Update version info for release v4.6.1 (#2122)
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / kpp_odessa_ddm.f
blob788321fb3228ca028d7325cc504afab6b489a8ad
1 SUBROUTINE INTEGRATE( NSENSIT, Y, TIN, TOUT )
3 INCLUDE 'KPP_ROOT_Parameters.h'
4 INCLUDE 'KPP_ROOT_Global.h'
6 C TIN - Start Time
7 REAL*8 TIN
8 C TOUT - End Time
9 REAL*8 TOUT
10 C Concentrations and Sensitivities
11 REAL*8 Y(NVAR,NSENSIT+1), PARAMS(NSENSIT)
12 C --- Note: Y contains: (1:NVAR) concentrations, followed by
13 C --- (1:NVAR) sensitivities w.r.t. first parameter, followed by
14 C --- etc., followed by
15 C --- (1:NVAR) sensitivities w.r.t. NSENSIT's parameter
16 INTEGER i
18 INTEGER LIW, LRW
19 C PARAMETER (LRW = 22 + 8*(NSENSIT+1)*NVAR + NVAR**2 + NVAR)
20 C PARAMETER (LIW = 21 + NVAR + NSENSIT)
21 C REAL*8 RWORK(LRW)
22 C INTEGER IWORK(LIW)
23 C Note: the following dynamic allocation is not standard F77 and may not work on
24 C some systems. Declare LRW, LIW parameters as above with some upper bound used for NSENSIT
25 REAL*8 RWORK(22 + 8*(NSENSIT+1)*NVAR + NVAR**2 + NVAR)
26 INTEGER IWORK(21 + NVAR + NSENSIT)
28 INTEGER IOPT(3), NEQ(2)
30 EXTERNAL FUNC_CHEM,JAC,DFUNC_CHEMDPAR
32 MF = 21 ! --- BDF plus user-supplied Jacobian
34 LRW = 22 + 8*(NSENSIT+1)*NVAR + NVAR**2 + NVAR
35 LIW = 21 + NVAR + NSENSIT
37 NEQ(1) = NVAR ! --- No. of Variables
38 NEQ(2) = NSENSIT ! --- No of parameters
40 ITOL=1 ! --- 1=Scalar Tolerances; 4 = VECTOR TOLERANCES
41 ITASK=1 ! --- Normal Output
42 ISTATE=1
43 IOPT(1)=1 ! --- 0= No optional parameters, 1=Optional parameters
44 IOPT(2)=1 ! --- 1=Perform sensitivity analysis; 0 if not
45 IOPT(3)=1 ! --- 1 if DFUNC_CHEMDPAR supplied by the user;
46 ! --- 0 if finite differences are to be used
47 C --- Set optional parameters
48 DO 10 i=1,LRW
49 RWORK(i) = 0.0D0
50 10 CONTINUE
51 DO 20 i=1,LIW
52 IWORK(i) = 0
53 20 CONTINUE
55 RWORK(5) = STEPMIN ! THE STEP SIZE TO BE ATTEMPTED ON THE FIRST STEP.
56 RWORK(6) = STEPMAX ! THE MAXIMUM ABSOLUTE STEP SIZE ALLOWED.
57 RWORK(7) = 0.0D0 ! THE MINIMUM ABSOLUTE STEP SIZE ALLOWED.
58 IWORK(6) = 5000 ! MAXIMUM NUMBER OF (INTERNALLY DEFINED) STEPS
60 CALL KPP_ODESSA( FUNC_CHEM,DFUNC_CHEMDPAR,NEQ,Y,PARAMS,TIN,TOUT,
61 & ITOL,RTOL,ATOL,
62 1 ITASK,ISTATE,IOPT,RWORK,LRW,IWORK,LIW,
63 & JAC,MF)
65 IF (ISTATE.LT.0) THEN
66 print *,'KPP_ODESSA: Unsucessfull exit at T=',
67 & TIN,' (ISTATE=',ISTATE,')'
