I=1,N
1065 Y(I)=Y(I)+Z3(I)
1066 Z2I=Z2(I)
1067 Z1I=Z1(I)
1068 CONT(I+N)=(Z2I-Z3(I))/C2M1
1069 AK=(Z1I-Z2I)/C1MC2
1070 ACONT3=Z1I/C1
1071 ACONT3=(AK-ACONT3)/C2
1072 CONT(I+N2)=(AK-CONT(I+N))/C1M1
1073 CONT(I+N3)=CONT(I+N2)-ACONT3
1074 END DO
1075 IF (ITOL.EQ.0) THEN
1076 DO I=1,N
1077 SCAL(I)=AbsTol(1)+RelTol(1)*ABS(Y(I))
1078 END DO
1079 ELSE
1080 DO I=1,N
1081 SCAL(I)=AbsTol(I)+RelTol(I)*ABS(Y(I))
1082 END DO
1083 END IF
1084 IF (IOUT.NE.0) THEN
1085 NRSOL=NACCPT+1
1086 XSOL=X
1087 XOSOL=XOLD
1088 DO I=1,N
1089 CONT(I)=Y(I)
1090 END DO
1091 NSOLU=N
1092 HSOL=HOLD
1093 CALL SOLOUT(NRSOL,XOSOL,XSOL,Y,CONT,LRC,NSOLU,
1094 & RPAR,IPAR,IRTRN)
1095 IF (IRTRN.LT.0) GOTO 179
1096 END IF
1097 CALJAC=.FALSE.
1098 IF (LAST) THEN
1099 H=HOPT
1100 IDID=1
1101 RETURN
1102 END IF
1103 CALL FCN(N,X,Y,Y0,RPAR,IPAR)
1104 NFCN=NFCN+1
1105 HNEW=POSNEG*MIN(ABS(HNEW),HMAXN)
1106 HOPT=HNEW
1107 HOPT=MIN(H,HNEW)
1108 IF (REJECT) HNEW=POSNEG*MIN(ABS(HNEW),ABS(H))
1109 REJECT=.FALSE.
1110 IF ((X+HNEW/QUOT1-XEND)*POSNEG.GE.0.D0) THEN
1111 H=XEND-X
1112 LAST=.TRUE.
1113 ELSE
1114 QT=HNEW/H
1115 HHFAC=H
1116 IF (THETA.LE.THET.AND.QT.GE.QUOT1.AND.QT.LE.QUOT2) GOTO 30
1117 H=HNEW
1118 END IF
1119 HHFAC=H
1120 IF (THETA.LE.THET) GOTO 20
1121 GOTO 10
1122 ELSE
1123 C --- STEP IS REJECTED
1124 REJECT=.TRUE.
1125 LAST=.FALSE.
1126 IF (FIRST) THEN
1127 H=H*0.1D0
1128 HHFAC=0.1D0
1129 ELSE
1130 HHFAC=HNEW/H
1131 H=HNEW
1132 END IF
1133 IF (NACCPT.GE.1) NREJCT=NREJCT+1
1134 IF (CALJAC) GOTO 20
1135 GOTO 10
1136 END IF
1137 C --- UNEXPECTED STEP-REJECTION
1138 78 CONTINUE
1139 IF (IER.NE.0) THEN
1140 NSING=NSING+1
1141 IF (NSING.GE.5) GOTO 176
1142 END IF
1143 H=H*0.5D0
1144 HHFAC=0.5D0
1145 REJECT=.TRUE.
1146 LAST=.FALSE.
1147 IF (CALJAC) GOTO 20
1148 GOTO 10
1149 C --- FAIL EXIT
1150 176 CONTINUE
1151 WRITE(6,979)X
1152 WRITE(6,*) ' MATRIX IS REPEATEDLY SINGULAR, IER=',IER
1153 IDID=-4
1154 RETURN
1155 177 CONTINUE
1156 WRITE(6,979)X
1157 WRITE(6,*) ' STEP SIZE T0O SMALL, H=',H
1158 IDID=-3
1159 RETURN
1160 178 CONTINUE
1161 WRITE(6,979)X
1162 WRITE(6,*) ' MORE THAN NMAX =',NMAX,'STEPS ARE NEEDED'
1163 IDID=-2
1164 RETURN
1165 C --- EXIT CAUSED BY SOLOUT
1166 179 CONTINUE
1167 WRITE(6,979)X
1168 979 FORMAT(' EXIT OF RADAU5 AT X=',E18.4)
1169 IDID=2
1170 RETURN
1173 C END OF SUBROUTINE RADCOR
1175 C ***********************************************************
1177 KPP_REAL FUNCTION CONTR5(I,X,CONT,LRC)
1178 C ----------------------------------------------------------
1179 C THIS FUNCTION CAN BE USED FOR CONINUOUS OUTPUT. IT PROVIDES AN
1180 C APPROXIMATION TO THE I-TH COMPONENT OF THE SOLUTION AT X.
1181 C IT GIVES THE VALUE OF THE COLLOCATION POLYNOMIAL, DEFINED FOR
1182 C THE LAST SUCCESSFULLY COMPUTED STEP (BY RADAU5).
1183 C ----------------------------------------------------------
1184 IMPLICIT KPP_REAL (A-H,O-Z)
1185 DIMENSION CONT(LRC)
1186 COMMON /CONRA5/NN,NN2,NN3,NN4,XSOL,HSOL,C2M1,C1M1
1187 S=(X-XSOL)/HSOL
1188 CONTR5=CONT(I)+S*(CONT(I+NN)+(S-C2M1)*(CONT(I+NN2)
1189 & +(S-C1M1)*CONT(I+NN3)))
1190 RETURN
1193 C END OF FUNCTION CONTR5
1195 C ***********************************************************
1196 C ******************************************
1197 C VERSION OF SEPTEMBER 18, 1995
1198 C ******************************************
1200 SUBROUTINE DECOMR(N,FJAC,LDJAC,FMAS,LDMAS,MLMAS,MUMAS,
1201 & M1,M2,NM1,FAC1,E1,LDE1,IP1,IER,IJOB,CALHES,IPHES)
1202 IMPLICIT KPP_REAL (A-H,O-Z)
1203 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E1(LDE1,NM1),
1204 & IP1(NM1),IPHES(N)
1205 LOGICAL CALHES
1206 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
1208 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,14,15), IJOB
1210 C -----------------------------------------------------------
1212 1 CONTINUE
1213 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
1214 DO J=1,N
1215 DO I=1,N
1216 E1(I,J)=-FJAC(I,J)
1217 END DO
1218 E1(J,J)=E1(J,J)+FAC1
1219 END DO
1220 CALL DEC (N,LDE1,E1,IP1,IER)
1221 RETURN
1223 C -----------------------------------------------------------
1225 11 CONTINUE
1226 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
1227 DO J=1,NM1
1228 JM1=J+M1
1229 DO I=1,NM1
1230 E1(I,J)=-FJAC(I,JM1)
1231 END DO
1232 E1(J,J)=E1(J,J)+FAC1
1233 END DO
1234 45 MM=M1/M2
1235 DO J=1,M2
1236 DO I=1,NM1
1237 SUM=0.D0
1238 DO K=0,MM-1
1239 SUM=(SUM+FJAC(I,J+K*M2))/FAC1
1240 END DO
1241 E1(I,J)=E1(I,J)-SUM
1242 END DO
1243 END DO
1244 CALL DEC (NM1,LDE1,E1,IP1,IER)
1245 RETURN
1247 C -----------------------------------------------------------
1249 2 CONTINUE
1250 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
1251 DO J=1,N
1252 DO I=1,MBJAC
1253 E1(I+MLE,J)=-FJAC(I,J)
1254 END DO
1255 E1(MDIAG,J)=E1(MDIAG,J)+FAC1
1256 END DO
1257 CALL DECB (N,LDE1,E1,MLE,MUE,IP1,IER)
1258 RETURN
1260 C -----------------------------------------------------------
1262 12 CONTINUE
1263 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
1264 DO J=1,NM1
1265 JM1=J+M1
1266 DO I=1,MBJAC
1267 E1(I+MLE,J)=-FJAC(I,JM1)
1268 END DO
1269 E1(MDIAG,J)=E1(MDIAG,J)+FAC1
1270 END DO
1271 46 MM=M1/M2
1272 DO J=1,M2
1273 DO I=1,MBJAC
1274 SUM=0.D0
1275 DO K=0,MM-1
1276 SUM=(SUM+FJAC(I,J+K*M2))/FAC1
1277 END DO
1278 E1(I+MLE,J)=E1(I+MLE,J)-SUM
1279 END DO
1280 END DO
1281 CALL DECB (NM1,LDE1,E1,MLE,MUE,IP1,IER)
1282 RETURN
1284 C -----------------------------------------------------------
1286 3 CONTINUE
1287 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
1288 DO J=1,N
1289 DO I=1,N
1290 E1(I,J)=-FJAC(I,J)
1291 END DO
1292 DO I=MAX(1,J-MUMAS),MIN(N,J+MLMAS)
1293 E1(I,J)=E1(I,J)+FAC1*FMAS(I-J+MBDIAG,J)
1294 END DO
1295 END DO
1296 CALL DEC (N,LDE1,E1,IP1,IER)
1297 RETURN
1299 C -----------------------------------------------------------
1301 13 CONTINUE
1302 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1303 DO J=1,NM1
1304 JM1=J+M1
1305 DO I=1,NM1
1306 E1(I,J)=-FJAC(I,JM1)
1307 END DO
1308 DO I=MAX(1,J-MUMAS),MIN(NM1,J+MLMAS)
1309 E1(I,J)=E1(I,J)+FAC1*FMAS(I-J+MBDIAG,J)
1310 END DO
1311 END DO
1312 GOTO 45
1314 C -----------------------------------------------------------
1316 4 CONTINUE
1317 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
1318 DO J=1,N
1319 DO I=1,MBJAC
1320 E1(I+MLE,J)=-FJAC(I,J)
1321 END DO
1322 DO I=1,MBB
1323 IB=I+MDIFF
1324 E1(IB,J)=E1(IB,J)+FAC1*FMAS(I,J)
1325 END DO
1326 END DO
1327 CALL DECB (N,LDE1,E1,MLE,MUE,IP1,IER)
1328 RETURN
1330 C -----------------------------------------------------------
1332 14 CONTINUE
1333 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX, SECOND ORDER
1334 DO J=1,NM1
1335 JM1=J+M1
1336 DO I=1,MBJAC
1337 E1(I+MLE,J)=-FJAC(I,JM1)
1338 END DO
1339 DO I=1,MBB
1340 IB=I+MDIFF
1341 E1(IB,J)=E1(IB,J)+FAC1*FMAS(I,J)
1342 END DO
1343 END DO
1344 GOTO 46
1346 C -----------------------------------------------------------
1348 5 CONTINUE
1349 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
1350 DO J=1,N
1351 DO I=1,N
1352 E1(I,J)=FMAS(I,J)*FAC1-FJAC(I,J)
1353 END DO
1354 END DO
1355 CALL DEC (N,LDE1,E1,IP1,IER)
1356 RETURN
1358 C -----------------------------------------------------------
1360 15 CONTINUE
1361 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1362 DO J=1,NM1
1363 JM1=J+M1
1364 DO I=1,NM1
1365 E1(I,J)=FMAS(I,J)*FAC1-FJAC(I,JM1)
1366 END DO
1367 END DO
1368 GOTO 45
1370 C -----------------------------------------------------------
1372 6 CONTINUE
1373 C --- B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
1374 C --- THIS OPTION IS NOT PROVIDED
1375 RETURN
1377 C -----------------------------------------------------------
1379 7 CONTINUE
1380 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
1381 IF (CALHES) CALL Elmhes (LDJAC,N,1,N,FJAC,IPHES)
1382 CALHES=.FALSE.
1383 DO J=1,N-1
1384 J1=J+1
1385 E1(J1,J)=-FJAC(J1,J)
1386 END DO
1387 DO J=1,N
1388 DO I=1,J
1389 E1(I,J)=-FJAC(I,J)
1390 END DO
1391 E1(J,J)=E1(J,J)+FAC1
1392 END DO
1393 CALL DECH(N,LDE1,E1,1,IP1,IER)
1394 RETURN
1396 C -----------------------------------------------------------
1398 55 CONTINUE
1399 RETURN
1402 C END OF SUBROUTINE DECOMR
1404 C ***********************************************************
1406 SUBROUTINE DECOMC(N,FJAC,LDJAC,FMAS,LDMAS,MLMAS,MUMAS,
1407 & M1,M2,NM1,ALPHN,BETAN,E2R,E2I,LDE1,IP2,IER,IJOB)
1408 IMPLICIT KPP_REAL (A-H,O-Z)
1409 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),
1410 & E2R(LDE1,NM1),E2I(LDE1,NM1),IP2(NM1)
1411 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
1413 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,14,15), IJOB
1415 C -----------------------------------------------------------
1417 1 CONTINUE
1418 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
1419 DO J=1,N
1420 DO I=1,N
1421 E2R(I,J)=-FJAC(I,J)
1422 E2I(I,J)=0.D0
1423 END DO
1424 E2R(J,J)=E2R(J,J)+ALPHN
1425 E2I(J,J)=BETAN
1426 END DO
1427 CALL DECC (N,LDE1,E2R,E2I,IP2,IER)
1428 RETURN
1430 C -----------------------------------------------------------
1432 11 CONTINUE
1433 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
1434 DO J=1,NM1
1435 JM1=J+M1
1436 DO I=1,NM1
1437 E2R(I,J)=-FJAC(I,JM1)
1438 E2I(I,J)=0.D0
1439 END DO
1440 E2R(J,J)=E2R(J,J)+ALPHN
1441 E2I(J,J)=BETAN
1442 END DO
1443 45 MM=M1/M2
1444 ABNO=ALPHN**2+BETAN**2
1445 ALP=ALPHN/ABNO
1446 BET=BETAN/ABNO
1447 DO J=1,M2
1448 DO I=1,NM1
1449 SUMR=0.D0
1450 SUMI=0.D0
1451 DO K=0,MM-1
1452 SUMS=SUMR+FJAC(I,J+K*M2)
1453 SUMR=SUMS*ALP+SUMI*BET
1454 SUMI=SUMI*ALP-SUMS*BET
1455 END DO
1456 E2R(I,J)=E2R(I,J)-SUMR
1457 E2I(I,J)=E2I(I,J)-SUMI
1458 END DO
1459 END DO
1460 CALL DECC (NM1,LDE1,E2R,E2I,IP2,IER)
1461 RETURN
1463 C -----------------------------------------------------------
1465 2 CONTINUE
1466 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
1467 DO J=1,N
1468 DO I=1,MBJAC
1469 IMLE=I+MLE
1470 E2R(IMLE,J)=-FJAC(I,J)
1471 E2I(IMLE,J)=0.D0
1472 END DO
1473 E2R(MDIAG,J)=E2R(MDIAG,J)+ALPHN
1474 E2I(MDIAG,J)=BETAN
1475 END DO
1476 CALL DECBC (N,LDE1,E2R,E2I,MLE,MUE,IP2,IER)
1477 RETURN
1479 C -----------------------------------------------------------
1481 12 CONTINUE
1482 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
1483 DO J=1,NM1
1484 JM1=J+M1
1485 DO I=1,MBJAC
1486 E2R(I+MLE,J)=-FJAC(I,JM1)
1487 E2I(I+MLE,J)=0.D0
1488 END DO
1489 E2R(MDIAG,J)=E2R(MDIAG,J)+ALPHN
1490 E2I(MDIAG,J)=E2I(MDIAG,J)+BETAN
1491 END DO
1492 46 MM=M1/M2
1493 ABNO=ALPHN**2+BETAN**2
1494 ALP=ALPHN/ABNO
1495 BET=BETAN/ABNO
1496 DO J=1,M2
1497 DO I=1,MBJAC
1498 SUMR=0.D0
1499 SUMI=0.D0
1500 DO K=0,MM-1
1501 SUMS=SUMR+FJAC(I,J+K*M2)
1502 SUMR=SUMS*ALP+SUMI*BET
1503 SUMI=SUMI*ALP-SUMS*BET
1504 END DO
1505 IMLE=I+MLE
1506 E2R(IMLE,J)=E2R(IMLE,J)-SUMR
1507 E2I(IMLE,J)=E2I(IMLE,J)-SUMI
1508 END DO
1509 END DO
1510 CALL DECBC (NM1,LDE1,E2R,E2I,MLE,MUE,IP2,IER)
1511 RETURN
1513 C -----------------------------------------------------------
1515 3 CONTINUE
1516 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
1517 DO J=1,N
1518 DO I=1,N
1519 E2R(I,J)=-FJAC(I,J)
1520 E2I(I,J)=0.D0
1521 END DO
1522 END DO
1523 DO J=1,N
1524 DO I=MAX(1,J-MUMAS),MIN(N,J+MLMAS)
1525 BB=FMAS(I-J+MBDIAG,J)
1526 E2R(I,J)=E2R(I,J)+ALPHN*BB
1527 E2I(I,J)=BETAN*BB
1528 END DO
1529 END DO
1530 CALL DECC(N,LDE1,E2R,E2I,IP2,IER)
1531 RETURN
1533 C -----------------------------------------------------------
1535 13 CONTINUE
1536 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1537 DO J=1,NM1
1538 JM1=J+M1
1539 DO I=1,NM1
1540 E2R(I,J)=-FJAC(I,JM1)
1541 E2I(I,J)=0.D0
1542 END DO
1543 DO I=MAX(1,J-MUMAS),MIN(NM1,J+MLMAS)
1544 FFMA=FMAS(I-J+MBDIAG,J)
1545 E2R(I,J)=E2R(I,J)+ALPHN*FFMA
1546 E2I(I,J)=E2I(I,J)+BETAN*FFMA
1547 END DO
1548 END DO
1549 GOTO 45
1551 C -----------------------------------------------------------
1553 4 CONTINUE
1554 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
1555 DO J=1,N
1556 DO I=1,MBJAC
1557 IMLE=I+MLE
1558 E2R(IMLE,J)=-FJAC(I,J)
1559 E2I(IMLE,J)=0.D0
1560 END DO
1561 DO I=MAX(1,MUMAS+2-J),MIN(MBB,MUMAS+1-J+N)
1562 IB=I+MDIFF
1563 BB=FMAS(I,J)
1564 E2R(IB,J)=E2R(IB,J)+ALPHN*BB
1565 E2I(IB,J)=BETAN*BB
1566 END DO
1567 END DO
1568 CALL DECBC (N,LDE1,E2R,E2I,MLE,MUE,IP2,IER)
1569 RETURN
1571 C -----------------------------------------------------------
1573 14 CONTINUE
1574 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX, SECOND ORDER
1575 DO J=1,NM1
1576 JM1=J+M1
1577 DO I=1,MBJAC
1578 E2R(I+MLE,J)=-FJAC(I,JM1)
1579 E2I(I+MLE,J)=0.D0
1580 END DO
1581 DO I=1,MBB
1582 IB=I+MDIFF
1583 FFMA=FMAS(I,J)
1584 E2R(IB,J)=E2R(IB,J)+ALPHN*FFMA
1585 E2I(IB,J)=E2I(IB,J)+BETAN*FFMA
1586 END DO
1587 END DO
1588 GOTO 46
1590 C -----------------------------------------------------------
1592 5 CONTINUE
1593 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
1594 DO J=1,N
1595 DO I=1,N
1596 BB=FMAS(I,J)
1597 E2R(I,J)=BB*ALPHN-FJAC(I,J)
1598 E2I(I,J)=BB*BETAN
1599 END DO
1600 END DO
1601 CALL DECC(N,LDE1,E2R,E2I,IP2,IER)
1602 RETURN
1604 C -----------------------------------------------------------
1606 15 CONTINUE
1607 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1608 DO J=1,NM1
1609 JM1=J+M1
1610 DO I=1,NM1
1611 E2R(I,J)=ALPHN*FMAS(I,J)-FJAC(I,JM1)
1612 E2I(I,J)=BETAN*FMAS(I,J)
1613 END DO
1614 END DO
1615 GOTO 45
1617 C -----------------------------------------------------------
1619 6 CONTINUE
1620 C --- B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
1621 C --- THIS OPTION IS NOT PROVIDED
1622 RETURN
1624 C -----------------------------------------------------------
1626 7 CONTINUE
1627 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
1628 DO J=1,N-1
1629 J1=J+1
1630 E2R(J1,J)=-FJAC(J1,J)
1631 E2I(J1,J)=0.D0
1632 END DO
1633 DO J=1,N
1634 DO I=1,J
1635 E2I(I,J)=0.D0
1636 E2R(I,J)=-FJAC(I,J)
1637 END DO
1638 E2R(J,J)=E2R(J,J)+ALPHN
1639 E2I(J,J)=BETAN
1640 END DO
1641 CALL DECHC(N,LDE1,E2R,E2I,1,IP2,IER)
1642 RETURN
1644 C -----------------------------------------------------------
1646 55 CONTINUE
1647 RETURN
1650 C END OF SUBROUTINE DECOMC
1652 C ***********************************************************
1654 SUBROUTINE SLVRAR(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
1655 & M1,M2,NM1,FAC1,E1,LDE1,Z1,F1,IP1,IPHES,IER,IJOB)
1656 IMPLICIT KPP_REAL (A-H,O-Z)
1657 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E1(LDE1,NM1),
1658 & IP1(NM1),IPHES(N),Z1(N),F1(N)
1659 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
1661 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,13,15), IJOB
1663 C -----------------------------------------------------------
1665 1 CONTINUE
1666 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
1667 DO I=1,N
1668 Z1(I)=Z1(I)-F1(I)*FAC1
1669 END DO
1670 CALL SOL (N,LDE1,E1,Z1,IP1)
1671 RETURN
1673 C -----------------------------------------------------------
1675 11 CONTINUE
1676 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
1677 DO I=1,N
1678 Z1(I)=Z1(I)-F1(I)*FAC1
1679 END DO
1680 48 CONTINUE
1681 MM=M1/M2
1682 DO J=1,M2
1683 SUM1=0.D0
1684 DO K=MM-1,0,-1
1685 JKM=J+K*M2
1686 SUM1=(Z1(JKM)+SUM1)/FAC1
1687 DO I=1,NM1
1688 IM1=I+M1
1689 Z1(IM1)=Z1(IM1)+FJAC(I,JKM)*SUM1
1690 END DO
1691 END DO
1692 END DO
1693 CALL SOL (NM1,LDE1,E1,Z1(M1+1),IP1)
1694 49 CONTINUE
1695 DO I=M1,1,-1
1696 Z1(I)=(Z1(I)+Z1(M2+I))/FAC1
1697 END DO
1698 RETURN
1700 C -----------------------------------------------------------
1702 2 CONTINUE
1703 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
1704 DO I=1,N
1705 Z1(I)=Z1(I)-F1(I)*FAC1
1706 END DO
1707 CALL SOLB (N,LDE1,E1,MLE,MUE,Z1,IP1)
1708 RETURN
1710 C -----------------------------------------------------------
1712 12 CONTINUE
1713 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
1714 DO I=1,N
1715 Z1(I)=Z1(I)-F1(I)*FAC1
1716 END DO
1717 45 CONTINUE
1718 MM=M1/M2
1719 DO J=1,M2
1720 SUM1=0.D0
1721 DO K=MM-1,0,-1
1722 JKM=J+K*M2
1723 SUM1=(Z1(JKM)+SUM1)/FAC1
1724 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
1725 IM1=I+M1
1726 Z1(IM1)=Z1(IM1)+FJAC(I+MUJAC+1-J,JKM)*SUM1
1727 END DO
1728 END DO
1729 END DO
1730 CALL SOLB (NM1,LDE1,E1,MLE,MUE,Z1(M1+1),IP1)
1731 GOTO 49
1733 C -----------------------------------------------------------
1735 3 CONTINUE
1736 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
1737 DO I=1,N
1738 S1=0.0D0
1739 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
1740 S1=S1-FMAS(I-J+MBDIAG,J)*F1(J)
1741 END DO
1742 Z1(I)=Z1(I)+S1*FAC1
1743 END DO
1744 CALL SOL (N,LDE1,E1,Z1,IP1)
1745 RETURN
1747 C -----------------------------------------------------------