68 ENDIF
70 RETURN
71 END
76 SUBROUTINE FUNC_CHEM (N, T, V, PARAMS, FCT)
77 INCLUDE 'KPP_ROOT_Parameters.h'
78 INCLUDE 'KPP_ROOT_Global.h'
80 DIMENSION V(NVAR), PARAMS(*), FCT(NVAR)
81 TOLD = TIME
82 TIME = T
83 CALL Update_SUN()
84 CALL Update_RCONST()
85 TIME = TOLD
86 CALL Fun(V, FIX, RCONST, FCT)
87 RETURN
88 END
90 SUBROUTINE DFUNC_CHEMDPAR (N, T, V, PARAMS, DFCT, JPAR)
91 INCLUDE 'KPP_ROOT_Parameters.h'
92 INCLUDE 'KPP_ROOT_Global.h'
93 C --- NCOEFF = number of rate coefficients w.r.t. which we differentiate
94 C (note that in some applications NCOEFF may be different than NSENSIT)
95 C JCOEFF(1:NCOEFF) are the indices of rate coefficients w.r.t. which we differentiate
96 INTEGER NCOEFF, JCOEFF(NREACT)
97 COMMON /DDMRCOEFF/ NCOEFF, JCOEFF
99 DIMENSION V(NVAR), PARAMS(*), DFCT(NVAR)
100 INTEGER JPAR, i, JC(1)
101 IF (DDMTYPE .EQ. 0) THEN
102 C This setting is required for sensitivities w.r.t. initial conditions
103 DO i=1,NVAR
104 DFCT(i) = 0.d0
105 END DO
106 ELSE
107 C This setting is required for sensitivities w.r.t. rate coefficients
108 C ... and should be changed by the user for other applications
109 JC(1) = JCOEFF(JPAR)
110 CALL dFun_dRcoeff(V, FIX, 1, JC, DFCT )
111 END IF
112 RETURN
115 SUBROUTINE JAC (N, T, V, PARAMS, ML, MU, JS, NROWPD)
116 INCLUDE 'KPP_ROOT_Parameters.h'
117 INCLUDE 'KPP_ROOT_Sparse.h'
119 REAL*8 V(NVAR), PARAMS(*), JS(LU_NONZERO)
120 INTEGER ML, MU, NROWPD
121 TOLD = TIME
122 TIME = T
123 CALL Update_SUN()
124 CALL Update_RCONST()
125 TIME = TOLD
126 DO i=1,LU_NONZERO
127 JS(i) = 0.0D0
128 END DO
129 CALL Jac_SP(V, FIX, RCONST, JS)
130 RETURN
134 C ALGORITHM 658, COLLECTED ALGORITHMS FROM ACM.
135 C THIS WORK PUBLISHED IN TRANSACTIONS ON MATHEMATICAL SOFTWARE,
136 C VOL. 14, NO. 1, P.61.
137 C-----------------------------------------------------------------------
138 C THIS IS THE SEPTEMBER 1, 1986 VERSION OF ODESSA..
139 C AN ORDINARY DIFFERENTIAL EQUATION KppSolveR WITH EXPLICIT SIMULTANEOUS
140 C SENSITIVITY ANALYSIS.
142 C THIS PACKAGE IS A MODIFICATION OF THE AUGUST 13, 1981 VERSION OF
143 C LSODE.. LIVERMORE KppSolveR FOR ORDINARY DIFFERENTIAL EQUATIONS.
144 C THIS VERSION IS IN DOUBLE PRECISION.
146 C ODESSA KppSolveS FOR THE FIRST-ORDER SENSITIVITY COEFFICIENTS..
147 C DY(I)/DP, FOR A SINGLE PARAMETER, OR,
148 C DY(I)/DP(J), FOR MULTIPLE PARAMETERS,
149 C ASSOCIATED WITH A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS..
150 C DY/DT = F(Y,T;P).
151 C-----------------------------------------------------------------------
152 C REFERENCES...
154 C 1. JORGE R. LEIS AND MARK A. KRAMER, THE SIMULTANEOUS SOLUTION AND
155 C EXPLICIT SENSITIVITY ANALYSIS OF SYSTEMS DESCRIBED BY ORDINARY
156 C DIFFERENTIAL EQUATIONS. SUBMITTED TO ACM TRANS. MATH. SOFTWARE,
157 C (1985).
159 C 2. JORGE R. LEIS AND MARK A. KRAMER, ODESSA - AN ORDINARY DIFFERENTIA
160 C EQUATION KppSolveR WITH EXPLICIT SIMULTANEOUS SENSITIVITY ANALYSIS.
161 C SUBMITTED TO ACM TRANS. MATH. SOFTWARE, (1985).
163 C 3. ALAN C. HINDMARSH, LSODE AND LSODI, TWO NEW INITIAL VALUE
164 C ORDINARY DIFFERENTIAL EQUATION KppSolveRS, ACM-SIGNUM NEWSLETTER,
165 C VOL. 15, NO. 4 (1980), PP. 10-11.
166 C-----------------------------------------------------------------------
167 C PROBLEM STATEMENT..
169 C THE ODESSA MODIFICATION OF THE LSODE PACKAGE PROVIDES THE OPTION TO
170 C CALCULATE FIRST-ORDER SENSITIVITY COEFFICIENTS FOR A SYSTEM OF STIFF
171 C OR NON-STIFF EXPLICIT ORDINARY DIFFERENTIAL EQUATIONS OF THE GENERAL
172 C FORM :
174 C DY/DT = F(Y,T;P) (1)
176 C WHERE Y IS AN N-DIMENSIONAL DEPENDENT VARIABLE VECTOR, T IS THE
177 C INDEPENDENT INTEGRATION VARIABLE, AND P IS AN NPAR-DIMENSIONAL
178 C CONSTANT VECTOR. THE GOVERNING EQUATIONS FOR THE FIRST-ORDER
179 C SENSITIVITY COEFFICIENTS ARE GIVEN BY :
181 C S'(T) = J(T)*S(T) + DF/DP (2)
183 C WHERE
185 C S(T) = DY(T)/DP (= SENSITIVITY FUNCTIONS)
186 C S'(T) = D(DY(T)/DP)/DT
187 C J(T) = DF(Y,T;P)/DY(T) (= JACOBIAN MATRIX)
188 C AND DF/DP = DF(Y,T;P)/DP (= INHOMOGENEITY MATRIX)