1749 13 CONTINUE
1750 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1751 DO I=1,M1
1752 Z1(I)=Z1(I)-F1(I)*FAC1
1753 END DO
1754 DO I=1,NM1
1755 IM1=I+M1
1756 S1=0.0D0
1757 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
1758 S1=S1-FMAS(I-J+MBDIAG,J)*F1(J+M1)
1759 END DO
1760 Z1(IM1)=Z1(IM1)+S1*FAC1
1761 END DO
1762 IF (IJOB.EQ.14) GOTO 45
1763 GOTO 48
1765 C -----------------------------------------------------------
1767 4 CONTINUE
1768 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
1769 DO I=1,N
1770 S1=0.0D0
1771 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
1772 S1=S1-FMAS(I-J+MBDIAG,J)*F1(J)
1773 END DO
1774 Z1(I)=Z1(I)+S1*FAC1
1775 END DO
1776 CALL SOLB (N,LDE1,E1,MLE,MUE,Z1,IP1)
1777 RETURN
1779 C -----------------------------------------------------------
1781 5 CONTINUE
1782 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
1783 DO I=1,N
1784 S1=0.0D0
1785 DO J=1,N
1786 S1=S1-FMAS(I,J)*F1(J)
1787 END DO
1788 Z1(I)=Z1(I)+S1*FAC1
1789 END DO
1790 CALL SOL (N,LDE1,E1,Z1,IP1)
1791 RETURN
1793 C -----------------------------------------------------------
1795 15 CONTINUE
1796 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1797 DO I=1,M1
1798 Z1(I)=Z1(I)-F1(I)*FAC1
1799 END DO
1800 DO I=1,NM1
1801 IM1=I+M1
1802 S1=0.0D0
1803 DO J=1,NM1
1804 S1=S1-FMAS(I,J)*F1(J+M1)
1805 END DO
1806 Z1(IM1)=Z1(IM1)+S1*FAC1
1807 END DO
1808 GOTO 48
1810 C -----------------------------------------------------------
1812 6 CONTINUE
1813 C --- B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
1814 C --- THIS OPTION IS NOT PROVIDED
1815 RETURN
1817 C -----------------------------------------------------------
1819 7 CONTINUE
1820 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
1821 DO I=1,N
1822 Z1(I)=Z1(I)-F1(I)*FAC1
1823 END DO
1824 DO MM=N-2,1,-1
1825 MP=N-MM
1826 MP1=MP-1
1827 I=IPHES(MP)
1828 IF (I.EQ.MP) GOTO 746
1829 ZSAFE=Z1(MP)
1830 Z1(MP)=Z1(I)
1831 Z1(I)=ZSAFE
1832 746 CONTINUE
1833 DO I=MP+1,N
1834 Z1(I)=Z1(I)-FJAC(I,MP1)*Z1(MP)
1835 END DO
1836 END DO
1837 CALL SOLH(N,LDE1,E1,1,Z1,IP1)
1838 DO MM=1,N-2
1839 MP=N-MM
1840 MP1=MP-1
1841 DO I=MP+1,N
1842 Z1(I)=Z1(I)+FJAC(I,MP1)*Z1(MP)
1843 END DO
1844 I=IPHES(MP)
1845 IF (I.EQ.MP) GOTO 750
1846 ZSAFE=Z1(MP)
1847 Z1(MP)=Z1(I)
1848 Z1(I)=ZSAFE
1849 750 CONTINUE
1850 END DO
1851 RETURN
1853 C -----------------------------------------------------------
1855 55 CONTINUE
1856 RETURN
1859 C END OF SUBROUTINE SLVRAR
1861 C ***********************************************************
1863 SUBROUTINE SLVRAI(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
1864 & M1,M2,NM1,ALPHN,BETAN,E2R,E2I,LDE1,Z2,Z3,
1865 & F2,F3,CONT,IP2,IPHES,IER,IJOB)
1866 IMPLICIT KPP_REAL (A-H,O-Z)
1867 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),
1868 & IP2(NM1),IPHES(N),Z2(N),Z3(N),F2(N),F3(N)
1869 DIMENSION E2R(LDE1,NM1),E2I(LDE1,NM1)
1870 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
1872 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,13,15), IJOB
1874 C -----------------------------------------------------------
1876 1 CONTINUE
1877 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
1878 DO I=1,N
1879 S2=-F2(I)
1880 S3=-F3(I)
1881 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
1882 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
1883 END DO
1884 CALL SOLC (N,LDE1,E2R,E2I,Z2,Z3,IP2)
1885 RETURN
1887 C -----------------------------------------------------------
1889 11 CONTINUE
1890 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
1891 DO I=1,N
1892 S2=-F2(I)
1893 S3=-F3(I)
1894 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
1895 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
1896 END DO
1897 48 ABNO=ALPHN**2+BETAN**2
1898 MM=M1/M2
1899 DO J=1,M2
1900 SUM2=0.D0
1901 SUM3=0.D0
1902 DO K=MM-1,0,-1
1903 JKM=J+K*M2
1904 SUMH=(Z2(JKM)+SUM2)/ABNO
1905 SUM3=(Z3(JKM)+SUM3)/ABNO
1906 SUM2=SUMH*ALPHN+SUM3*BETAN
1907 SUM3=SUM3*ALPHN-SUMH*BETAN
1908 DO I=1,NM1
1909 IM1=I+M1
1910 Z2(IM1)=Z2(IM1)+FJAC(I,JKM)*SUM2
1911 Z3(IM1)=Z3(IM1)+FJAC(I,JKM)*SUM3
1912 END DO
1913 END DO
1914 END DO
1915 CALL SOLC (NM1,LDE1,E2R,E2I,Z2(M1+1),Z3(M1+1),IP2)
1916 49 CONTINUE
1917 DO I=M1,1,-1
1918 MPI=M2+I
1919 Z2I=Z2(I)+Z2(MPI)
1920 Z3I=Z3(I)+Z3(MPI)
1921 Z3(I)=(Z3I*ALPHN-Z2I*BETAN)/ABNO
1922 Z2(I)=(Z2I*ALPHN+Z3I*BETAN)/ABNO
1923 END DO
1924 RETURN
1926 C -----------------------------------------------------------
1928 2 CONTINUE
1929 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
1930 DO I=1,N
1931 S2=-F2(I)
1932 S3=-F3(I)
1933 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
1934 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
1935 END DO
1936 CALL SOLBC (N,LDE1,E2R,E2I,MLE,MUE,Z2,Z3,IP2)
1937 RETURN
1939 C -----------------------------------------------------------
1941 12 CONTINUE
1942 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
1943 DO I=1,N
1944 S2=-F2(I)
1945 S3=-F3(I)
1946 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
1947 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
1948 END DO
1949 45 ABNO=ALPHN**2+BETAN**2
1950 MM=M1/M2
1951 DO J=1,M2
1952 SUM2=0.D0
1953 SUM3=0.D0
1954 DO K=MM-1,0,-1
1955 JKM=J+K*M2
1956 SUMH=(Z2(JKM)+SUM2)/ABNO
1957 SUM3=(Z3(JKM)+SUM3)/ABNO
1958 SUM2=SUMH*ALPHN+SUM3*BETAN
1959 SUM3=SUM3*ALPHN-SUMH*BETAN
1960 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
1961 IM1=I+M1
1962 IIMU=I+MUJAC+1-J
1963 Z2(IM1)=Z2(IM1)+FJAC(IIMU,JKM)*SUM2
1964 Z3(IM1)=Z3(IM1)+FJAC(IIMU,JKM)*SUM3
1965 END DO
1966 END DO
1967 END DO
1968 CALL SOLBC (NM1,LDE1,E2R,E2I,MLE,MUE,Z2(M1+1),Z3(M1+1),IP2)
1969 GOTO 49
1971 C -----------------------------------------------------------
1973 3 CONTINUE
1974 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
1975 DO I=1,N
1976 S2=0.0D0
1977 S3=0.0D0
1978 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
1979 BB=FMAS(I-J+MBDIAG,J)
1980 S2=S2-BB*F2(J)
1981 S3=S3-BB*F3(J)
1982 END DO
1983 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
1984 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
1985 END DO
1986 CALL SOLC(N,LDE1,E2R,E2I,Z2,Z3,IP2)
1987 RETURN
1989 C -----------------------------------------------------------
1991 13 CONTINUE
1992 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
1993 DO I=1,M1
1994 S2=-F2(I)
1995 S3=-F3(I)
1996 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
1997 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
1998 END DO
1999 DO I=1,NM1
2000 IM1=I+M1
2001 S2=0.0D0
2002 S3=0.0D0
2003 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
2004 JM1=J+M1
2005 BB=FMAS(I-J+MBDIAG,J)
2006 S2=S2-BB*F2(JM1)
2007 S3=S3-BB*F3(JM1)
2008 END DO
2009 Z2(IM1)=Z2(IM1)+S2*ALPHN-S3*BETAN
2010 Z3(IM1)=Z3(IM1)+S3*ALPHN+S2*BETAN
2011 END DO
2012 IF (IJOB.EQ.14) GOTO 45
2013 GOTO 48
2015 C -----------------------------------------------------------
2017 4 CONTINUE
2018 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
2019 DO I=1,N
2020 S2=0.0D0
2021 S3=0.0D0
2022 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2023 BB=FMAS(I-J+MBDIAG,J)
2024 S2=S2-BB*F2(J)
2025 S3=S3-BB*F3(J)
2026 END DO
2027 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2028 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2029 END DO
2030 CALL SOLBC(N,LDE1,E2R,E2I,MLE,MUE,Z2,Z3,IP2)
2031 RETURN
2033 C -----------------------------------------------------------
2035 5 CONTINUE
2036 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
2037 DO I=1,N
2038 S2=0.0D0
2039 S3=0.0D0
2040 DO J=1,N
2041 BB=FMAS(I,J)
2042 S2=S2-BB*F2(J)
2043 S3=S3-BB*F3(J)
2044 END DO
2045 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2046 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2047 END DO
2048 CALL SOLC(N,LDE1,E2R,E2I,Z2,Z3,IP2)
2049 RETURN
2051 C -----------------------------------------------------------
2053 15 CONTINUE
2054 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
2055 DO I=1,M1
2056 S2=-F2(I)
2057 S3=-F3(I)
2058 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2059 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2060 END DO
2061 DO I=1,NM1
2062 IM1=I+M1
2063 S2=0.0D0
2064 S3=0.0D0
2065 DO J=1,NM1
2066 JM1=J+M1
2067 BB=FMAS(I,J)
2068 S2=S2-BB*F2(JM1)
2069 S3=S3-BB*F3(JM1)
2070 END DO
2071 Z2(IM1)=Z2(IM1)+S2*ALPHN-S3*BETAN
2072 Z3(IM1)=Z3(IM1)+S3*ALPHN+S2*BETAN
2073 END DO
2074 GOTO 48
2076 C -----------------------------------------------------------
2078 6 CONTINUE
2079 C --- B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
2080 C --- THIS OPTION IS NOT PROVIDED
2081 RETURN
2083 C -----------------------------------------------------------
2085 7 CONTINUE
2086 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
2087 DO I=1,N
2088 S2=-F2(I)
2089 S3=-F3(I)
2090 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2091 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2092 END DO
2093 DO MM=N-2,1,-1
2094 MP=N-MM
2095 MP1=MP-1
2096 I=IPHES(MP)
2097 IF (I.EQ.MP) GOTO 746
2098 ZSAFE=Z2(MP)
2099 Z2(MP)=Z2(I)
2100 Z2(I)=ZSAFE
2101 ZSAFE=Z3(MP)
2102 Z3(MP)=Z3(I)
2103 Z3(I)=ZSAFE
2104 746 CONTINUE
2105 DO I=MP+1,N
2106 E1IMP=FJAC(I,MP1)
2107 Z2(I)=Z2(I)-E1IMP*Z2(MP)
2108 Z3(I)=Z3(I)-E1IMP*Z3(MP)
2109 END DO
2110 END DO
2111 CALL SOLHC(N,LDE1,E2R,E2I,1,Z2,Z3,IP2)
2112 DO MM=1,N-2
2113 MP=N-MM
2114 MP1=MP-1
2115 DO I=MP+1,N
2116 E1IMP=FJAC(I,MP1)
2117 Z2(I)=Z2(I)+E1IMP*Z2(MP)
2118 Z3(I)=Z3(I)+E1IMP*Z3(MP)
2119 END DO
2120 I=IPHES(MP)
2121 IF (I.EQ.MP) GOTO 750
2122 ZSAFE=Z2(MP)
2123 Z2(MP)=Z2(I)
2124 Z2(I)=ZSAFE
2125 ZSAFE=Z3(MP)
2126 Z3(MP)=Z3(I)
2127 Z3(I)=ZSAFE
2128 750 CONTINUE
2129 END DO
2130 RETURN
2132 C -----------------------------------------------------------
2134 55 CONTINUE
2135 RETURN
2138 C END OF SUBROUTINE SLVRAI
2140 C ***********************************************************
2142 SUBROUTINE SLVRAD(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
2143 & M1,M2,NM1,FAC1,ALPHN,BETAN,E1,E2R,E2I,LDE1,Z1,Z2,Z3,
2144 & F1,F2,F3,CONT,IP1,IP2,IPHES,IER,IJOB)
2145 IMPLICIT KPP_REAL (A-H,O-Z)
2146 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E1(LDE1,NM1),
2147 & E2R(LDE1,NM1),E2I(LDE1,NM1),IP1(NM1),IP2(NM1),
2148 & IPHES(N),Z1(N),Z2(N),Z3(N),F1(N),F2(N),F3(N)
2149 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
2151 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,13,15), IJOB
2153 C -----------------------------------------------------------
2155 1 CONTINUE
2156 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
2157 DO I=1,N
2158 S2=-F2(I)
2159 S3=-F3(I)
2160 Z1(I)=Z1(I)-F1(I)*FAC1
2161 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2162 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2163 END DO
2164 CALL SOL (N,LDE1,E1,Z1,IP1)
2165 CALL SOLC (N,LDE1,E2R,E2I,Z2,Z3,IP2)
2166 RETURN
2168 C -----------------------------------------------------------
2170 11 CONTINUE
2171 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
2172 DO I=1,N
2173 S2=-F2(I)
2174 S3=-F3(I)
2175 Z1(I)=Z1(I)-F1(I)*FAC1
2176 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2177 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2178 END DO
2179 48 ABNO=ALPHN**2+BETAN**2
2180 MM=M1/M2
2181 DO J=1,M2
2182 SUM1=0.D0
2183 SUM2=0.D0
2184 SUM3=0.D0
2185 DO K=MM-1,0,-1
2186 JKM=J+K*M2
2187 SUM1=(Z1(JKM)+SUM1)/FAC1
2188 SUMH=(Z2(JKM)+SUM2)/ABNO
2189 SUM3=(Z3(JKM)+SUM3)/ABNO
2190 SUM2=SUMH*ALPHN+SUM3*BETAN
2191 SUM3=SUM3*ALPHN-SUMH*BETAN
2192 DO I=1,NM1
2193 IM1=I+M1
2194 Z1(IM1)=Z1(IM1)+FJAC(I,JKM)*SUM1
2195 Z2(IM1)=Z2(IM1)+FJAC(I,JKM)*SUM2
2196 Z3(IM1)=Z3(IM1)+FJAC(I,JKM)*SUM3
2197 END DO
2198 END DO
2199 END DO
2200 CALL SOL (NM1,LDE1,E1,Z1(M1+1),IP1)
2201 CALL SOLC (NM1,LDE1,E2R,E2I,Z2(M1+1),Z3(M1+1),IP2)
2202 49 CONTINUE
2203 DO I=M1,1,-1
2204 MPI=M2+I
2205 Z1(I)=(Z1(I)+Z1(MPI))/FAC1
2206 Z2I=Z2(I)+Z2(MPI)
2207 Z3I=Z3(I)+Z3(MPI)
2208 Z3(I)=(Z3I*ALPHN-Z2I*BETAN)/ABNO
2209 Z2(I)=(Z2I*ALPHN+Z3I*BETAN)/ABNO
2210 END DO
2211 RETURN
2213 C -----------------------------------------------------------
2215 2 CONTINUE
2216 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
2217 DO I=1,N
2218 S2=-F2(I)
2219 S3=-F3(I)
2220 Z1(I)=Z1(I)-F1(I)*FAC1
2221 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2222 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2223 END DO
2224 CALL SOLB (N,LDE1,E1,MLE,MUE,Z1,IP1)
2225 CALL SOLBC (N,LDE1,E2R,E2I,MLE,MUE,Z2,Z3,IP2)
2226 RETURN
2228 C -----------------------------------------------------------
2230 12 CONTINUE
2231 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
2232 DO I=1,N
2233 S2=-F2(I)
2234 S3=-F3(I)
2235 Z1(I)=Z1(I)-F1(I)*FAC1
2236 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2237 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2238 END DO
2239 45 ABNO=ALPHN**2+BETAN**2
2240 MM=M1/M2
2241 DO J=1,M2
2242 SUM1=0.D0
2243 SUM2=0.D0
2244 SUM3=0.D0
2245 DO K=MM-1,0,-1
2246 JKM=J+K*M2
2247 SUM1=(Z1(JKM)+SUM1)/FAC1
2248 SUMH=(Z2(JKM)+SUM2)/ABNO
2249 SUM3=(Z3(JKM)+SUM3)/ABNO
2250 SUM2=SUMH*ALPHN+SUM3*BETAN
2251 SUM3=SUM3*ALPHN-SUMH*BETAN
2252 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
2253 IM1=I+M1
2254 FFJA=FJAC(I+MUJAC+1-J,JKM)
2255 Z1(IM1)=Z1(IM1)+FFJA*SUM1
2256 Z2(IM1)=Z2(IM1)+FFJA*SUM2
2257 Z3(IM1)=Z3(IM1)+FFJA*SUM3
2258 END DO
2259 END DO
2260 END DO
2261 CALL SOLB (NM1,LDE1,E1,MLE,MUE,Z1(M1+1),IP1)
2262 CALL SOLBC (NM1,LDE1,E2R,E2I,MLE,MUE,Z2(M1+1),Z3(M1+1),IP2)
2263 GOTO 49
2265 C -----------------------------------------------------------
2267 3 CONTINUE
2268 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
2269 DO I=1,N
2270 S1=0.0D0
2271 S2=0.0D0
2272 S3=0.0D0
2273 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2274 BB=FMAS(I-J+MBDIAG,J)
2275 S1=S1-BB*F1(J)
2276 S2=S2-BB*F2(J)
2277 S3=S3-BB*F3(J)
2278 END DO
2279 Z1(I)=Z1(I)+S1*FAC1
2280 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2281 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2282 END DO
2283 CALL SOL (N,LDE1,E1,Z1,IP1)
2284 CALL SOLC(N,LDE1,E2R,E2I,Z2,Z3,IP2)
2285 RETURN
2287 C -----------------------------------------------------------
2289 13 CONTINUE
2290 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
2291 DO I=1,M1
2292 S2=-F2(I)
2293 S3=-F3(I)
2294 Z1(I)=Z1(I)-F1(I)*FAC1
2295 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2296 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2297 END DO
2298 DO I=1,NM1
2299 IM1=I+M1
2300 S1=0.0D0
2301 S2=0.0D0
2302 S3=0.0D0
2303 J1B=MAX(1,I-MLMAS)
2304 J2B=MIN(NM1,I+MUMAS)
2305 DO J=J1B,J2B
2306 JM1=J+M1
2307 BB=FMAS(I-J+MBDIAG,J)
2308 S1=S1-BB*F1(JM1)
2309 S2=S2-BB*F2(JM1)
2310 S3=S3-BB*F3(JM1)
2311 END DO
2312 Z1(IM1)=Z1(IM1)+S1*FAC1
2313 Z2(IM1)=Z2(IM1)+S2*ALPHN-S3*BETAN
2314 Z3(IM1)=Z3(IM1)+S3*ALPHN+S2*BETAN
2315 END DO
2316 IF (IJOB.EQ.14) GOTO 45
2317 GOTO 48
2319 C -----------------------------------------------------------
2321 4 CONTINUE
2322 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
2323 DO I=1,N
2324 S1=0.0D0
2325 S2=0.0D0
2326 S3=0.0D0
2327 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2328 BB=FMAS(I-J+MBDIAG,J)
2329 S1=S1-BB*F1(J)
2330 S2=S2-BB*F2(J)
2331 S3=S3-BB*F3(J)
2332 END DO
2333 Z1(I)=Z1(I)+S1*FAC1
2334 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2335 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2336 END DO
2337 CALL SOLB (N,LDE1,E1,MLE,MUE,Z1,IP1)
2338 CALL SOLBC(N,LDE1,E2R,E2I,MLE,MUE,Z2,Z3,IP2)
2339 RETURN
2341 C -----------------------------------------------------------
2343 5 CONTINUE
2344 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
2345 DO I=1,N
2346 S1=0.0D0
2347 S2=0.0D0
2348 S3=0.0D0
2349 DO J=1,N
2350 BB=FMAS(I,J)
2351 S1=S1-BB*F1(J)
2352 S2=S2-BB*F2(J)
2353 S3=S3-BB*F3(J)
2354 END DO
2355 Z1(I)=Z1(I)+S1*FAC1
2356 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2357 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2358 END DO
2359 CALL SOL (N,LDE1,E1,Z1,IP1)
2360 CALL SOLC(N,LDE1,E2R,E2I,Z2,Z3,IP2)
2361 RETURN
2363 C -----------------------------------------------------------
2365 15 CONTINUE
2366 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
2367 DO I=1,M1
2368 S2=-F2(I)
2369 S3=-F3(I)
2370 Z1(I)=Z1(I)-F1(I)*FAC1
2371 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2372 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2373 END DO
2374 DO I=1,NM1
2375 IM1=I+M1
2376 S1=0.0D0
2377 S2=0.0D0
2378 S3=0.0D0
2379 DO J=1,NM1
2380 JM1=J+M1
2381 BB=FMAS(I,J)
2382 S1=S1-BB*F1(JM1)
2383 S2=S2-BB*F2(JM1)
2384 S3=S3-BB*F3(JM1)
2385 END DO
2386 Z1(IM1)=Z1(IM1)+S1*FAC1
2387 Z2(IM1)=Z2(IM1)+S2*ALPHN-S3*BETAN
2388 Z3(IM1)=Z3(IM1)+S3*ALPHN+S2*BETAN
2389 END DO
2390 GOTO 48
2392 C -----------------------------------------------------------
2394 6 CONTINUE
2395 C --- B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
2396 C --- THIS OPTION IS NOT PROVIDED
2397 RETURN
2399 C -----------------------------------------------------------
2401 7 CONTINUE
2402 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
2403 DO I=1,N
2404 S2=-F2(I)
2405 S3=-F3(I)
2406 Z1(I)=Z1(I)-F1(I)*FAC1
2407 Z2(I)=Z2(I)+S2*ALPHN-S3*BETAN
2408 Z3(I)=Z3(I)+S3*ALPHN+S2*BETAN
2409 END DO
2410 DO MM=N-2,1,-1
2411 MP=N-MM
2412 MP1=MP-1
2413 I=IPHES(MP)
2414 IF (I.EQ.MP) GOTO 746
2415 ZSAFE=Z1(MP)
2416 Z1(MP)=Z1(I)
2417 Z1(I)=ZSAFE
2418 ZSAFE=Z2(MP)
2419 Z2(MP)=Z2(I)
2420 Z2(I)=ZSAFE
2421 ZSAFE=Z3(MP)
2422 Z3(MP)=Z3(I)
2423 Z3(I)=ZSAFE
2424 746 CONTINUE
2425 DO I=MP+1,N
2426 E1IMP=FJAC(I,MP1)
2427 Z1(I)=Z1(I)-E1IMP*Z1(MP)
2428 Z2(I)=Z2(I)-E1IMP*Z2(MP)
2429 Z3(I)=Z3(I)-E1IMP*Z3(MP)
2430 END DO
2431 END DO
2432 CALL SOLH(N,LDE1,E1,1,Z1,IP1)
2433 CALL SOLHC(N,LDE1,E2R,E2I,1,Z2,Z3,IP2)
2434 DO MM=1,N-2
2435 MP=N-MM
2436 MP1=MP-1
2437 DO I=MP+1,N
2438 E1IMP=FJAC(I,MP1)
2439 Z1(I)=Z1(I)+E1IMP*Z1(MP)
2440 Z2(I)=Z2(I)+E1IMP*Z2(MP)
2441 Z3(I)=Z3(I)+E1IMP*Z3(MP)
2442 END DO
2443 I=IPHES(MP)
2444 IF (I.EQ.MP) GOTO 750
2445 ZSAFE=Z1(MP)
2446 Z1(MP)=Z1(I)
2447 Z1(I)=ZSAFE
2448 ZSAFE=Z2(MP)
2449 Z2(MP)=Z2(I)
2450 Z2(I)=ZSAFE
2451 ZSAFE=Z3(MP)
2452 Z3(MP)=Z3(I)
2453 Z3(I)=ZSAFE
2454 750 CONTINUE
2455 END DO
2456 RETURN
2458 C -----------------------------------------------------------
2460 55 CONTINUE
2461 RETURN
2464 C END OF SUBROUTINE SLVRAD
2466 C ***********************************************************
2468 SUBROUTINE ESTRAD(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
2469 & H,DD1,DD2,DD3,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,
2470 & E1,LDE1,Z1,Z2,Z3,CONT,F1,F2,IP1,IPHES,SCAL,ERR,
2471 & FIRST,REJECT,FAC1,RPAR,IPAR)
2472 IMPLICIT KPP_REAL (A-H,O-Z)
2473 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E1(LDE1,NM1),IP1(NM1),
2474 & SCAL(N),IPHES(N),Z1(N),Z2(N),Z3(N),F1(N),F2(N),Y0(N),Y(N)
2475 DIMENSION CONT(N),RPAR(1),IPAR(1)
2476 LOGICAL FIRST,REJECT
2477 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
2478 EXTERNAL FCN
2479 HEE1=DD1/H
2480 HEE2=DD2/H
2481 HEE3=DD3/H
2482 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,14,15), IJOB
2484 1 CONTINUE
2485 C ------ B=IDENTITY, JACOBIAN A FULL MATRIX
2486 DO I=1,N
2487 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2488 CONT(I)=F2(I)+Y0(I)
2489 END DO
2490 CALL SOL (N,LDE1,E1,CONT,IP1)
2491 GOTO 77
2493 11 CONTINUE
2494 C ------ B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
2495 DO I=1,N
2496 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2497 CONT(I)=F2(I)+Y0(I)
2498 END DO
2499 48 MM=M1/M2
2500 DO J=1,M2
2501 SUM1=0.D0
2502 DO K=MM-1,0,-1
2503 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
2504 DO I=1,NM1
2505 IM1=I+M1
2506 CONT(IM1)=CONT(IM1)+FJAC(I,J+K*M2)*SUM1
2507 END DO
2508 END DO
2509 END DO
2510 CALL SOL (NM1,LDE1,E1,CONT(M1+1),IP1)
2511 DO I=M1,1,-1
2512 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
2513 END DO
2514 GOTO 77
2516 2 CONTINUE
2517 C ------ B=IDENTITY, JACOBIAN A BANDED MATRIX
2518 DO I=1,N
2519 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2520 CONT(I)=F2(I)+Y0(I)
2521 END DO
2522 CALL SOLB (N,LDE1,E1,MLE,MUE,CONT,IP1)
2523 GOTO 77
2525 12 CONTINUE
2526 C ------ B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
2527 DO I=1,N
2528 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2529 CONT(I)=F2(I)+Y0(I)
2530 END DO
2531 45 MM=M1/M2
2532 DO J=1,M2
2533 SUM1=0.D0
2534 DO K=MM-1,0,-1
2535 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
2536 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
2537 IM1=I+M1
2538 CONT(IM1)=CONT(IM1)+FJAC(I+MUJAC+1-J,J+K*M2)*SUM1
2539 END DO
2540 END DO
2541 END DO
2542 CALL SOLB (NM1,LDE1,E1,MLE,MUE,CONT(M1+1),IP1)
2543 DO I=M1,1,-1
2544 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
2545 END DO
2546 GOTO 77
2548 3 CONTINUE
2549 C ------ B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
2550 DO I=1,N
2551 F1(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2552 END DO
2553 DO I=1,N
2554 SUM=0.D0
2555 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2556 SUM=SUM+FMAS(I-J+MBDIAG,J)*F1(J)
2557 END DO
2558 F2(I)=SUM
2559 CONT(I)=SUM+Y0(I)
2560 END DO
2561 CALL SOL (N,LDE1,E1,CONT,IP1)
2562 GOTO 77
2564 13 CONTINUE
2565 C ------ B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
2566 DO I=1,M1
2567 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2568 CONT(I)=F2(I)+Y0(I)
2569 END DO
2570 DO I=M1+1,N
2571 F1(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2572 END DO
2573 DO I=1,NM1
2574 SUM=0.D0
2575 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
2576 SUM=SUM+FMAS(I-J+MBDIAG,J)*F1(J+M1)
2577 END DO
2578 IM1=I+M1
2579 F2(IM1)=SUM
2580 CONT(IM1)=SUM+Y0(IM1)
2581 END DO
2582 GOTO 48
2584 4 CONTINUE
2585 C ------ B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
2586 DO I=1,N
2587 F1(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2588 END DO
2589 DO I=1,N
2590 SUM=0.D0
2591 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2592 SUM=SUM+FMAS(I-J+MBDIAG,J)*F1(J)
2593 END DO
2594 F2(I)=SUM
2595 CONT(I)=SUM+Y0(I)
2596 END DO
2597 CALL SOLB (N,LDE1,E1,MLE,MUE,CONT,IP1)
2598 GOTO 77
2600 14 CONTINUE
2601 C ------ B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX, SECOND ORDER
2602 DO I=1,M1
2603 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2604 CONT(I)=F2(I)+Y0(I)
2605 END DO
2606 DO I=M1+1,N
2607 F1(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2608 END DO
2609 DO I=1,NM1
2610 SUM=0.D0
2611 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
2612 SUM=SUM+FMAS(I-J+MBDIAG,J)*F1(J+M1)
2613 END DO
2614 IM1=I+M1
2615 F2(IM1)=SUM
2616 CONT(IM1)=SUM+Y0(IM1)
2617 END DO
2618 GOTO 45
2620 5 CONTINUE
2621 C ------ B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
2622 DO I=1,N
2623 F1(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2624 END DO
2625 DO I=1,N
2626 SUM=0.D0
2627 DO J=1,N
2628 SUM=SUM+FMAS(I,J)*F1(J)
2629 END DO
2630 F2(I)=SUM
2631 CONT(I)=SUM+Y0(I)
2632 END DO
2633 CALL SOL (N,LDE1,E1,CONT,IP1)
2634 GOTO 77
2636 15 CONTINUE
2637 C ------ B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
2638 DO I=1,M1
2639 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2640 CONT(I)=F2(I)+Y0(I)
2641 END DO
2642 DO I=M1+1,N
2643 F1(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2644 END DO
2645 DO I=1,NM1
2646 SUM=0.D0
2647 DO J=1,NM1
2648 SUM=SUM+FMAS(I,J)*F1(J+M1)
2649 END DO
2650 IM1=I+M1
2651 F2(IM1)=SUM
2652 CONT(IM1)=SUM+Y0(IM1)
2653 END DO
2654 GOTO 48
2656 6 CONTINUE
2657 C ------ B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
2658 C ------ THIS OPTION IS NOT PROVIDED
2659 RETURN
2661 7 CONTINUE
2662 C ------ B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
2663 DO I=1,N
2664 F2(I)=HEE1*Z1(I)+HEE2*Z2(I)+HEE3*Z3(I)
2665 CONT(I)=F2(I)+Y0(I)
2666 END DO
2667 DO MM=N-2,1,-1
2668 MP=N-MM
2669 I=IPHES(MP)
2670 IF (I.EQ.MP) GOTO 310
2671 ZSAFE=CONT(MP)
2672 CONT(MP)=CONT(I)
2673 CONT(I)=ZSAFE
2674 310 CONTINUE
2675 DO I=MP+1,N
2676 CONT(I)=CONT(I)-FJAC(I,MP-1)*CONT(MP)
2677 END DO
2678 END DO
2679 CALL SOLH(N,LDE1,E1,1,CONT,IP1)
2680 DO MM=1,N-2
2681 MP=N-MM
2682 DO I=MP+1,N
2683 CONT(I)=CONT(I)+FJAC(I,MP-1)*CONT(MP)
2684 END DO
2685 I=IPHES(MP)
2686 IF (I.EQ.MP) GOTO 440
2687 ZSAFE=CONT(MP)
2688 CONT(MP)=CONT(I)
2689 CONT(I)=ZSAFE
2690 440 CONTINUE
2691 END DO
2693 C --------------------------------------
2695 77 CONTINUE
2696 ERR=0.D0
2697 DO I=1,N
2698 ERR=ERR+(CONT(I)/SCAL(I))**2
2699 END DO
2700 ERR=MAX(SQRT(ERR/N),1.D-10)
2702 IF (ERR.LT.1.D0) RETURN
2703 IF (FIRST.OR.REJECT) THEN
2704 DO I=1,N
2705 CONT(I)=Y(I)+CONT(I)
2706 END DO
2707 CALL FCN(N,X,CONT,F1,RPAR,IPAR)
2708 NFCN=NFCN+1
2709 DO I=1,N
2710 CONT(I)=F1(I)+F2(I)
2711 END DO
2712 GOTO (31,32,31,32,31,32,33,55,55,55,41,42,41,42,41), IJOB
2713 C ------ FULL MATRIX OPTION
2714 31 CONTINUE
2715 CALL SOL(N,LDE1,E1,CONT,IP1)
2716 GOTO 88
2717 C ------ FULL MATRIX OPTION, SECOND ORDER
2718 41 CONTINUE
2719 DO J=1,M2
2720 SUM1=0.D0
2721 DO K=MM-1,0,-1
2722 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
2723 DO I=1,NM1
2724 IM1=I+M1
2725 CONT(IM1)=CONT(IM1)+FJAC(I,J+K*M2)*SUM1
2726 END DO
2727 END DO
2728 END DO
2729 CALL SOL(NM1,LDE1,E1,CONT(M1+1),IP1)
2730 DO I=M1,1,-1
2731 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
2732 END DO
2733 GOTO 88
2734 C ------ BANDED MATRIX OPTION
2735 32 CONTINUE
2736 CALL SOLB (N,LDE1,E1,MLE,MUE,CONT,IP1)
2737 GOTO 88
2738 C ------ BANDED MATRIX OPTION, SECOND ORDER
2739 42 CONTINUE
2740 DO J=1,M2
2741 SUM1=0.D0
2742 DO K=MM-1,0,-1
2743 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
2744 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
2745 IM1=I+M1
2746 CONT(IM1)=CONT(IM1)+FJAC(I+MUJAC+1-J,J+K*M2)*SUM1
2747 END DO
2748 END DO
2749 END DO
2750 CALL SOLB (NM1,LDE1,E1,MLE,MUE,CONT(M1+1),IP1)
2751 DO I=M1,1,-1
2752 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
2753 END DO
2754 GOTO 88
2755 C ------ HESSENBERG MATRIX OPTION
2756 33 CONTINUE
2757 DO MM=N-2,1,-1
2758 MP=N-MM
2759 I=IPHES(MP)
2760 IF (I.EQ.MP) GOTO 510