190 C SOLUTION OF EQUATIONS (1) AND (2) PROCEEDS SIMULTANEOUSLY VIA AN
191 C EXTENSION OF THE LSODE PACKAGE AS DESCRIBED IN [1].
192 C----------------------------------------------------------------------
193 C ACKNOWLEDGEMENT : THE FOLLOWING ODESSA PACKAGE DOCUMENTATION IS A
194 C MODIFICATION OF THE LSODE DOCUMENTATION WHICH
195 C ACCOMPANIES THE LSODE PACKAGE CODE.
196 C----------------------------------------------------------------------
197 C SUMMARY OF USAGE.
199 C COMMUNICATION BETWEEN THE USER AND THE ODESSA PACKAGE, FOR NORMAL
200 C SITUATIONS, IS SUMMARIZED HERE. THIS SUMMARY DESCRIBES ONLY A SUBSET
201 C OF THE FULL SET OF OPTIONS AVAILABLE. SEE THE FULL DESCRIPTION FOR
202 C DETAILS, INCLUDING OPTIONAL COMMUNICATION, NONSTANDARD OPTIONS,
203 C AND INSTRUCTIONS FOR SPECIAL SITUATIONS. SEE ALSO THE EXAMPLE
204 C PROBLEM (WITH PROGRAM AND OUTPUT) FOLLOWING THIS SUMMARY.
206 C A. FIRST PROVIDE A SUBROUTINE OF THE FORM..
207 C SUBROUTINE F (N, T, Y, PAR, YDOT)
208 C DOUBLE PRECISION T, Y, PAR, YDOT
209 C DIMENSION Y(N), YDOT(N), PAR(NPAR)
210 C WHICH SUPPLIES THE VECTOR FUNCTION F BY LOADING YDOT(I) WITH F(I).
211 C N IS THE NUMBER OF FIRST-ORDER DIFFERENTIAL EQUATIONS IN THE
212 C ABOVE MODEL. NPAR IS THE NUMBER OF MODEL PARAMETERS FOR WHICH
213 C VECTOR SENSITIVITY FUNCTIONS ARE DESIRED. YOU ARE ALSO ENCOURAGED
214 C TO PROVIDE A SUBROUTINE OF THE FORM..
215 C SUBROUTINE DF (N, T, Y, PAR, DFDP, JPAR)
216 C DOUBLE PRECISION T, Y, PAR, DFDP
217 C DIMENSION Y(N), PAR(NPAR), DFDP(N)
218 C GO TO (1,...,NPAR) JPAR
219 C 1 DFDP(1) = DF(1)/DP(1)
221 C DFDP(I) = DF(I)/DP(1)
223 C DFDP(N) = DF(N)/DP(1)
224 C RETURN
225 C 2 DFDP(1) = DF(1)/DP(2)
227 C DFDP(I) = DF(I)/DP(2)
229 C DFDP(N) = DF(N)/DP(2)
230 C RETURN
231 C . .
232 C . .
233 C RETURN
234 C NPAR DFDP(1) = DF(1)/DP(NPAR)
236 C DFDP(I) = DF(I)/DP(NPAR)
238 C DFDP(N) = DF(N)/DP(NPAR)
239 C RETURN
240 C END
241 C ONLY NONZERO ELEMENTS NEED BE LOADED. IF THIS IS NOT FEASIBLE,
242 C ODESSA WILL GENERATE THIS MATRIX INTERNALLY BY DIFFERENCE QUOTIENTS.
244 C B. NEXT DETERMINE (OR GUESS) WHETHER OR NOT THE PROBLEM IS STIFF.
245 C STIFFNESS OCCURS WHEN THE JACOBIAN MATRIX DF/DY HAS AN EIGENVALUE
246 C WHOSE REAL PART IS NEGATIVE AND LARGE IN MAGNITUDE, COMPARED TO THE
247 C RECIPROCAL OF THE T SPAN OF INTEREST. IF THE PROBLEM IS NONSTIFF,
248 C USE METH = 10. IF IT IS STIFF, USE METH = 20. THE USER IS REQUIRED
249 C TO INPUT THE METHOD FLAG MF = 10*METH + MITER. THERE ARE FOUR
250 C STANDARD CHOICES FOR MITER WHEN A SENSITIVITY ANALYSIS IS DESIRED,
251 C AND ODESSA REQUIRES THE JACOBIAN MATRIX IN SOME FORM.
252 C THIS MATRIX IS REGARDED EITHER AS FULL (MITER = 1 OR 2),
253 C OR BANDED (MITER = 4 OR 5). IN THE BANDED CASE, ODESSA REQUIRES TWO
254 C HALF-BANDWIDTH PARAMETERS ML AND MU. THESE ARE, RESPECTIVELY, THE
255 C WIDTHS OF THE LOWER AND UPPER PARTS OF THE BAND, EXCLUDING THE MAIN
256 C DIAGONAL. THUS THE BAND CONSISTS OF THE LOCATIONS (I,J) WITH
257 C I-ML .LE. J .LE. I+MU, AND THE FULL BANDWIDTH IS ML+MU+1.
259 C C. YOU ARE ENCOURAGED TO SUPPLY THE JACOBIAN DIRECTLY (MF = 11, 14,
260 C 21, OR 24), BUT IF THIS IS NOT FEASIBLE, ODESSA WILL COMPUTE IT
261 C INTERNALLY BY DIFFERENCE QUOTIENTS (MF = 12, 15, 22, OR 25). IF YOU
262 C ARE SUPPLYING THE JACOBIAN, PROVIDE A SUBROUTINE OF THE FORM..
263 C SUBROUTINE JAC (NEQ, T, Y, PAR, ML, MU, PD, NROWPD)
264 C DOUBLE PRECISION T, Y, PAR, PD
265 C DIMENSION Y(N), PD(NROWPD,N), PAR(NPAR)
266 C WHICH SUPPLIES DF/DY BY LOADING PD AS FOLLOWS..
267 C FOR A FULL JACOBIAN (MF = 11, OR 21), LOAD PD(I,J) WITH DF(I)/DY(J),
268 C THE PARTIAL DERIVATIVE OF F(I) WITH RESPECT TO Y(J). (IGNORE THE
269 C ML AND MU ARGUMENTS IN THIS CASE.)
270 C FOR A BANDED JACOBIAN (MF = 14, OR 24), LOAD PD(I-J+MU+1,J) WITH
271 C DF(I)/DY(J), I.E. LOAD THE DIAGONAL LINES OF DF/DY INTO THE ROWS OF
272 C PD FROM THE TOP DOWN.
273 C IN EITHER CASE, ONLY NONZERO ELEMENTS NEED BE LOADED.
275 C D. WRITE A MAIN PROGRAM WHICH CALLS SUBROUTINE ODESSA ONCE FOR
276 C EACH POINT AT WHICH ANSWERS ARE DESIRED. THIS SHOULD ALSO PROVIDE