2761 ZSAFE=CONT(MP)
2762 CONT(MP)=CONT(I)
2763 CONT(I)=ZSAFE
2764 510 CONTINUE
2765 DO I=MP+1,N
2766 CONT(I)=CONT(I)-FJAC(I,MP-1)*CONT(MP)
2767 END DO
2768 END DO
2769 CALL SOLH(N,LDE1,E1,1,CONT,IP1)
2770 DO MM=1,N-2
2771 MP=N-MM
2772 DO I=MP+1,N
2773 CONT(I)=CONT(I)+FJAC(I,MP-1)*CONT(MP)
2774 END DO
2775 I=IPHES(MP)
2776 IF (I.EQ.MP) GOTO 640
2777 ZSAFE=CONT(MP)
2778 CONT(MP)=CONT(I)
2779 CONT(I)=ZSAFE
2780 640 CONTINUE
2781 END DO
2782 C -----------------------------------
2783 88 CONTINUE
2784 ERR=0.D0
2785 DO I=1,N
2786 ERR=ERR+(CONT(I)/SCAL(I))**2
2787 END DO
2788 ERR=MAX(SQRT(ERR/N),1.D-10)
2789 END IF
2790 RETURN
2791 C -----------------------------------------------------------
2792 55 CONTINUE
2793 RETURN
2796 C END OF SUBROUTINE ESTRAD
2798 C ***********************************************************
2800 SUBROUTINE ESTRAV(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
2801 & H,DD,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,NS,NNS,
2802 & E1,LDE1,ZZ,CONT,FF,IP1,IPHES,SCAL,ERR,
2803 & FIRST,REJECT,FAC1,RPAR,IPAR)
2804 IMPLICIT KPP_REAL (A-H,O-Z)
2805 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E1(LDE1,NM1),IP1(NM1),
2806 & SCAL(N),IPHES(N),ZZ(NNS),FF(NNS),Y0(N),Y(N)
2807 DIMENSION DD(NS),CONT(N),RPAR(1),IPAR(1)
2808 LOGICAL FIRST,REJECT
2809 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
2810 EXTERNAL FCN
2812 GOTO (1,2,3,4,5,6,7,55,55,55,11,12,13,14,15), IJOB
2814 1 CONTINUE
2815 C ------ B=IDENTITY, JACOBIAN A FULL MATRIX
2816 DO I=1,N
2817 SUM=0.D0
2818 DO K=1,NS
2819 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2820 END DO
2821 FF(I+N)=SUM/H
2822 CONT(I)=FF(I+N)+Y0(I)
2823 END DO
2824 CALL SOL (N,LDE1,E1,CONT,IP1)
2825 GOTO 77
2827 11 CONTINUE
2828 C ------ B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
2829 DO I=1,N
2830 SUM=0.D0
2831 DO K=1,NS
2832 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2833 END DO
2834 FF(I+N)=SUM/H
2835 CONT(I)=FF(I+N)+Y0(I)
2836 END DO
2837 48 MM=M1/M2
2838 DO J=1,M2
2839 SUM1=0.D0
2840 DO K=MM-1,0,-1
2841 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
2842 DO I=1,NM1
2843 IM1=I+M1
2844 CONT(IM1)=CONT(IM1)+FJAC(I,J+K*M2)*SUM1
2845 END DO
2846 END DO
2847 END DO
2848 CALL SOL (NM1,LDE1,E1,CONT(M1+1),IP1)
2849 DO I=M1,1,-1
2850 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
2851 END DO
2852 GOTO 77
2854 2 CONTINUE
2855 C ------ B=IDENTITY, JACOBIAN A BANDED MATRIX
2856 DO I=1,N
2857 SUM=0.D0
2858 DO K=1,NS
2859 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2860 END DO
2861 FF(I+N)=SUM/H
2862 CONT(I)=FF(I+N)+Y0(I)
2863 END DO
2864 CALL SOLB (N,LDE1,E1,MLE,MUE,CONT,IP1)
2865 GOTO 77
2867 12 CONTINUE
2868 C ------ B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
2869 DO I=1,N
2870 SUM=0.D0
2871 DO K=1,NS
2872 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2873 END DO
2874 FF(I+N)=SUM/H
2875 CONT(I)=FF(I+N)+Y0(I)
2876 END DO
2877 45 MM=M1/M2
2878 DO J=1,M2
2879 SUM1=0.D0
2880 DO K=MM-1,0,-1
2881 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
2882 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
2883 IM1=I+M1
2884 CONT(IM1)=CONT(IM1)+FJAC(I+MUJAC+1-J,J+K*M2)*SUM1
2885 END DO
2886 END DO
2887 END DO
2888 CALL SOLB (NM1,LDE1,E1,MLE,MUE,CONT(M1+1),IP1)
2889 DO I=M1,1,-1
2890 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
2891 END DO
2892 GOTO 77
2894 3 CONTINUE
2895 C ------ B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
2896 DO I=1,N
2897 SUM=0.D0
2898 DO K=1,NS
2899 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2900 END DO
2901 FF(I)=SUM/H
2902 END DO
2903 DO I=1,N
2904 SUM=0.D0
2905 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2906 SUM=SUM+FMAS(I-J+MBDIAG,J)*FF(J)
2907 END DO
2908 FF(I+N)=SUM
2909 CONT(I)=SUM+Y0(I)
2910 END DO
2911 CALL SOL (N,LDE1,E1,CONT,IP1)
2912 GOTO 77
2914 13 CONTINUE
2915 C ------ B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
2916 DO I=1,M1
2917 SUM=0.D0
2918 DO K=1,NS
2919 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2920 END DO
2921 FF(I+N)=SUM/H
2922 CONT(I)=FF(I+N)+Y0(I)
2923 END DO
2924 DO I=M1+1,N
2925 SUM=0.D0
2926 DO K=1,NS
2927 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2928 END DO
2929 FF(I)=SUM/H
2930 END DO
2931 DO I=1,NM1
2932 SUM=0.D0
2933 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
2934 SUM=SUM+FMAS(I-J+MBDIAG,J)*FF(J+M1)
2935 END DO
2936 IM1=I+M1
2937 FF(IM1+N)=SUM
2938 CONT(IM1)=SUM+Y0(IM1)
2939 END DO
2940 GOTO 48
2942 4 CONTINUE
2943 C ------ B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
2944 DO I=1,N
2945 SUM=0.D0
2946 DO K=1,NS
2947 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2948 END DO
2949 FF(I)=SUM/H
2950 END DO
2951 DO I=1,N
2952 SUM=0.D0
2953 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
2954 SUM=SUM+FMAS(I-J+MBDIAG,J)*FF(J)
2955 END DO
2956 FF(I+N)=SUM
2957 CONT(I)=SUM+Y0(I)
2958 END DO
2959 CALL SOLB (N,LDE1,E1,MLE,MUE,CONT,IP1)
2960 GOTO 77
2962 14 CONTINUE
2963 C ------ B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX, SECOND ORDER
2964 DO I=1,M1
2965 SUM=0.D0
2966 DO K=1,NS
2967 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2968 END DO
2969 FF(I+N)=SUM/H
2970 CONT(I)=FF(I+N)+Y0(I)
2971 END DO
2972 DO I=M1+1,N
2973 SUM=0.D0
2974 DO K=1,NS
2975 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2976 END DO
2977 FF(I)=SUM/H
2978 END DO
2979 DO I=1,NM1
2980 SUM=0.D0
2981 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
2982 SUM=SUM+FMAS(I-J+MBDIAG,J)*FF(J+M1)
2983 END DO
2984 IM1=I+M1
2985 FF(IM1+N)=SUM
2986 CONT(IM1)=SUM+Y0(IM1)
2987 END DO
2988 GOTO 45
2990 5 CONTINUE
2991 C ------ B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
2992 DO I=1,N
2993 SUM=0.D0
2994 DO K=1,NS
2995 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
2996 END DO
2997 FF(I)=SUM/H
2998 END DO
2999 DO I=1,N
3000 SUM=0.D0
3001 DO J=1,N
3002 SUM=SUM+FMAS(I,J)*FF(J)
3003 END DO
3004 FF(I+N)=SUM
3005 CONT(I)=SUM+Y0(I)
3006 END DO
3007 CALL SOL (N,LDE1,E1,CONT,IP1)
3008 GOTO 77
3010 15 CONTINUE
3011 C ------ B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
3012 DO I=1,M1
3013 SUM=0.D0
3014 DO K=1,NS
3015 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
3016 END DO
3017 FF(I+N)=SUM/H
3018 CONT(I)=FF(I+N)+Y0(I)
3019 END DO
3020 DO I=M1+1,N
3021 SUM=0.D0
3022 DO K=1,NS
3023 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
3024 END DO
3025 FF(I)=SUM/H
3026 END DO
3027 DO I=1,NM1
3028 SUM=0.D0
3029 DO J=1,NM1
3030 SUM=SUM+FMAS(I,J)*FF(J+M1)
3031 END DO
3032 IM1=I+M1
3033 FF(IM1+N)=SUM
3034 CONT(IM1)=SUM+Y0(IM1)
3035 END DO
3036 GOTO 48
3038 6 CONTINUE
3039 C ------ B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
3040 C ------ THIS OPTION IS NOT PROVIDED
3041 RETURN
3043 7 CONTINUE
3044 C ------ B=IDENTITY, JACOBIAN A FULL MATRIX, HESSENBERG-OPTION
3045 DO I=1,N
3046 SUM=0.D0
3047 DO K=1,NS
3048 SUM=SUM+DD(K)*ZZ(I+(K-1)*N)
3049 END DO
3050 FF(I+N)=SUM/H
3051 CONT(I)=FF(I+N)+Y0(I)
3052 END DO
3053 DO MM=N-2,1,-1
3054 MP=N-MM
3055 I=IPHES(MP)
3056 IF (I.EQ.MP) GOTO 310
3057 ZSAFE=CONT(MP)
3058 CONT(MP)=CONT(I)
3059 CONT(I)=ZSAFE
3060 310 CONTINUE
3061 DO I=MP+1,N
3062 CONT(I)=CONT(I)-FJAC(I,MP-1)*CONT(MP)
3063 END DO
3064 END DO
3065 CALL SOLH(N,LDE1,E1,1,CONT,IP1)
3066 DO MM=1,N-2
3067 MP=N-MM
3068 DO I=MP+1,N
3069 CONT(I)=CONT(I)+FJAC(I,MP-1)*CONT(MP)
3070 END DO
3071 I=IPHES(MP)
3072 IF (I.EQ.MP) GOTO 440
3073 ZSAFE=CONT(MP)
3074 CONT(MP)=CONT(I)
3075 CONT(I)=ZSAFE
3076 440 CONTINUE
3077 END DO
3079 C --------------------------------------
3081 77 CONTINUE
3082 ERR=0.D0
3083 DO I=1,N
3084 ERR=ERR+(CONT(I)/SCAL(I))**2
3085 END DO
3086 ERR=MAX(SQRT(ERR/N),1.D-10)
3088 IF (ERR.LT.1.D0) RETURN
3089 IF (FIRST.OR.REJECT) THEN
3090 DO I=1,N
3091 CONT(I)=Y(I)+CONT(I)
3092 END DO
3093 CALL FCN(N,X,CONT,FF,RPAR,IPAR)
3094 NFCN=NFCN+1
3095 DO I=1,N
3096 CONT(I)=FF(I)+FF(I+N)
3097 END DO
3098 GOTO (31,32,31,32,31,32,33,55,55,55,41,42,41,42,41), IJOB
3099 C ------ FULL MATRIX OPTION
3100 31 CONTINUE
3101 CALL SOL (N,LDE1,E1,CONT,IP1)
3102 GOTO 88
3103 C ------ FULL MATRIX OPTION, SECOND ORDER
3104 41 CONTINUE
3105 DO J=1,M2
3106 SUM1=0.D0
3107 DO K=MM-1,0,-1
3108 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
3109 DO I=1,NM1
3110 IM1=I+M1
3111 CONT(IM1)=CONT(IM1)+FJAC(I,J+K*M2)*SUM1
3112 END DO
3113 END DO
3114 END DO
3115 CALL SOL (NM1,LDE1,E1,CONT(M1+1),IP1)
3116 DO I=M1,1,-1
3117 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
3118 END DO
3119 GOTO 88
3120 C ------ BANDED MATRIX OPTION
3121 32 CONTINUE
3122 CALL SOLB (N,LDE1,E1,MLE,MUE,CONT,IP1)
3123 GOTO 88
3124 C ------ BANDED MATRIX OPTION, SECOND ORDER
3125 42 CONTINUE
3126 DO J=1,M2
3127 SUM1=0.D0
3128 DO K=MM-1,0,-1
3129 SUM1=(CONT(J+K*M2)+SUM1)/FAC1
3130 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
3131 IM1=I+M1
3132 CONT(IM1)=CONT(IM1)+FJAC(I+MUJAC+1-J,J+K*M2)*SUM1
3133 END DO
3134 END DO
3135 END DO
3136 CALL SOLB (NM1,LDE1,E1,MLE,MUE,CONT(M1+1),IP1)
3137 DO I=M1,1,-1
3138 CONT(I)=(CONT(I)+CONT(M2+I))/FAC1
3139 END DO
3140 GOTO 88
3141 C ------ HESSENBERG MATRIX OPTION
3142 33 CONTINUE
3143 DO MM=N-2,1,-1
3144 MP=N-MM
3145 I=IPHES(MP)
3146 IF (I.EQ.MP) GOTO 510
3147 ZSAFE=CONT(MP)
3148 CONT(MP)=CONT(I)
3149 CONT(I)=ZSAFE
3150 510 CONTINUE
3151 DO I=MP+1,N
3152 CONT(I)=CONT(I)-FJAC(I,MP-1)*CONT(MP)
3153 END DO
3154 END DO
3155 CALL SOLH(N,LDE1,E1,1,CONT,IP1)
3156 DO MM=1,N-2
3157 MP=N-MM
3158 DO I=MP+1,N
3159 CONT(I)=CONT(I)+FJAC(I,MP-1)*CONT(MP)
3160 END DO
3161 I=IPHES(MP)
3162 IF (I.EQ.MP) GOTO 640
3163 ZSAFE=CONT(MP)
3164 CONT(MP)=CONT(I)
3165 CONT(I)=ZSAFE
3166 640 CONTINUE
3167 END DO
3168 C -----------------------------------
3169 88 CONTINUE
3170 ERR=0.D0
3171 DO I=1,N
3172 ERR=ERR+(CONT(I)/SCAL(I))**2
3173 END DO
3174 ERR=MAX(SQRT(ERR/N),1.D-10)
3175 END IF
3176 RETURN
3178 C -----------------------------------------------------------
3180 55 CONTINUE
3181 RETURN
3184 C END OF SUBROUTINE ESTRAV
3186 C ***********************************************************
3188 SUBROUTINE SLVROD(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
3189 & M1,M2,NM1,FAC1,E,LDE,IP,DY,AK,FX,YNEW,HD,IJOB,STAGE1)
3190 IMPLICIT KPP_REAL (A-H,O-Z)
3191 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E(LDE,NM1),
3192 & IP(NM1),DY(N),AK(N),FX(N),YNEW(N)
3193 LOGICAL STAGE1
3194 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
3196 IF (HD.EQ.0.D0) THEN
3197 DO I=1,N
3198 AK(I)=DY(I)
3199 END DO
3200 ELSE
3201 DO I=1,N
3202 AK(I)=DY(I)+HD*FX(I)
3203 END DO
3204 END IF
3206 GOTO (1,2,3,4,5,6,55,55,55,55,11,12,13,13,15), IJOB
3208 C -----------------------------------------------------------
3210 1 CONTINUE
3211 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
3212 IF (STAGE1) THEN
3213 DO I=1,N
3214 AK(I)=AK(I)+YNEW(I)
3215 END DO
3216 END IF
3217 CALL SOL (N,LDE,E,AK,IP)
3218 RETURN
3220 C -----------------------------------------------------------
3222 11 CONTINUE
3223 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
3224 IF (STAGE1) THEN
3225 DO I=1,N
3226 AK(I)=AK(I)+YNEW(I)
3227 END DO
3228 END IF
3229 48 MM=M1/M2
3230 DO J=1,M2
3231 SUM=0.D0
3232 DO K=MM-1,0,-1
3233 JKM=J+K*M2
3234 SUM=(AK(JKM)+SUM)/FAC1
3235 DO I=1,NM1
3236 IM1=I+M1
3237 AK(IM1)=AK(IM1)+FJAC(I,JKM)*SUM
3238 END DO
3239 END DO
3240 END DO
3241 CALL SOL (NM1,LDE,E,AK(M1+1),IP)
3242 DO I=M1,1,-1
3243 AK(I)=(AK(I)+AK(M2+I))/FAC1
3244 END DO
3245 RETURN
3247 C -----------------------------------------------------------
3249 2 CONTINUE
3250 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
3251 IF (STAGE1) THEN
3252 DO I=1,N
3253 AK(I)=AK(I)+YNEW(I)
3254 END DO
3255 END IF
3256 CALL SOLB (N,LDE,E,MLE,MUE,AK,IP)
3257 RETURN
3259 C -----------------------------------------------------------
3261 12 CONTINUE
3262 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
3263 IF (STAGE1) THEN
3264 DO I=1,N
3265 AK(I)=AK(I)+YNEW(I)
3266 END DO
3267 END IF
3268 45 MM=M1/M2
3269 DO J=1,M2
3270 SUM=0.D0
3271 DO K=MM-1,0,-1
3272 JKM=J+K*M2
3273 SUM=(AK(JKM)+SUM)/FAC1
3274 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
3275 IM1=I+M1
3276 AK(IM1)=AK(IM1)+FJAC(I+MUJAC+1-J,JKM)*SUM
3277 END DO
3278 END DO
3279 END DO
3280 CALL SOLB (NM1,LDE,E,MLE,MUE,AK(M1+1),IP)
3281 DO I=M1,1,-1
3282 AK(I)=(AK(I)+AK(M2+I))/FAC1
3283 END DO
3284 RETURN
3286 C -----------------------------------------------------------
3288 3 CONTINUE
3289 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX
3290 IF (STAGE1) THEN
3291 DO I=1,N
3292 SUM=0.D0
3293 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
3294 SUM=SUM+FMAS(I-J+MBDIAG,J)*YNEW(J)
3295 END DO
3296 AK(I)=AK(I)+SUM
3297 END DO
3298 END IF
3299 CALL SOL (N,LDE,E,AK,IP)
3300 RETURN
3302 C -----------------------------------------------------------
3304 13 CONTINUE
3305 C --- B IS A BANDED MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
3306 IF (STAGE1) THEN
3307 DO I=1,M1
3308 AK(I)=AK(I)+YNEW(I)
3309 END DO
3310 DO I=1,NM1
3311 SUM=0.D0
3312 DO J=MAX(1,I-MLMAS),MIN(NM1,I+MUMAS)
3313 SUM=SUM+FMAS(I-J+MBDIAG,J)*YNEW(J+M1)
3314 END DO
3315 IM1=I+M1
3316 AK(IM1)=AK(IM1)+SUM
3317 END DO
3318 END IF
3319 IF (IJOB.EQ.14) GOTO 45
3320 GOTO 48
3322 C -----------------------------------------------------------
3324 4 CONTINUE
3325 C --- B IS A BANDED MATRIX, JACOBIAN A BANDED MATRIX
3326 IF (STAGE1) THEN
3327 DO I=1,N
3328 SUM=0.D0
3329 DO J=MAX(1,I-MLMAS),MIN(N,I+MUMAS)
3330 SUM=SUM+FMAS(I-J+MBDIAG,J)*YNEW(J)
3331 END DO
3332 AK(I)=AK(I)+SUM
3333 END DO
3334 END IF
3335 CALL SOLB (N,LDE,E,MLE,MUE,AK,IP)
3336 RETURN
3338 C -----------------------------------------------------------
3340 5 CONTINUE
3341 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX
3342 IF (STAGE1) THEN
3343 DO I=1,N
3344 SUM=0.D0
3345 DO J=1,N
3346 SUM=SUM+FMAS(I,J)*YNEW(J)
3347 END DO
3348 AK(I)=AK(I)+SUM
3349 END DO
3350 END IF
3351 CALL SOL (N,LDE,E,AK,IP)
3352 RETURN
3354 C -----------------------------------------------------------
3356 15 CONTINUE
3357 C --- B IS A FULL MATRIX, JACOBIAN A FULL MATRIX, SECOND ORDER
3358 IF (STAGE1) THEN
3359 DO I=1,M1
3360 AK(I)=AK(I)+YNEW(I)
3361 END DO
3362 DO I=1,NM1
3363 SUM=0.D0
3364 DO J=1,NM1
3365 SUM=SUM+FMAS(I,J)*YNEW(J+M1)
3366 END DO
3367 IM1=I+M1
3368 AK(IM1)=AK(IM1)+SUM
3369 END DO
3370 END IF
3371 GOTO 48
3373 C -----------------------------------------------------------
3375 6 CONTINUE
3376 C --- B IS A FULL MATRIX, JACOBIAN A BANDED MATRIX
3377 C --- THIS OPTION IS NOT PROVIDED
3378 IF (STAGE1) THEN
3379 DO 624 I=1,N
3380 SUM=0.D0
3381 DO 623 J=1,N
3382 623 SUM=SUM+FMAS(I,J)*YNEW(J)
3383 624 AK(I)=AK(I)+SUM
3384 CALL SOLB (N,LDE,E,MLE,MUE,AK,IP)
3385 END IF
3386 RETURN
3388 C -----------------------------------------------------------
3390 55 CONTINUE
3391 RETURN
3394 C END OF SUBROUTINE SLVROD
3397 C ***********************************************************
3399 SUBROUTINE SLVSEU(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
3400 & M1,M2,NM1,FAC1,E,LDE,IP,IPHES,DEL,IJOB)
3401 IMPLICIT KPP_REAL (A-H,O-Z)
3402 DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),E(LDE,NM1),DEL(N)
3403 DIMENSION IP(NM1),IPHES(N)
3404 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
3406 GOTO (1,2,1,2,1,55,7,55,55,55,11,12,11,12,11), IJOB
3408 C -----------------------------------------------------------
3410 1 CONTINUE
3411 C --- B=IDENTITY, JACOBIAN A FULL MATRIX
3412 CALL SOL (N,LDE,E,DEL,IP)
3413 RETURN
3415 C -----------------------------------------------------------
3417 11 CONTINUE
3418 C --- B=IDENTITY, JACOBIAN A FULL MATRIX, SECOND ORDER
3419 MM=M1/M2
3420 DO J=1,M2
3421 SUM=0.D0
3422 DO K=MM-1,0,-1
3423 JKM=J+K*M2
3424 SUM=(DEL(JKM)+SUM)/FAC1
3425 DO I=1,NM1
3426 IM1=I+M1
3427 DEL(IM1)=DEL(IM1)+FJAC(I,JKM)*SUM
3428 END DO
3429 END DO
3430 END DO
3431 CALL SOL (NM1,LDE,E,DEL(M1+1),IP)
3432 DO I=M1,1,-1
3433 DEL(I)=(DEL(I)+DEL(M2+I))/FAC1
3434 END DO
3435 RETURN
3437 C -----------------------------------------------------------
3439 2 CONTINUE
3440 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX
3441 CALL SOLB (N,LDE,E,MLE,MUE,DEL,IP)
3442 RETURN
3444 C -----------------------------------------------------------
3446 12 CONTINUE
3447 C --- B=IDENTITY, JACOBIAN A BANDED MATRIX, SECOND ORDER
3448 MM=M1/M2
3449 DO J=1,M2
3450 SUM=0.D0
3451 DO K=MM-1,0,-1
3452 JKM=J+K*M2
3453 SUM=(DEL(JKM)+SUM)/FAC1
3454 DO I=MAX(1,J-MUJAC),MIN(NM1,J+MLJAC)
3455 IM1=I+M1
3456 DEL(IM1)=DEL(IM1)+FJAC(I+MUJAC+1-J,JKM)*SUM
3457 END DO
3458 END DO
3459 END DO
3460 CALL SOLB (NM1,LDE,E,MLE,MUE,DEL(M1+1),IP)
3461 DO I=M1,1,-1
3462 DEL(I)=(DEL(I)+DEL(M2+I))/FAC1
3463 END DO
3464 RETURN
3466 C -----------------------------------------------------------
3468 7 CONTINUE
3469 C --- HESSENBERG OPTION
3470 DO MMM=N-2,1,-1
3471 MP=N-MMM
3472 MP1=MP-1
3473 I=IPHES(MP)
3474 IF (I.EQ.MP) GOTO 110
3475 ZSAFE=DEL(MP)
3476 DEL(MP)=DEL(I)
3477 DEL(I)=ZSAFE
3478 110 CONTINUE
3479 DO I=MP+1,N
3480 DEL(I)=DEL(I)-FJAC(I,MP1)*DEL(MP)
3481 END DO
3482 END DO
3483 CALL SOLH(N,LDE,E,1,DEL,IP)
3484 DO MMM=1,N-2
3485 MP=N-MMM
3486 MP1=MP-1
3487 DO I=MP+1,N
3488 DEL(I)=DEL(I)+FJAC(I,MP1)*DEL(MP)
3489 END DO
3490 I=IPHES(MP)
3491 IF (I.EQ.MP) GOTO 240
3492 ZSAFE=DEL(MP)
3493 DEL(MP)=DEL(I)
3494 DEL(I)=ZSAFE
3495 240 CONTINUE
3496 END DO
3497 RETURN
3499 C -----------------------------------------------------------
3501 55 CONTINUE
3502 RETURN
3505 C END OF SUBROUTINE SLVSEU
3507 SUBROUTINE DEC (N, NDIM, A, IP, IER)
3508 C VERSION REAL KPP_REAL
3509 INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
3510 KPP_REAL A,T
3511 DIMENSION A(NDIM,N), IP(N)
3512 C-----------------------------------------------------------------------
3513 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.
3514 C INPUT..
3515 C N = ORDER OF MATRIX.
3516 C NDIM = DECLARED DIMENSION OF ARRAY A .
3517 C A = MATRIX TO BE TRIANGULARIZED.
3518 C OUTPUT..
3519 C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U .
3520 C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
3521 C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
3522 C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
3523 C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
3524 C SINGULAR AT STAGE K.
3525 C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
3526 C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N).
3527 C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
3529 C REFERENCE..
3530 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
3531 C C.A.C.M. 15 (1972), P. 274.
3532 C-----------------------------------------------------------------------
3533 IER = 0
3534 IP(N) = 1
3535 IF (N .EQ. 1) GO TO 70
3536 NM1 = N - 1
3537 DO 60 K = 1,NM1
3538 KP1 = K + 1
3539 M = K
3540 DO 10 I = KP1,N
3541 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
3542 10 CONTINUE
3543 IP(K) = M
3544 T = A(M,K)
3545 IF (M .EQ. K) GO TO 20
3546 IP(N) = -IP(N)
3547 A(M,K) = A(K,K)
3548 A(K,K) = T
3549 20 CONTINUE
3550 IF (T .EQ. 0.D0) GO TO 80
3551 T = 1.D0/T
3552 DO 30 I = KP1,N
3553 30 A(I,K) = -A(I,K)*T
3554 DO 50 J = KP1,N
3555 T = A(M,J)
3556 A(M,J) = A(K,J)
3557 A(K,J) = T
3558 IF (T .EQ. 0.D0) GO TO 45
3559 DO 40 I = KP1,N
3560 40 A(I,J) = A(I,J) + A(I,K)*T
3561 45 CONTINUE
3562 50 CONTINUE
3563 60 CONTINUE
3564 70 K = N
3565 IF (A(N,N) .EQ. 0.D0) GO TO 80
3566 RETURN
3567 80 IER = K
3568 IP(N) = 0
3569 RETURN
3570 C----------------------- END OF SUBROUTINE DEC -------------------------
3574 SUBROUTINE SOL (N, NDIM, A, B, IP)
3575 C VERSION REAL KPP_REAL
3576 INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
3577 KPP_REAL A,B,T
3578 DIMENSION A(NDIM,N), B(N), IP(N)
3579 C-----------------------------------------------------------------------
3580 C SOLUTION OF LINEAR SYSTEM, A*X = B .
3581 C INPUT..
3582 C N = ORDER OF MATRIX.
3583 C NDIM = DECLARED DIMENSION OF ARRAY A .
3584 C A = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
3585 C B = RIGHT HAND SIDE VECTOR.
3586 C IP = PIVOT VECTOR OBTAINED FROM DEC.
3587 C DO NOT USE IF DEC HAS SET IER .NE. 0.
3588 C OUTPUT..
3589 C B = SOLUTION VECTOR, X .
3590 C-----------------------------------------------------------------------
3591 IF (N .EQ. 1) GO TO 50
3592 NM1 = N - 1
3593 DO 20 K = 1,NM1
3594 KP1 = K + 1
3595 M = IP(K)
3596 T = B(M)
3597 B(M) = B(K)
3598 B(K) = T
3599 DO 10 I = KP1,N
3600 10 B(I) = B(I) + A(I,K)*T
3601 20 CONTINUE
3602 DO 40 KB = 1,NM1
3603 KM1 = N - KB
3604 K = KM1 + 1
3605 B(K) = B(K)/A(K,K)
3606 T = -B(K)
3607 DO 30 I = 1,KM1
3608 30 B(I) = B(I) + A(I,K)*T
3609 40 CONTINUE
3610 50 B(1) = B(1)/A(1,1)
3611 RETURN
3612 C----------------------- END OF SUBROUTINE SOL -------------------------
3616 SUBROUTINE DECH (N, NDIM, A, LB, IP, IER)
3617 C VERSION REAL KPP_REAL
3618 INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J,LB,NA
3619 KPP_REAL A,T
3620 DIMENSION A(NDIM,N), IP(N)
3621 C-----------------------------------------------------------------------
3622 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A HESSENBERG
3623 C MATRIX WITH LOWER BANDWIDTH LB
3624 C INPUT..
3625 C N = ORDER OF MATRIX A.
3626 C NDIM = DECLARED DIMENSION OF ARRAY A .
3627 C A = MATRIX TO BE TRIANGULARIZED.
3628 C LB = LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED, LB.GE.1).
3629 C OUTPUT..
3630 C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U .
3631 C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
3632 C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
3633 C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
3634 C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
3635 C SINGULAR AT STAGE K.
3636 C USE SOLH TO OBTAIN SOLUTION OF LINEAR SYSTEM.
3637 C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N).
3638 C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
3640 C REFERENCE..
3641 C THIS IS A SLIGHT MODIFICATION OF
3642 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
3643 C C.A.C.M. 15 (1972), P. 274.
3644 C-----------------------------------------------------------------------
3645 IER = 0
3646 IP(N) = 1
3647 IF (N .EQ. 1) GO TO 70
3648 NM1 = N - 1
3649 DO 60 K = 1,NM1
3650 KP1 = K + 1
3651 M = K
3652 NA = MIN0(N,LB+K)
3653 DO 10 I = KP1,NA
3654 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
3655 10 CONTINUE
3656 IP(K) = M
3657 T = A(M,K)
3658 IF (M .EQ. K) GO TO 20
3659 IP(N) = -IP(N)
3660 A(M,K) = A(K,K)
3661 A(K,K) = T
3662 20 CONTINUE
3663 IF (T .EQ. 0.D0) GO TO 80
3664 T = 1.D0/T
3665 DO 30 I = KP1,NA
3666 30 A(I,K) = -A(I,K)*T
3667 DO 50 J = KP1,N
3668 T = A(M,J)
3669 A(M,J) = A(K,J)
3670 A(K,J) = T
3671 IF (T .EQ. 0.D0) GO TO 45
3672 DO 40 I = KP1,NA
3673 40 A(I,J) = A(I,J) + A(I,K)*T
3674 45 CONTINUE
3675 50 CONTINUE
3676 60 CONTINUE
3677 70 K = N
3678 IF (A(N,N) .EQ. 0.D0) GO TO 80
3679 RETURN
3680 80 IER = K
3681 IP(N) = 0
3682 RETURN
3683 C----------------------- END OF SUBROUTINE DECH ------------------------
3687 SUBROUTINE SOLH (N, NDIM, A, LB, B, IP)
3688 C VERSION REAL KPP_REAL
3689 INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1,LB,NA
3690 KPP_REAL A,B,T
3691 DIMENSION A(NDIM,N), B(N), IP(N)
3692 C-----------------------------------------------------------------------
3693 C SOLUTION OF LINEAR SYSTEM, A*X = B .
3694 C INPUT..
3695 C N = ORDER OF MATRIX A.
3696 C NDIM = DECLARED DIMENSION OF ARRAY A .
3697 C A = TRIANGULARIZED MATRIX OBTAINED FROM DECH.
3698 C LB = LOWER BANDWIDTH OF A.
3699 C B = RIGHT HAND SIDE VECTOR.
3700 C IP = PIVOT VECTOR OBTAINED FROM DEC.
3701 C DO NOT USE IF DECH HAS SET IER .NE. 0.
3702 C OUTPUT..
3703 C B = SOLUTION VECTOR, X .
3704 C-----------------------------------------------------------------------
3705 IF (N .EQ. 1) GO TO 50
3706 NM1 = N - 1
3707 DO 20 K = 1,NM1
3708 KP1 = K + 1
3709 M = IP(K)
3710 T = B(M)
3711 B(M) = B(K)
3712 B(K) = T
3713 NA = MIN0(N,LB+K)
3714 DO 10 I = KP1,NA
3715 10 B(I) = B(I) + A(I,K)*T
3716 20 CONTINUE
3717 DO 40 KB = 1,NM1
3718 KM1 = N - KB
3719 K = KM1 + 1
3720 B(K) = B(K)/A(K,K)
3721 T = -B(K)
3722 DO 30 I = 1,KM1
3723 30 B(I) = B(I) + A(I,K)*T
3724 40 CONTINUE
3725 50 B(1) = B(1)/A(1,1)
3726 RETURN
3727 C----------------------- END OF SUBROUTINE SOLH ------------------------
3730 SUBROUTINE DECC (N, NDIM, AR, AI, IP, IER)
3731 C VERSION COMPLEX KPP_REAL
3732 IMPLICIT KPP_REAL (A-H,O-Z)
3733 INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
3734 DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N)
3735 C-----------------------------------------------------------------------
3736 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION
3737 C ------ MODIFICATION FOR COMPLEX MATRICES --------
3738 C INPUT..
3739 C N = ORDER OF MATRIX.
3740 C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI .
3741 C (AR, AI) = MATRIX TO BE TRIANGULARIZED.
3742 C OUTPUT..
3743 C AR(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; REAL PART.
3744 C AI(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; IMAGINARY PART.
3745 C AR(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
3746 C REAL PART.
3747 C AI(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
3748 C IMAGINARY PART.
3749 C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
3750 C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
3751 C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
3752 C SINGULAR AT STAGE K.
3753 C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
3754 C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
3756 C REFERENCE..
3757 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
3758 C C.A.C.M. 15 (1972), P. 274.
3759 C-----------------------------------------------------------------------
3760 IER = 0
3761 IP(N) = 1
3762 IF (N .EQ. 1) GO TO 70
3763 NM1 = N - 1
3764 DO 60 K = 1,NM1
3765 KP1 = K + 1
3766 M = K
3767 DO 10 I = KP1,N
3768 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT.