277 C FOR POSSIBLE USE OF LOGICAL UNIT 6 FOR OUTPUT OF ERROR MESSAGES BY
278 C ODESSA. ON THE FIRST CALL TO ODESSA, SUPPLY ARGUMENTS AS FOLLOWS..
279 C F = NAME OF SUBROUTINE FOR RIGHT-HAND SIDE VECTOR F (MODEL).
280 C THIS NAME MUST BE DECLARED EXTERNAL IN CALLING PROGRAM.
281 C DF = NAME OF SUBROUTINE FOR INHOMOGENEITY MATRIX DF/DP.
282 C IF USED (IDF = 1), THIS NAME MUST BE DECLARED EXTERNAL IN
283 C CALLING PROGRAM. IF NOT USED (IDF = 0), PASS A DUMMY NAME.
284 C N = NUMBER OF FIRST ORDER ODE-S IN MODEL; LOAD INTO NEQ(1).
285 C NPAR = NUMBER OF MODEL PARAMETERS OF INTEREST; LOAD INTO NEQ(2).
286 C Y = AN (N) BY (NPAR+1) REAL ARRAY OF INITIAL VALUES..
287 C Y(I,1) , I = 1,N , CONTAIN THE STATE, OR MODEL, DEPENDENT
288 C VARIABLES,
289 C Y(I,J) , J = 2,NPAR , CONTAIN THE DEPENDENT SENSITIVITY
290 C COEFFICIENTS.
291 C PAR = A REAL ARRAY OF LENGTH NPAR CONTAINING MODEL PARAMETERS
292 C OF INTEREST.
293 C T = THE INITIAL VALUE OF THE INDEPENDENT VARIABLE.
294 C TOUT = FIRST POINT WHERE OUTPUT IS DESIRED (.NE. T).
295 C ITOL = 1, 2, 3, OR 4 ACCORDING AS RTOL, ATOL (BELOW) ARE SCALARS
296 C OR ARRAYS.
297 C RTOL = RELATIVE TOLERANCE PARAMETER (SCALAR OR (N) BY (NPAR+1)
298 C ARRAY).
299 C ATOL = ABSOLUTE TOLERANCE PARAMETER (SCALAR OR (N) BY (NPAR+1)
300 C ARRAY).
301 C THE ESTIMATED LOCAL ERROR IN Y(I,J) WILL BE CONTROLLED SO AS
302 C TO BE ROUGHLY LESS (IN MAGNITUDE) THAN
303 C EWT(I,J) = RTOL*ABS(Y(I,J)) + ATOL IF ITOL = 1,
304 C EWT(I,J) = RTOL*ABS(Y(I,J)) + ATOL(I,J) IF ITOL = 2,
305 C EWT(I,J) = RTOL(I,J)*ABS(Y(I,J) + ATOL IF ITOL = 3, OR
306 C EWT(I,J) = RTOL(I,J)*ABS(Y(I,J) + ATOL(I,J) IF ITOL = 4.
307 C THUS THE LOCAL ERROR TEST PASSES IF, IN EACH COMPONENT,
308 C EITHER THE ABSOLUTE ERROR IS LESS THAN ATOL (OR ATOL(I,J)),
309 C OR THE RELATIVE ERROR IS LESS THAN RTOL (OR RTOL(I,J)).
310 C USE RTOL = 0.0 FOR PURE ABSOLUTE ERROR CONTROL, AND
311 C USE ATOL = 0.0 FOR PURE RELATIVE ERROR CONTROL.
312 C CAUTION.. ACTUAL (GLOBAL) ERRORS MAY EXCEED THESE LOCAL
313 C TOLERANCES, SO CHOOSE THEM CONSERVATIVELY.
314 C ITASK = 1 FOR NORMAL COMPUTATION OF OUTPUT VALUES OF Y AT T = TOUT.
315 C ISTATE = INTEGER FLAG (INPUT AND OUTPUT). SET ISTATE = 1.
316 C IOPT = 0, TO INDICATE NO OPTIONAL INPUTS FOR INTEGRATION;
317 C LOAD INTO IOPT(1).
318 C ISOPT = 1, TO INDICATE SENSITIVITY ANALYSIS, = 0, TO INDICATE
319 C NO SENSITIVITY ANALYSIS; LOAD INTO IOPT(2).
320 C IDF = 1, IF SUBROUTINE DF (ABOVE) IS SUPPLIED BY THE USER,
321 C = 0, OTHERWISE; LOAD INTO IOPT(3).
322 C RWORK = REAL WORK ARRAY OF LENGTH AT LEAST..
323 C 22 + 16*N + N**2 FOR MF = 11 OR 12,
324 C 22 + 17*N + (2*ML + MU)*N FOR MF = 14 OR 15,
325 C 22 + 9*N + N**2 FOR MF = 21 OR 22,
326 C 22 + 10*N + (2*ML + MU)*N FOR MF = 24 OR 25,
327 C IF ISOPT = 0, OR..
328 C 22 + 15*(NPAR+1)*N + N**2 + N FOR MF = 11 OR 12,
329 C 24 + 15*(NPAR+1)*N + (2*ML+MU+2)*N + N FOR MF = 14 OR 15,
330 C 22 + 8*(NPAR+1)*N + N**2 + N FOR MF = 21 OR 22,
331 C 24 + 8*(NPAR+1)*N + (2*ML+MU+2)*N + N FOR MF = 24 OR 25,
332 C IF ISOPT = 1.
333 C LRW = DECLARED LENGTH OF RWORK (IN USER-S DIMENSION STATEMENT).
334 C IWORK = INTEGER WORK ARRAY OF LENGTH AT LEAST..
335 C 20 + N IF ISOPT = 0,
336 C 21 + N + NPAR IF ISOPT = 1.
337 C IF MITER = 4 OR 5, INPUT IN IWORK(1),IWORK(2) THE LOWER
338 C AND UPPER HALF-BANDWIDTHS ML,MU (EXCLUDING MAIN DIAGONAL).
339 C LIW = DECLARED LENGTH OF IWORK (IN USER-S DIMENSION STATEMENT).
340 C JAC = NAME OF SUBROUTINE FOR JACOBIAN MATRIX.
341 C IF USED, THIS NAME MUST BE DECLARED EXTERNAL IN CALLING
342 C PROGRAM. IF NOT USED, PASS A DUMMY NAME.
343 C MF = METHOD FLAG. STANDARD VALUES FOR ISOPT = 0 ARE..
344 C 10 FOR NONSTIFF (ADAMS) METHOD, NO JACOBIAN USED.
345 C 21 FOR STIFF (BDF) METHOD, USER-SUPPLIED FULL JACOBIAN.
346 C 22 FOR STIFF METHOD, INTERNALLY GENERATED FULL JACOBIAN.
347 C 24 FOR STIFF METHOD, USER-SUPPLIED BANDED JACOBIAN.
348 C 25 FOR STIFF METHOD, INTERNALLY GENERATED BANDED JACOBIAN.
349 C IF ISOPT = 1, MF = 10 IS ILLEGAL AND CAN BE REPLACED BY..
350 C 11 FOR NONSTIFF METHOD, USER-SUPPLIED FULL JACOBIAN.
351 C 12 FOR NONSTIFF METHOD, INTERNALLY GENERATED FULL JACOBIAN.
352 C 14 FOR NONSTIFF METHOD, USER-SUPPLIED BANDED JACOBIAN.
353 C 15 FOR NONSTIFF METHOD, INTERNALLY GENERATED BANDED JACOBIAN.
354 C NOTE THAT THE MAIN PROGRAM MUST DECLARE ARRAYS Y, RWORK, IWORK, AND
355 C POSSIBLY ATOL AND RTOL, AS WELL AS NEQ, IOPT, AND PAR IF ISOPT = 1.
357 C E. THE OUTPUT FROM THE FIRST CALL (OR ANY CALL) IS..
358 C Y = ARRAY OF COMPUTED VALUES OF Y(T) VECTOR.
359 C T = CORRESPONDING VALUE OF INDEPENDENT VARIABLE (NORMALLY TOUT).
360 C ISTATE = 2 IF ODESSA WAS SUCCESSFUL, NEGATIVE OTHERWISE.
361 C -1 MEANS EXCESS WORK DONE ON THIS CALL (PERHAPS WRONG MF).
362 C -2 MEANS EXCESS ACCURACY REQUESTED (TOLERANCES TOO SMALL).
363 C -3 MEANS ILLEGAL INPUT DETECTED (SEE PRINTED MESSAGE).
364 C -4 MEANS REPEATED ERROR TEST FAILURES (CHECK ALL INPUTS).
365 C -5 MEANS REPEATED CONVERGENCE FAILURES (PERHAPS BAD JACOBIAN
366 C SUPPLIED OR WRONG CHOICE OF MF OR TOLERANCES).
367 C -6 MEANS ERROR WEIGHT BECAME ZERO DURING PROBLEM. (SOLUTION
368 C COMPONENT I,J VANISHED, AND ATOL OR ATOL(I,J) = 0.0)
370 C F. TO CONTINUE THE INTEGRATION AFTER A SUCCESSFUL RETURN, SIMPLY
371 C RESET TOUT AND CALL ODESSA AGAIN. NO OTHER PARAMETERS NEED BE RESET.
372 C----------------------------------------------------------------------
373 C EXAMPLE PROBLEM.
375 C THE FOLLOWING IS A SIMPLE EXAMPLE PROBLEM, WITH THE CODING
376 C NEEDED FOR ITS SOLUTION BY ODESSA. THE PROBLEM IS FROM CHEMICAL
377 C KINETICS, AND CONSISTS OF THE FOLLOWING THREE RATE EQUATIONS..
378 C DY1/DT = -PAR(1)*Y1 + PAR(2)*Y2*Y3 ; PAR(1) = .04, PAR(2) = 1.E4
379 C DY2/DT = PAR(1)*Y1 - PAR(2)*Y2*Y3 - PAR(3)*Y2**2 ; PAR(3) = 3.E7
380 C DY3/DT = PAR(3)*Y2**2
381 C ON THE INTERVAL FROM T = 0.0 TO T = 4.E10, WITH INITIAL CONDITIONS
382 C Y1 = 1.0, Y2 = Y3 = 0, AND S(I,J) = 0, I = 1,3, J = 1,3.
383 C THE PROBLEM IS STIFF.
385 C THE FOLLOWING CODING KppSolveS THIS PROBLEM WITH ODESSA, USING
386 C MF = 21 AND PRINTING RESULTS AT T = .4, 4., ..., 4.E10.
387 C IT USES ITOL = 4 AND ATOL MUCH SMALLER FOR Y2 THAN Y1 OR Y3,
388 C BECAUSE Y2 HAS MUCH SMALLER VALUES. LESS STRINGENT TOLERANCES
389 C ARE ASSIGNED FOR THE SENSITIVITIES TO ACHIEVE GREATER EFFICIENCY.
390 C AT THE END OF THE RUN, STATISTICAL QUANTITIES OF INTEREST ARE
391 C PRINTED (SEE OPTIONAL OUTPUTS IN THE FULL DESCRIPTION BELOW).
393 C DOUBLE PRECISION ATOL, RWORK, RTOL, T, TOUT, Y, PAR
394 C EXTERNAL FEX, JEX, DFEX
395 C DIMENSION Y(3,4), PAR(3), ATOL(3,4), RTOL(3,4), RWORK(130),
396 C 1 IWORK(27), NEQ(2), IOPT(3)
397 C N = 3
398 C NPAR = 3
399 C NEQ(1) = N
400 C NEQ(2) = NPAR
401 C NSV = NPAR+1
402 C DO 10 I = 1,N
403 C DO 10 J = 1,NSV
404 C 10 Y(I,J) = 0.0D0
405 C Y(1,1) = 1.0D0
406 C PAR(1) = 0.04D0
407 C PAR(2) = 1.0D4
408 C PAR(3) = 3.0D7
409 C T = 0.D0
410 C TOUT = .4D0
411 C ITOL = 4
412 C ATOL(1,1) = 1.D-6
413 C ATOL(2,1) = 1.D-10
414 C ATOL(3,1) = 1.D-6
415 C DO 20 I = 1,N
416 C RTOL(I,1) = 1.D-4
417 C DO 15 J = 2,NSV
418 C RTOL(I,J) = 1.D-3
419 C 15 ATOL(I,J) = 1.D2 * ATOL(I,1)
420 C 20 CONTINUE
421 C ITASK = 1
422 C ISTATE = 1
423 C IOPT(1) = 0
424 C IOPT(2) = 1
425 C IOPT(3) = 1
426 C LRW = 130
427 C LIW = 27
428 C MF = 21
429 C DO 60 IOUT = 1,12
430 C CALL ODESSA(FEX,DFEX,NEQ,Y,PAR,T,TOUT,ITOL,RTOL,ATOL,
431 C 1 ITASK,ISTATE, IOPT,RWORK,LRW,IWORK,LIW,JEX,MF)
432 C WRITE(6,30)T,Y(1,1),Y(2,1),Y(3,1)
433 C 30 FORMAT(1X,7H AT T =,E12.4,6H Y =,3E14.6)
434 C DO 50 J = 2,NSV
435 C JPAR = J-1
436 C WRITE(6,40)JPAR,Y(1,J),Y(2,J),Y(3,J)
437 C 40 FORMAT(20X,2HS(,I1,3H) =,3E14.6)
438 C 50 CONTINUE
439 C IF (ISTATE .LT. 0) GO TO 80
440 C 60 TOUT = TOUT*10.D0
441 C WRITE(6,70)IWORK(11),IWORK(12),IWORK(13),IWORK(19)
442 C 70 FORMAT(1X,/,12H NO. STEPS =,I4,11H NO. F-S =,I4,11H NO. J-S =,
443 C 1 I4,12H NO. DF-S =,I4)
444 C STOP
445 C 80 WRITE(6,90)ISTATE
446 C 90 FORMAT(///22H ERROR HALT.. ISTATE =,I3)
447 C STOP
448 C END
450 C SUBROUTINE FEX (NEQ, T, Y, PAR, YDOT)
451 C DOUBLE PRECISION T, Y, YDOT, PAR
452 C DIMENSION Y(3), YDOT(3), PAR(3)