3769 & DABS(AR(M,K))+DABS(AI(M,K))) M = I
3770 10 CONTINUE
3771 IP(K) = M
3772 TR = AR(M,K)
3773 TI = AI(M,K)
3774 IF (M .EQ. K) GO TO 20
3775 IP(N) = -IP(N)
3776 AR(M,K) = AR(K,K)
3777 AI(M,K) = AI(K,K)
3778 AR(K,K) = TR
3779 AI(K,K) = TI
3780 20 CONTINUE
3781 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80
3782 DEN=TR*TR+TI*TI
3783 TR=TR/DEN
3784 TI=-TI/DEN
3785 DO 30 I = KP1,N
3786 PRODR=AR(I,K)*TR-AI(I,K)*TI
3787 PRODI=AI(I,K)*TR+AR(I,K)*TI
3788 AR(I,K)=-PRODR
3789 AI(I,K)=-PRODI
3790 30 CONTINUE
3791 DO 50 J = KP1,N
3792 TR = AR(M,J)
3793 TI = AI(M,J)
3794 AR(M,J) = AR(K,J)
3795 AI(M,J) = AI(K,J)
3796 AR(K,J) = TR
3797 AI(K,J) = TI
3798 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 48
3799 IF (TI .EQ. 0.D0) THEN
3800 DO 40 I = KP1,N
3801 PRODR=AR(I,K)*TR
3802 PRODI=AI(I,K)*TR
3803 AR(I,J) = AR(I,J) + PRODR
3804 AI(I,J) = AI(I,J) + PRODI
3805 40 CONTINUE
3806 GO TO 48
3807 END IF
3808 IF (TR .EQ. 0.D0) THEN
3809 DO 45 I = KP1,N
3810 PRODR=-AI(I,K)*TI
3811 PRODI=AR(I,K)*TI
3812 AR(I,J) = AR(I,J) + PRODR
3813 AI(I,J) = AI(I,J) + PRODI
3814 45 CONTINUE
3815 GO TO 48
3816 END IF
3817 DO 47 I = KP1,N
3818 PRODR=AR(I,K)*TR-AI(I,K)*TI
3819 PRODI=AI(I,K)*TR+AR(I,K)*TI
3820 AR(I,J) = AR(I,J) + PRODR
3821 AI(I,J) = AI(I,J) + PRODI
3822 47 CONTINUE
3823 48 CONTINUE
3824 50 CONTINUE
3825 60 CONTINUE
3826 70 K = N
3827 IF (DABS(AR(N,N))+DABS(AI(N,N)) .EQ. 0.D0) GO TO 80
3828 RETURN
3829 80 IER = K
3830 IP(N) = 0
3831 RETURN
3832 C----------------------- END OF SUBROUTINE DECC ------------------------
3836 SUBROUTINE SOLC (N, NDIM, AR, AI, BR, BI, IP)
3837 C VERSION COMPLEX KPP_REAL
3838 IMPLICIT KPP_REAL (A-H,O-Z)
3839 INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
3840 DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N)
3841 C-----------------------------------------------------------------------
3842 C SOLUTION OF LINEAR SYSTEM, A*X = B .
3843 C INPUT..
3844 C N = ORDER OF MATRIX.
3845 C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI.
3846 C (AR,AI) = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
3847 C (BR,BI) = RIGHT HAND SIDE VECTOR.
3848 C IP = PIVOT VECTOR OBTAINED FROM DEC.
3849 C DO NOT USE IF DEC HAS SET IER .NE. 0.
3850 C OUTPUT..
3851 C (BR,BI) = SOLUTION VECTOR, X .
3852 C-----------------------------------------------------------------------
3853 IF (N .EQ. 1) GO TO 50
3854 NM1 = N - 1
3855 DO 20 K = 1,NM1
3856 KP1 = K + 1
3857 M = IP(K)
3858 TR = BR(M)
3859 TI = BI(M)
3860 BR(M) = BR(K)
3861 BI(M) = BI(K)
3862 BR(K) = TR
3863 BI(K) = TI
3864 DO 10 I = KP1,N
3865 PRODR=AR(I,K)*TR-AI(I,K)*TI
3866 PRODI=AI(I,K)*TR+AR(I,K)*TI
3867 BR(I) = BR(I) + PRODR
3868 BI(I) = BI(I) + PRODI
3869 10 CONTINUE
3870 20 CONTINUE
3871 DO 40 KB = 1,NM1
3872 KM1 = N - KB
3873 K = KM1 + 1
3874 DEN=AR(K,K)*AR(K,K)+AI(K,K)*AI(K,K)
3875 PRODR=BR(K)*AR(K,K)+BI(K)*AI(K,K)
3876 PRODI=BI(K)*AR(K,K)-BR(K)*AI(K,K)
3877 BR(K)=PRODR/DEN
3878 BI(K)=PRODI/DEN
3879 TR = -BR(K)
3880 TI = -BI(K)
3881 DO 30 I = 1,KM1
3882 PRODR=AR(I,K)*TR-AI(I,K)*TI
3883 PRODI=AI(I,K)*TR+AR(I,K)*TI
3884 BR(I) = BR(I) + PRODR
3885 BI(I) = BI(I) + PRODI
3886 30 CONTINUE
3887 40 CONTINUE
3888 50 CONTINUE
3889 DEN=AR(1,1)*AR(1,1)+AI(1,1)*AI(1,1)
3890 PRODR=BR(1)*AR(1,1)+BI(1)*AI(1,1)
3891 PRODI=BI(1)*AR(1,1)-BR(1)*AI(1,1)
3892 BR(1)=PRODR/DEN
3893 BI(1)=PRODI/DEN
3894 RETURN
3895 C----------------------- END OF SUBROUTINE SOLC ------------------------
3899 SUBROUTINE DECHC (N, NDIM, AR, AI, LB, IP, IER)
3900 C VERSION COMPLEX KPP_REAL
3901 IMPLICIT KPP_REAL (A-H,O-Z)
3902 INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
3903 DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N)
3904 C-----------------------------------------------------------------------
3905 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION
3906 C ------ MODIFICATION FOR COMPLEX MATRICES --------
3907 C INPUT..
3908 C N = ORDER OF MATRIX.
3909 C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI .
3910 C (AR, AI) = MATRIX TO BE TRIANGULARIZED.
3911 C OUTPUT..
3912 C AR(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; REAL PART.
3913 C AI(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; IMAGINARY PART.
3914 C AR(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
3915 C REAL PART.
3916 C AI(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
3917 C IMAGINARY PART.
3918 C LB = LOWER BANDWIDTH OF A (DIAGONAL NOT COUNTED), LB.GE.1.
3919 C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
3920 C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
3921 C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
3922 C SINGULAR AT STAGE K.
3923 C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
3924 C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
3926 C REFERENCE..
3927 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
3928 C C.A.C.M. 15 (1972), P. 274.
3929 C-----------------------------------------------------------------------
3930 IER = 0
3931 IP(N) = 1
3932 IF (LB .EQ. 0) GO TO 70
3933 IF (N .EQ. 1) GO TO 70
3934 NM1 = N - 1
3935 DO 60 K = 1,NM1
3936 KP1 = K + 1
3937 M = K
3938 NA = MIN0(N,LB+K)
3939 DO 10 I = KP1,NA
3940 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT.
3941 & DABS(AR(M,K))+DABS(AI(M,K))) M = I
3942 10 CONTINUE
3943 IP(K) = M
3944 TR = AR(M,K)
3945 TI = AI(M,K)
3946 IF (M .EQ. K) GO TO 20
3947 IP(N) = -IP(N)
3948 AR(M,K) = AR(K,K)
3949 AI(M,K) = AI(K,K)
3950 AR(K,K) = TR
3951 AI(K,K) = TI
3952 20 CONTINUE
3953 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80
3954 DEN=TR*TR+TI*TI
3955 TR=TR/DEN
3956 TI=-TI/DEN
3957 DO 30 I = KP1,NA
3958 PRODR=AR(I,K)*TR-AI(I,K)*TI
3959 PRODI=AI(I,K)*TR+AR(I,K)*TI
3960 AR(I,K)=-PRODR
3961 AI(I,K)=-PRODI
3962 30 CONTINUE
3963 DO 50 J = KP1,N
3964 TR = AR(M,J)
3965 TI = AI(M,J)
3966 AR(M,J) = AR(K,J)
3967 AI(M,J) = AI(K,J)
3968 AR(K,J) = TR
3969 AI(K,J) = TI
3970 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 48
3971 IF (TI .EQ. 0.D0) THEN
3972 DO 40 I = KP1,NA
3973 PRODR=AR(I,K)*TR
3974 PRODI=AI(I,K)*TR
3975 AR(I,J) = AR(I,J) + PRODR
3976 AI(I,J) = AI(I,J) + PRODI
3977 40 CONTINUE
3978 GO TO 48
3979 END IF
3980 IF (TR .EQ. 0.D0) THEN
3981 DO 45 I = KP1,NA
3982 PRODR=-AI(I,K)*TI
3983 PRODI=AR(I,K)*TI
3984 AR(I,J) = AR(I,J) + PRODR
3985 AI(I,J) = AI(I,J) + PRODI
3986 45 CONTINUE
3987 GO TO 48
3988 END IF
3989 DO 47 I = KP1,NA
3990 PRODR=AR(I,K)*TR-AI(I,K)*TI
3991 PRODI=AI(I,K)*TR+AR(I,K)*TI
3992 AR(I,J) = AR(I,J) + PRODR
3993 AI(I,J) = AI(I,J) + PRODI
3994 47 CONTINUE
3995 48 CONTINUE
3996 50 CONTINUE
3997 60 CONTINUE
3998 70 K = N
3999 IF (DABS(AR(N,N))+DABS(AI(N,N)) .EQ. 0.D0) GO TO 80
4000 RETURN
4001 80 IER = K
4002 IP(N) = 0
4003 RETURN
4004 C----------------------- END OF SUBROUTINE DECHC -----------------------
4008 SUBROUTINE SOLHC (N, NDIM, AR, AI, LB, BR, BI, IP)
4009 C VERSION COMPLEX KPP_REAL
4010 IMPLICIT KPP_REAL (A-H,O-Z)
4011 INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
4012 DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N)
4013 C-----------------------------------------------------------------------
4014 C SOLUTION OF LINEAR SYSTEM, A*X = B .
4015 C INPUT..
4016 C N = ORDER OF MATRIX.
4017 C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI.
4018 C (AR,AI) = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
4019 C (BR,BI) = RIGHT HAND SIDE VECTOR.
4020 C LB = LOWER BANDWIDTH OF A.
4021 C IP = PIVOT VECTOR OBTAINED FROM DEC.
4022 C DO NOT USE IF DEC HAS SET IER .NE. 0.
4023 C OUTPUT..
4024 C (BR,BI) = SOLUTION VECTOR, X .
4025 C-----------------------------------------------------------------------
4026 IF (N .EQ. 1) GO TO 50
4027 NM1 = N - 1
4028 IF (LB .EQ. 0) GO TO 25
4029 DO 20 K = 1,NM1
4030 KP1 = K + 1
4031 M = IP(K)
4032 TR = BR(M)
4033 TI = BI(M)
4034 BR(M) = BR(K)
4035 BI(M) = BI(K)
4036 BR(K) = TR
4037 BI(K) = TI
4038 DO 10 I = KP1,MIN0(N,LB+K)
4039 PRODR=AR(I,K)*TR-AI(I,K)*TI
4040 PRODI=AI(I,K)*TR+AR(I,K)*TI
4041 BR(I) = BR(I) + PRODR
4042 BI(I) = BI(I) + PRODI
4043 10 CONTINUE
4044 20 CONTINUE
4045 25 CONTINUE
4046 DO 40 KB = 1,NM1
4047 KM1 = N - KB
4048 K = KM1 + 1
4049 DEN=AR(K,K)*AR(K,K)+AI(K,K)*AI(K,K)
4050 PRODR=BR(K)*AR(K,K)+BI(K)*AI(K,K)
4051 PRODI=BI(K)*AR(K,K)-BR(K)*AI(K,K)
4052 BR(K)=PRODR/DEN
4053 BI(K)=PRODI/DEN
4054 TR = -BR(K)
4055 TI = -BI(K)
4056 DO 30 I = 1,KM1
4057 PRODR=AR(I,K)*TR-AI(I,K)*TI
4058 PRODI=AI(I,K)*TR+AR(I,K)*TI
4059 BR(I) = BR(I) + PRODR
4060 BI(I) = BI(I) + PRODI
4061 30 CONTINUE
4062 40 CONTINUE
4063 50 CONTINUE
4064 DEN=AR(1,1)*AR(1,1)+AI(1,1)*AI(1,1)
4065 PRODR=BR(1)*AR(1,1)+BI(1)*AI(1,1)
4066 PRODI=BI(1)*AR(1,1)-BR(1)*AI(1,1)
4067 BR(1)=PRODR/DEN
4068 BI(1)=PRODI/DEN
4069 RETURN
4070 C----------------------- END OF SUBROUTINE SOLHC -----------------------
4073 SUBROUTINE DECB (N, NDIM, A, ML, MU, IP, IER)
4074 KPP_REAL A,T
4075 DIMENSION A(NDIM,N), IP(N)
4076 C-----------------------------------------------------------------------
4077 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A BANDED
4078 C MATRIX WITH LOWER BANDWIDTH ML AND UPPER BANDWIDTH MU
4079 C INPUT..
4080 C N ORDER OF THE ORIGINAL MATRIX A.
4081 C NDIM DECLARED DIMENSION OF ARRAY A.
4082 C A CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS
4083 C OF THE MATRIX ARE STORED IN THE COLUMNS OF A AND
4084 C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS
4085 C ML+1 THROUGH 2*ML+MU+1 OF A.
4086 C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4087 C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4088 C OUTPUT..
4089 C A AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND
4090 C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT.
4091 C IP INDEX VECTOR OF PIVOT INDICES.
4092 C IP(N) (-1)**(NUMBER OF INTERCHANGES) OR O .
4093 C IER = 0 IF MATRIX A IS NONSINGULAR, OR = K IF FOUND TO BE
4094 C SINGULAR AT STAGE K.
4095 C USE SOLB TO OBTAIN SOLUTION OF LINEAR SYSTEM.
4096 C DETERM(A) = IP(N)*A(MD,1)*A(MD,2)*...*A(MD,N) WITH MD=ML+MU+1.
4097 C IF IP(N)=O, A IS SINGULAR, SOLB WILL DIVIDE BY ZERO.
4099 C REFERENCE..
4100 C THIS IS A MODIFICATION OF
4101 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
4102 C C.A.C.M. 15 (1972), P. 274.
4103 C-----------------------------------------------------------------------
4104 IER = 0
4105 IP(N) = 1
4106 MD = ML + MU + 1
4107 MD1 = MD + 1
4108 JU = 0
4109 IF (ML .EQ. 0) GO TO 70
4110 IF (N .EQ. 1) GO TO 70
4111 IF (N .LT. MU+2) GO TO 7
4112 DO 5 J = MU+2,N
4113 DO 5 I = 1,ML
4114 5 A(I,J) = 0.D0
4115 7 NM1 = N - 1
4116 DO 60 K = 1,NM1
4117 KP1 = K + 1
4118 M = MD
4119 MDL = MIN(ML,N-K) + MD
4120 DO 10 I = MD1,MDL
4121 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
4122 10 CONTINUE
4123 IP(K) = M + K - MD
4124 T = A(M,K)
4125 IF (M .EQ. MD) GO TO 20
4126 IP(N) = -IP(N)
4127 A(M,K) = A(MD,K)
4128 A(MD,K) = T
4129 20 CONTINUE
4130 IF (T .EQ. 0.D0) GO TO 80
4131 T = 1.D0/T
4132 DO 30 I = MD1,MDL
4133 30 A(I,K) = -A(I,K)*T
4134 JU = MIN0(MAX0(JU,MU+IP(K)),N)
4135 MM = MD
4136 IF (JU .LT. KP1) GO TO 55
4137 DO 50 J = KP1,JU
4138 M = M - 1
4139 MM = MM - 1
4140 T = A(M,J)
4141 IF (M .EQ. MM) GO TO 35
4142 A(M,J) = A(MM,J)
4143 A(MM,J) = T
4144 35 CONTINUE
4145 IF (T .EQ. 0.D0) GO TO 45
4146 JK = J - K
4147 DO 40 I = MD1,MDL
4148 IJK = I - JK
4149 40 A(IJK,J) = A(IJK,J) + A(I,K)*T
4150 45 CONTINUE
4151 50 CONTINUE
4152 55 CONTINUE
4153 60 CONTINUE
4154 70 K = N
4155 IF (A(MD,N) .EQ. 0.D0) GO TO 80
4156 RETURN
4157 80 IER = K
4158 IP(N) = 0
4159 RETURN
4160 C----------------------- END OF SUBROUTINE DECB ------------------------
4164 SUBROUTINE SOLB (N, NDIM, A, ML, MU, B, IP)
4165 KPP_REAL A,B,T
4166 DIMENSION A(NDIM,N), B(N), IP(N)
4167 C-----------------------------------------------------------------------
4168 C SOLUTION OF LINEAR SYSTEM, A*X = B .
4169 C INPUT..
4170 C N ORDER OF MATRIX A.
4171 C NDIM DECLARED DIMENSION OF ARRAY A .
4172 C A TRIANGULARIZED MATRIX OBTAINED FROM DECB.
4173 C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4174 C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4175 C B RIGHT HAND SIDE VECTOR.