453 C YDOT(1) = -PAR(1)*Y(1) + PAR(2)*Y(2)*Y(3)
454 C YDOT(3) = PAR(3)*Y(2)*Y(2)
455 C YDOT(2) = -YDOT(1) - YDOT(3)
456 C RETURN
457 C END
459 C SUBROUTINE JEX (NEQ, T, Y, PAR, ML, MU, PD, NRPD)
460 C DOUBLE PRECISION PD, T, Y, PAR
461 C DIMENSION Y(3), PD(NRPD,3), PAR(3)
462 C PD(1,1) = -PAR(1)
463 C PD(1,2) = PAR(2)*Y(3)
464 C PD(1,3) = PAR(2)*Y(2)
465 C PD(2,1) = PAR(1)
466 C PD(2,3) = -PD(1,3)
467 C PD(3,2) = 2.D0*PAR(3)*Y(2)
468 C PD(2,2) = -PD(1,2) - PD(3,2)
469 C RETURN
470 C END
472 C SUBROUTINE DFEX (NEQ, T, Y, PAR, DFDP, JPAR)
473 C DOUBLE PRECISION T, Y, PAR, DFDP
474 C DIMENSION Y(3), PAR(3), DFDP(3)
475 C GO TO (1,2,3), JPAR
476 C 1 DFDP(1) = -Y(1)
477 C DFDP(2) = Y(1)
478 C RETURN
479 C 2 DFDP(1) = Y(2)*Y(3)
480 C DFDP(2) = -Y(2)*Y(3)
481 C RETURN
482 C 3 DFDP(2) = -Y(2)*Y(2)
483 C DFDP(3) = Y(2)*Y(2)
484 C RETURN
485 C END
487 C THE OUTPUT OF THIS PROGRAM (ON A DATA GENERAL MV-8000 IN
488 C DOUBLE PRECISION IS AS FOLLOWS:
490 C AT T = .4000E+00 Y = .985173E+00 .338641E-04 .147930E-01
491 C S(1) = -.355914E+00 .390261E-03 .355524E+00
492 C S(2) = .955150E-07 -.213065E-09 -.953019E-07
493 C S(3) = -.158466E-10 -.529012E-12 .163756E-10
494 C AT T = .4000E+01 Y = .905516E+00 .224044E-04 .944615E-01
495 C S(1) = -.187621E+01 .179197E-03 .187603E+01
496 C S(2) = .296093E-05 -.583104E-09 -.296034E-05
497 C S(3) = -.493267E-09 -.276246E-12 .493544E-09
498 C AT T = .4000E+02 Y = .715848E+00 .918628E-05 .284143E+00
499 C S(1) = -.424730E+01 .459360E-04 .424726E+01
500 C S(2) = .137294E-04 -.235815E-09 -.137291E-04
501 C S(3) = -.228818E-08 -.113803E-12 .228829E-08
502 C AT T = .4000E+03 Y = .450526E+00 .322299E-05 .549471E+00
503 C S(1) = -.595837E+01 .354310E-05 .595836E+01
504 C S(2) = .227380E-04 -.226041E-10 -.227380E-04
505 C S(3) = -.378971E-08 -.499501E-13 .378976E-08
506 C AT T = .4000E+04 Y = .183185E+00 .894131E-06 .816814E+00
507 C S(1) = -.475006E+01 -.599504E-05 .475007E+01
508 C S(2) = .188089E-04 .231330E-10 -.188089E-04
509 C S(3) = -.313478E-08 -.187575E-13 .313480E-08
510 C AT T = .4000E+05 Y = .389733E-01 .162133E-06 .961027E+00
511 C S(1) = -.157477E+01 -.276199E-05 .157477E+01
512 C S(2) = .628668E-05 .110026E-10 -.628670E-05
513 C S(3) = -.104776E-08 -.453588E-14 .104776E-08
514 C AT T = .4000E+06 Y = .493609E-02 .198411E-07 .995064E+00
515 C S(1) = -.236244E+00 -.458262E-06 .236244E+00
516 C S(2) = .944669E-06 .183193E-11 -.944671E-06
517 C S(3) = -.157441E-09 -.635990E-15 .157442E-09
518 C AT T = .4000E+07 Y = .516087E-03 .206540E-08 .999484E+00
519 C S(1) = -.256277E-01 -.509808E-07 .256278E-01
520 C S(2) = .102506E-06 .203905E-12 -.102506E-06
521 C S(3) = -.170825E-10 -.684002E-16 .170826E-10
522 C AT T = .4000E+08 Y = .519314E-04 .207736E-09 .999948E+00
523 C S(1) = -.259316E-02 -.518029E-08 .259316E-02
524 C S(2) = .103726E-07 .207209E-13 -.103726E-07
525 C S(3) = -.172845E-11 -.691450E-17 .172845E-11
526 C AT T = .4000E+09 Y = .544710E-05 .217885E-10 .999995E+00
527 C S(1) = -.271637E-03 -.541849E-09 .271638E-03
528 C S(2) = .108655E-08 .216739E-14 -.108655E-08
529 C S(3) = -.180902E-12 -.723615E-18 .180902E-12
530 C AT T = .4000E+10 Y = .446748E-06 .178699E-11 .100000E+01
531 C S(1) = -.322322E-04 -.842541E-10 .322323E-04
532 C S(2) = .128929E-09 .337016E-15 -.128929E-09
533 C S(3) = -.209715E-13 -.838859E-19 .209715E-13
534 C AT T = .4000E+11 Y = -.363960E-07 -.145584E-12 .100000E+01
535 C S(1) = -.164109E-06 -.429604E-11 .164113E-06
536 C S(2) = .656436E-12 .171842E-16 -.656451E-12
537 C S(3) = -.689361E-15 -.275745E-20 .689363E-15
539 C NO. STEPS = 340 NO. F-S = 412 NO. J-S = 343 NO. DF-S =1023
540 C----------------------------------------------------------------------
541 C FULL DESCRIPTION OF USER INTERFACE TO ODESSA.
543 C THE USER INTERFACE TO ODESSA CONSISTS OF THE FOLLOWING PARTS.
545 C I. THE CALL SEQUENCE TO SUBROUTINE ODESSA, WHICH IS A DRIVER
546 C ROUTINE FOR THE KppSolveR. THIS INCLUDES DESCRIPTIONS OF BOTH
547 C THE CALL SEQUENCE ARGUMENTS AND OF USER-SUPPLIED ROUTINES.
548 C FOLLOWING THESE DESCRIPTIONS IS A DESCRIPTION OF