4176 C IP PIVOT VECTOR OBTAINED FROM DECB.
4177 C DO NOT USE IF DECB HAS SET IER .NE. 0.
4178 C OUTPUT..
4179 C B SOLUTION VECTOR, X .
4180 C-----------------------------------------------------------------------
4181 MD = ML + MU + 1
4182 MD1 = MD + 1
4183 MDM = MD - 1
4184 NM1 = N - 1
4185 IF (ML .EQ. 0) GO TO 25
4186 IF (N .EQ. 1) GO TO 50
4187 DO 20 K = 1,NM1
4188 M = IP(K)
4189 T = B(M)
4190 B(M) = B(K)
4191 B(K) = T
4192 MDL = MIN(ML,N-K) + MD
4193 DO 10 I = MD1,MDL
4194 IMD = I + K - MD
4195 10 B(IMD) = B(IMD) + A(I,K)*T
4196 20 CONTINUE
4197 25 CONTINUE
4198 DO 40 KB = 1,NM1
4199 K = N + 1 - KB
4200 B(K) = B(K)/A(MD,K)
4201 T = -B(K)
4202 KMD = MD - K
4203 LM = MAX0(1,KMD+1)
4204 DO 30 I = LM,MDM
4205 IMD = I - KMD
4206 30 B(IMD) = B(IMD) + A(I,K)*T
4207 40 CONTINUE
4208 50 B(1) = B(1)/A(MD,1)
4209 RETURN
4210 C----------------------- END OF SUBROUTINE SOLB ------------------------
4213 SUBROUTINE DECBC (N, NDIM, AR, AI, ML, MU, IP, IER)
4214 IMPLICIT KPP_REAL (A-H,O-Z)
4215 DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N)
4216 C-----------------------------------------------------------------------
4217 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A BANDED COMPLEX
4218 C MATRIX WITH LOWER BANDWIDTH ML AND UPPER BANDWIDTH MU
4219 C INPUT..
4220 C N ORDER OF THE ORIGINAL MATRIX A.
4221 C NDIM DECLARED DIMENSION OF ARRAY A.
4222 C AR, AI CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS
4223 C OF THE MATRIX ARE STORED IN THE COLUMNS OF AR (REAL
4224 C PART) AND AI (IMAGINARY PART) AND
4225 C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS
4226 C ML+1 THROUGH 2*ML+MU+1 OF AR AND AI.
4227 C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4228 C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4229 C OUTPUT..
4230 C AR, AI AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND
4231 C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT.
4232 C IP INDEX VECTOR OF PIVOT INDICES.
4233 C IP(N) (-1)**(NUMBER OF INTERCHANGES) OR O .
4234 C IER = 0 IF MATRIX A IS NONSINGULAR, OR = K IF FOUND TO BE
4235 C SINGULAR AT STAGE K.
4236 C USE SOLBC TO OBTAIN SOLUTION OF LINEAR SYSTEM.
4237 C DETERM(A) = IP(N)*A(MD,1)*A(MD,2)*...*A(MD,N) WITH MD=ML+MU+1.
4238 C IF IP(N)=O, A IS SINGULAR, SOLBC WILL DIVIDE BY ZERO.
4240 C REFERENCE..
4241 C THIS IS A MODIFICATION OF
4242 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
4243 C C.A.C.M. 15 (1972), P. 274.
4244 C-----------------------------------------------------------------------
4245 IER = 0
4246 IP(N) = 1
4247 MD = ML + MU + 1
4248 MD1 = MD + 1
4249 JU = 0
4250 IF (ML .EQ. 0) GO TO 70
4251 IF (N .EQ. 1) GO TO 70
4252 IF (N .LT. MU+2) GO TO 7
4253 DO 5 J = MU+2,N
4254 DO 5 I = 1,ML
4255 AR(I,J) = 0.D0
4256 AI(I,J) = 0.D0
4257 5 CONTINUE
4258 7 NM1 = N - 1
4259 DO 60 K = 1,NM1
4260 KP1 = K + 1
4261 M = MD
4262 MDL = MIN(ML,N-K) + MD
4263 DO 10 I = MD1,MDL
4264 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT.
4265 & DABS(AR(M,K))+DABS(AI(M,K))) M = I
4266 10 CONTINUE
4267 IP(K) = M + K - MD
4268 TR = AR(M,K)
4269 TI = AI(M,K)
4270 IF (M .EQ. MD) GO TO 20
4271 IP(N) = -IP(N)
4272 AR(M,K) = AR(MD,K)
4273 AI(M,K) = AI(MD,K)
4274 AR(MD,K) = TR
4275 AI(MD,K) = TI
4276 20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80
4277 DEN=TR*TR+TI*TI
4278 TR=TR/DEN
4279 TI=-TI/DEN
4280 DO 30 I = MD1,MDL
4281 PRODR=AR(I,K)*TR-AI(I,K)*TI
4282 PRODI=AI(I,K)*TR+AR(I,K)*TI
4283 AR(I,K)=-PRODR
4284 AI(I,K)=-PRODI
4285 30 CONTINUE
4286 JU = MIN0(MAX0(JU,MU+IP(K)),N)
4287 MM = MD
4288 IF (JU .LT. KP1) GO TO 55
4289 DO 50 J = KP1,JU
4290 M = M - 1
4291 MM = MM - 1
4292 TR = AR(M,J)
4293 TI = AI(M,J)
4294 IF (M .EQ. MM) GO TO 35
4295 AR(M,J) = AR(MM,J)
4296 AI(M,J) = AI(MM,J)
4297 AR(MM,J) = TR
4298 AI(MM,J) = TI
4299 35 CONTINUE
4300 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 48
4301 JK = J - K
4302 IF (TI .EQ. 0.D0) THEN
4303 DO 40 I = MD1,MDL
4304 IJK = I - JK
4305 PRODR=AR(I,K)*TR
4306 PRODI=AI(I,K)*TR
4307 AR(IJK,J) = AR(IJK,J) + PRODR
4308 AI(IJK,J) = AI(IJK,J) + PRODI
4309 40 CONTINUE
4310 GO TO 48
4311 END IF
4312 IF (TR .EQ. 0.D0) THEN
4313 DO 45 I = MD1,MDL
4314 IJK = I - JK
4315 PRODR=-AI(I,K)*TI
4316 PRODI=AR(I,K)*TI
4317 AR(IJK,J) = AR(IJK,J) + PRODR
4318 AI(IJK,J) = AI(IJK,J) + PRODI
4319 45 CONTINUE
4320 GO TO 48
4321 END IF
4322 DO 47 I = MD1,MDL
4323 IJK = I - JK
4324 PRODR=AR(I,K)*TR-AI(I,K)*TI
4325 PRODI=AI(I,K)*TR+AR(I,K)*TI
4326 AR(IJK,J) = AR(IJK,J) + PRODR
4327 AI(IJK,J) = AI(IJK,J) + PRODI
4328 47 CONTINUE
4329 48 CONTINUE
4330 50 CONTINUE
4331 55 CONTINUE
4332 60 CONTINUE
4333 70 K = N
4334 IF (DABS(AR(MD,N))+DABS(AI(MD,N)) .EQ. 0.D0) GO TO 80
4335 RETURN
4336 80 IER = K
4337 IP(N) = 0
4338 RETURN
4339 C----------------------- END OF SUBROUTINE DECBC ------------------------
4343 SUBROUTINE SOLBC (N, NDIM, AR, AI, ML, MU, BR, BI, IP)
4344 IMPLICIT KPP_REAL (A-H,O-Z)
4345 DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N)
4346 C-----------------------------------------------------------------------
4347 C SOLUTION OF LINEAR SYSTEM, A*X = B ,
4348 C VERSION BANDED AND COMPLEX-KPP_REAL.
4349 C INPUT..
4350 C N ORDER OF MATRIX A.
4351 C NDIM DECLARED DIMENSION OF ARRAY A .
4352 C AR, AI TRIANGULARIZED MATRIX OBTAINED FROM DECB (REAL AND IMAG. PART).
4353 C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4354 C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
4355 C BR, BI RIGHT HAND SIDE VECTOR (REAL AND IMAG. PART).
4356 C IP PIVOT VECTOR OBTAINED FROM DECBC.
4357 C DO NOT USE IF DECB HAS SET IER .NE. 0.
4358 C OUTPUT..
4359 C BR, BI SOLUTION VECTOR, X (REAL AND IMAG. PART).
4360 C-----------------------------------------------------------------------
4361 MD = ML + MU + 1
4362 MD1 = MD + 1
4363 MDM = MD - 1
4364 NM1 = N - 1
4365 IF (ML .EQ. 0) GO TO 25
4366 IF (N .EQ. 1) GO TO 50
4367 DO 20 K = 1,NM1
4368 M = IP(K)
4369 TR = BR(M)
4370 TI = BI(M)
4371 BR(M) = BR(K)
4372 BI(M) = BI(K)
4373 BR(K) = TR
4374 BI(K) = TI
4375 MDL = MIN(ML,N-K) + MD
4376 DO 10 I = MD1,MDL
4377 IMD = I + K - MD
4378 PRODR=AR(I,K)*TR-AI(I,K)*TI
4379 PRODI=AI(I,K)*TR+AR(I,K)*TI
4380 BR(IMD) = BR(IMD) + PRODR
4381 BI(IMD) = BI(IMD) + PRODI
4382 10 CONTINUE
4383 20 CONTINUE
4384 25 CONTINUE
4385 DO 40 KB = 1,NM1
4386 K = N + 1 - KB
4387 DEN=AR(MD,K)*AR(MD,K)+AI(MD,K)*AI(MD,K)
4388 PRODR=BR(K)*AR(MD,K)+BI(K)*AI(MD,K)
4389 PRODI=BI(K)*AR(MD,K)-BR(K)*AI(MD,K)
4390 BR(K)=PRODR/DEN
4391 BI(K)=PRODI/DEN
4392 TR = -BR(K)
4393 TI = -BI(K)
4394 KMD = MD - K
4395 LM = MAX0(1,KMD+1)
4396 DO 30 I = LM,MDM
4397 IMD = I - KMD
4398 PRODR=AR(I,K)*TR-AI(I,K)*TI
4399 PRODI=AI(I,K)*TR+AR(I,K)*TI
4400 BR(IMD) = BR(IMD) + PRODR
4401 BI(IMD) = BI(IMD) + PRODI
4402 30 CONTINUE
4403 40 CONTINUE
4404 DEN=AR(MD,1)*AR(MD,1)+AI(MD,1)*AI(MD,1)
4405 PRODR=BR(1)*AR(MD,1)+BI(1)*AI(MD,1)
4406 PRODI=BI(1)*AR(MD,1)-BR(1)*AI(MD,1)
4407 BR(1)=PRODR/DEN
4408 BI(1)=PRODI/DEN
4409 50 CONTINUE
4410 RETURN
4411 C----------------------- END OF SUBROUTINE SOLBC ------------------------
4415 subroutine Elmhes(nm,n,low,igh,a,int)
4417 integer i,j,m,n,la,nm,igh,kp1,low,mm1,mp1
4418 real*8 a(nm,n)
4419 real*8 x,y
4420 real*8 dabs
4421 integer int(igh)
4423 C this subroutine is a translation of the algol procedure elmhes,
4424 C num. math. 12, 349-368(1968) by martin and wilkinson.
4425 C handbook for auto. comp., vol.ii-linear algebra, 339-358(1971).
4427 C given a real general matrix, this subroutine
4428 C reduces a submatrix situated in rows and columns
4429 C low through igh to upper hessenberg form by
4430 C stabilized elementary similarity transformations.
4432 C on input:
4434 C nm must be set to the row dimension of two-dimensional
4435 C array parameters as declared in the calling program
4436 C dimension statement;
4438 C n is the order of the matrix;
4440 C low and igh are integers determined by the balancing
4441 C subroutine balanc. if balanc has not been used,
4442 C set low=1, igh=n;
4444 C a contains the input matrix.
4446 C on output:
4448 C a contains the hessenberg matrix. the multipliers
4449 C which were used in the reduction are stored in the
4450 C remaining triangle under the hessenberg matrix;
4452 C int contains information on the rows and columns
4453 C interchanged in the reduction.
4454 C only elements low through igh are used.
4456 C questions and comments should be directed to b. s. garbow,
4457 C applied mathematics division, argonne national laboratory
4459 C ------------------------------------------------------------------
4461 la = igh - 1
4462 kp1 = low + 1
4463 if (la .lt. kp1) go to 200
4465 do 180 m = kp1, la
4466 mm1 = m - 1
4467 x = 0.0d0
4468 i = m
4470 do 100 j = m, igh
4471 if (dabs(a(j,mm1)) .le. dabs(x)) go to 100
4472 x = a(j,mm1)
4473 i = j
4474 100 continue
4476 int(m) = i
4477 if (i .eq. m) go to 130
4478 C :::::::::: interchange rows and columns of a ::::::::::
4479 do 110 j = mm1, n
4480 y = a(i,j)
4481 a(i,j) = a(m,j)
4482 a(m,j) = y
4483 110 continue
4485 do 120 j = 1, igh
4486 y = a(j,i)
4487 a(j,i) = a(j,m)
4488 a(j,m) = y
4489 120 continue
4490 C :::::::::: end interchange ::::::::::
4491 130 if (x .eq. 0.0d0) go to 180
4492 mp1 = m + 1
4494 do 160 i = mp1, igh
4495 y = a(i,mm1)
4496 if (y .eq. 0.0d0) go to 160
4497 y = y / x
4498 a(i,mm1) = y
4500 do 140 j = m, n
4501 140 a(i,j) = a(i,j) - y * a(m,j)
4503 do 150 j = 1, igh
4504 150 a(j,m) = a(j,m) + y * a(j,i)
4506 160 continue
4508 180 continue
4510 200 return
4511 C :::::::::: last card of elmhes ::::::::::
4514 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN)
4515 C --- PRINTS SOLUTION AT EQUIDISTANT OUTPUT-POINTS BY USING "CONTR5"
4516 IMPLICIT KPP_REAL (A-H,O-Z)
4517 DIMENSION Y(N),CONT(LRC)
4518 COMMON /INTERN/XOUT
4519 IF (NR.EQ.1) THEN
4520 WRITE (6,99) X,Y(1),Y(2),NR-1
4521 XOUT=0.2D0
4522 ELSE
4523 10 CONTINUE
4524 IF (X.GE.XOUT) THEN
4525 C --- CONTINUOUS OUTPUT FOR RADAU5
4526 WRITE (6,99) XOUT,CONTR5(1,XOUT,CONT,LRC),
4527 & CONTR5(2,XOUT,CONT,LRC),NR-1
4528 XOUT=XOUT+0.2D0
4529 GOTO 10
4530 END IF
4531 END IF
4532 99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10,' NSTEP =',I4)
4533 RETURN
4536 SUBROUTINE FUNC_CHEM (N, T, V, FCT, RPAR, IPAR)
4537 IMPLICIT NONE
4538 INCLUDE 'KPP_ROOT_Parameters.h'
4539 INCLUDE 'KPP_ROOT_Global.h'
4540 KPP_REAL V(NVAR), FCT(NVAR)
4541 KPP_REAL T, TOLD, RPAR(1)
4542 INTEGER N, IPAR(1)
4543 TOLD = TIME
4544 TIME = T
4545 CALL Update_SUN()
4546 CALL Update_RCONST()
4547 TIME = TOLD
4548 CALL Fun(V, FIX, RCONST, FCT)
4549 RETURN
4552 SUBROUTINE JAC_CHEM (N, T, V, JV, NROWPD, RPAR, IPAR)
4553 IMPLICIT NONE
4554 INCLUDE 'KPP_ROOT_Parameters.h'
4555 INCLUDE 'KPP_ROOT_Global.h'
4556 KPP_REAL V(NVAR), JV(NVAR,NVAR)
4557 KPP_REAL T, TOLD, RPAR(1)
4558 INTEGER N, IPAR(1), NROWPD, i, j
4559 TOLD = TIME
4560 TIME = T
4561 CALL Update_SUN()
4562 CALL Update_RCONST()
4563 TIME = TOLD
4564 DO i=1,NVAR
4565 DO j=1,NVAR
4566 JV(i,j) = 0.D0
4567 END DO
4568 END DO
4569 CALL Jac(V, FIX, RCONST, JV)
4570 RETURN