549 C OPTIONAL INPUTS AVAILABLE THROUGH THE CALL SEQUENCE, AND THEN
550 C A DESCRIPTION OF OPTIONAL OUTPUTS (IN THE WORK ARRAYS).
552 C II. DESCRIPTIONS OF OTHER ROUTINES IN THE ODESSA PACKAGE THAT MAY
553 C BE (OPTIONALLY) CALLED BY THE USER. THESE PROVIDE THE ABILITY
554 C TO ALTER ERROR MESSAGE HANDLING, SAVE AND RESTORE THE INTERNAL
555 C COMMON, AND OBTAIN SPECIFIED DERIVATIVES OF THE SOLUTION Y(T).
557 C III. DESCRIPTIONS OF COMMON BLOCKS TO BE DECLARED IN OVERLAY
558 C OR SIMILAR ENVIRONMENTS, OR TO BE SAVED WHEN DOING AN INTERRUPT
559 C OF THE PROBLEM AND CONTINUED SOLUTION LATER.
561 C IV. DESCRIPTION OF TWO SUBROUTINES IN THE ODESSA PACKAGE, EITHER OF
562 C WHICH THE USER MAY REPLACE WITH HIS OWN VERSION, IF DESIRED.
563 C THESE RELATE TO THE MEASUREMENT OF ERRORS.
565 C V. GENERAL REMARKS WHICH HIGHLIGHT DIFFERENCES BETWEEN THE LSODE
566 C PACKAGE AND THE ODESSA PACKAGE.
567 C----------------------------------------------------------------------
568 C PART I. CALL SEQUENCE.
570 C THE CALL SEQUENCE PARAMETERS USED FOR INPUT ONLY ARE..
571 C F, DF, NEQ, PAR, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW,
572 C JAC, MF,
573 C AND THOSE USED FOR BOTH INPUT AND OUTPUT ARE
574 C Y, T, ISTATE.
575 C THE WORK ARRAYS RWORK AND IWORK ARE ALSO USED FOR CONDITIONAL AND
576 C OPTIONAL INPUTS AND OPTIONAL OUTPUTS. (THE TERM OUTPUT HERE REFERS
577 C TO THE RETURN FROM SUBROUTINE ODESSA TO THE USER-S CALLING PROGRAM.)
579 C THE LEGALITY OF INPUT PARAMETERS WILL BE THOROUGHLY CHECKED ON THE
580 C INITIAL CALL FOR THE PROBLEM, BUT NOT CHECKED THEREAFTER UNLESS A
581 C CHANGE IN INPUT PARAMETERS IS FLAGGED BY ISTATE = 3 ON INPUT.
583 C THE DESCRIPTIONS OF THE CALL ARGUMENTS ARE AS FOLLOWS.
585 C F = THE NAME OF THE USER-SUPPLIED SUBROUTINE DEFINING THE
586 C ODE MODEL. THIS SYSTEM MUST BE PUT IN THE FIRST-ORDER
587 C FORM DY/DT = F(Y,T;P), WHERE F IS A VECTOR-VALUED FUNCTION
588 C OF THE SCALAR T AND VECTORS Y, AND PAR. SUBROUTINE F IS TO
589 C COMPUTE THE FUNCTION F. IT IS TO HAVE THE FORM..
590 C SUBROUTINE F (NEQ, T, Y, PAR, YDOT)
591 C DOUBLE PRECISION T, Y, PAR, YDOT
592 C DIMENSION Y(1), PAR(1), YDOT(1)
593 C WHERE NEQ, T, Y, AND PAR ARE INPUT, AND YDOT = F(Y,T;P)
594 C IS OUTPUT. Y AND YDOT ARE ARRAYS OF LENGTH N (= NEQ(1)).
595 C (IN THE DIMENSION STATEMENT ABOVE, 1 IS A DUMMY
596 C DIMENSION.. IT CAN BE REPLACED BY ANY VALUE.)
597 C F SHOULD NOT ALTER ARRAY Y, OR PAR(1),...,PAR(NPAR).
598 C F MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM.
600 C SUBROUTINE F MAY ACCESS USER-DEFINED QUANTITIES IN
601 C NEQ(2),... AND PAR(NPAR+1),... IF NEQ IS AN ARRAY
602 C (DIMENSIONED IN F) AND PAR HAS LENGTH EXCEEDING NPAR.
603 C SEE THE DESCRIPTIONS OF NEQ AND PAR BELOW.
605 C DF = THE NAME OF THE USER-SUPPLIED ROUTINE (IDF = 1) TO COMPUTE
606 C THE INHOMOGENEITY MATRIX, DF/DP, AS A FUNCTION OF THE SCALAR
607 C T, AND THE VECTORS Y, AND PAR. IT IS TO HAVE THE FORM
608 C SUBROUTINE DF (NEQ, T, Y, PAR, DFDP, JPAR)
609 C DOUBLE PRECISION T, Y, PAR, DFDP
610 C DIMENSION Y(1), PAR(1), DFDP(1)
611 C GO TO (1,2,...,NPAR) JPAR
612 C 1 DFDP(1) = DF(1)/DP(1)
614 C DFDP(I) = DF(I)/DP(1)
616 C DFDP(N) = DF(N)/DP(1)
617 C RETURN
618 C 2 DFDP(1) = DF(1)/DP(2)
620 C DFDP(I) = DF(I)/DP(2)
622 C DFDP(N) = DF(N)/DP(2)
624 C RETURN
625 C . .
626 C . .
627 C NPAR DFDP(1) = DF(1)/DP(NPAR)
629 C DFDP(I) = DF(I)/DP(NPAR)
631 C DFDP(N) = DF(N)/DP(NPAR)
632 C RETURN
633 C END
634 C WHERE NEQ, T, Y, PAR, AND JPAR ARE INPUT AND THE VECTOR
635 C DFDP(*,JPAR) IS TO BE LOADED WITH THE PARTIAL DERIVATIVES
636 C DF(Y,T;PAR)/DP(JPAR) ON OUTPUT. ONLY NONZERO ELEMENTS NEED
637 C BE LOADED. T, Y, AND PAR HAVE THE SAME MEANING AS IN
638 C SUBROUTINE F. (IN THE DIMENSION STATEMENT ABOVE, 1 IS A DUMMY
639 C DIMENSION.. IT CAN BE REPLACED BY ANY VALUE).
641 C DFDP(*,JPAR) IS PRESET TO ZERO BY THE KppSolveR, SO THAT ONLY
642 C THE NONZERO ELEMENTS NEED BE LOADED BY DF. SUBROUTINE DF
643 C MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM IF USED.
644 C IF IDF = 0 (OR ISOPT = 0), A DUMMY ARGUMENT CAN BE USED.
646 C SUBROUTINE DF MAY ACCESS USER-DEFINED QUANTITIES IN
647 C NEQ(2),... AND PAR(NPAR+1),... IF NEQ IS AN ARRAY
648 C (DIMENSIONED IN DF) AND PAR HAS A LENGTH EXCEEDING NPAR.
649 C SEE THE DESCRIPTIONS OF NEQ AND PAR (BELOW).
651 C NEQ = THE SIZE OF THE ODE SYSTEM (NUMBER OF FIRST ORDER ORDINARY
652 C DIFFERENTIAL EQUATIONS (N) IN THE MODEL). USED ONLY FOR
653 C INPUT. NEQ MAY NOT BE CHANGED DURING THE PROBLEM.
655 C FOR ISOPT = 0, NEQ IS NORMALLY A SCALAR. HOWEVER, NEQ MAY
656 C BE AN ARRAY, WITH NEQ(1) SET TO THE SYSTEM SIZE (N), IN WHICH
657 C CASE THE ODESSA PACKAGE ACCESSES ONLY NEQ(1). HOWEVER,
658 C THIS PARAMETER IS PASSED AS THE NEQ ARGUMENT IN ALL CALLS
659 C TO F, DF, AND JAC. HENCE, IF IT IS AN ARRAY, LOCATIONS
660 C NEQ(2),... MAY BE USED TO STORE OTHER INTEGER DATA AND PASS
661 C IT TO F, DF, AND/OR JAC. FOR ISOPT = 1, NPAR MUST BE LOADED
662 C INTO NEQ(2), AND IS NOT ALLOWED TO CHANGE DURING THE PROBLEM.
663 C IN THESE CASES, SUBROUTINES F, DF, AND/OR JAC MUST INCLUDE
664 C NEQ IN A DIMENSION STATEMENT.
666 C Y = A REAL ARRAY FOR THE VECTOR OF DEPENDENT VARIABLES, OF
667 C DIMENSION (N) BY (NPAR+1). USED FOR BOTH INPUT AND
668 C OUTPUT ON THE FIRST CALL (ISTATE = 1), AND ONLY FOR
669 C OUTPUT ON OTHER CALLS. ON THE FIRST CALL, Y MUST CONTAIN
670 C THE VECTORS OF INITIAL VALUES. ON OUTPUT, Y CONTAINS THE
671 C COMPUTED SOLUTION VECTORS, EVALUATED AT T.
673 C PAR = A REAL ARRAY FOR THE VECTOR OF CONSTANT MODEL PARAMETERS
674 C OF INTEREST IN THE SENSITIVITY ANALYSIS, OF LENGTH NPAR
675 C OR MORE. PAR IS PASSED AS AN ARGUMENT IN ALL CALLS TO F,
676 C DF, AND JAC. HENCE LOCATIONS PAR(NPAR+1),... MAY BE USED
677 C TO STORE OTHER REAL DATA AND PASS IT TO F, DF, AND/OR JAC.
678 C LOCATIONS PAR(1),...,PAR(NPAR) ARE USED AS INPUT ONLY,
679 C AND MUST NOT BE CHANGED DURING THE PROBLEM.
681 C T = THE INDEPENDENT VARIABLE. ON INPUT, T IS USED ONLY ON THE
682 C FIRST CALL, AS THE INITIAL POINT OF THE INTEGRATION.
683 C ON OUTPUT, AFTER EACH CALL, T IS THE VALUE AT WHICH A
684 C COMPUTED SOLUTION Y IS EVALUATED (USUALLY THE SAME AS TOUT).
685 C ON AN ERROR RETURN, T IS THE FARTHEST POINT REACHED.
687 C TOUT = THE NEXT VALUE OF T AT WHICH A COMPUTED SOLUTION IS DESIRED.
688 C USED ONLY FOR INPUT.
690 C WHEN STARTING THE PROBLEM (ISTATE = 1), TOUT MAY BE EQUAL
691 C TO T FOR ONE CALL, THEN SHOULD .NE. T FOR THE NEXT CALL.
692 C FOR THE INITIAL T, AN INPUT VALUE OF TOUT .NE. T IS USED
693 C IN ORDER TO DETERMINE THE DIRECTION OF THE INTEGRATION
694 C (I.E. THE ALGEBRAIC SIGN OF THE STEP SIZES) AND THE ROUGH
695 C SCALE OF THE PROBLEM. INTEGRATION IN EITHER DIRECTION
696 C (FORWARD OR BACKWARD IN T) IS PERMITTED.
698 C IF ITASK = 2 OR 5 (ONE-STEP MODES), TOUT IS IGNORED AFTER
699 C THE FIRST CALL (I.E. THE FIRST CALL WITH TOUT .NE. T).
700 C OTHERWISE, TOUT IS REQUIRED ON EVERY CALL.
702 C IF ITASK = 1, 3, OR 4, THE VALUES OF TOUT NEED NOT BE
703 C MONOTONE, BUT A VALUE OF TOUT WHICH BACKS UP IS LIMITED
704 C TO THE CURRENT INTERNAL T INTERVAL, WHOSE ENDPOINTS ARE
705 C TCUR - HU AND TCUR (SEE OPTIONAL OUTPUTS, BELOW, FOR
706 C TCUR AND HU).
708 C ITOL = AN INDICATOR FOR THE TYPE OF ERROR CONTROL. SEE
709 C DESCRIPTION BELOW UNDER ATOL. USED ONLY FOR INPUT.
711 C RTOL = A RELATIVE ERROR TOLERANCE PARAMETER, EITHER A SCALAR OR
712 C AN ARRAY OF SPACE (N) BY (NPAR+1). SEE DESCRIPTION BELOW
713 C UNDER ATOL. INPUT ONLY.
715 C ATOL = AN ABSOLUTE ERROR TOLERANCE PARAMETER, EITHER A SCALAR OR
716 C AN ARRAY OF SPACE (N) BY (NPAR+1). INPUT ONLY.
718 C THE INPUT PARAMETERS ITOL, RTOL, AND ATOL DETERMINE
719 C THE ERROR CONTROL PERFORMED BY THE KppSolveR. THE KppSolveR WILL
720 C CONTROL THE VECTOR E = (E(I,J)) OF ESTIMATED LOCAL ERRORS
721 C IN Y, ACCORDING TO AN INEQUALITY OF THE FORM
722 C RMS-NORM OF ( E(I,J)/EWT(I,J) ) .LE. 1,
723 C WHERE EWT(I,J) = RTOL(I,J)*ABS(Y(I,J)) + ATOL(I,J),
724 C AND THE RMS-NORM (ROOT-MEAN-SQUARE NORM) HERE IS
725 C RMS-NORM(V) = SQRT ( (1/N) * SUM (V(I,J)**2) ); I =1,...,N.
726 C HERE EWT = (EWT(I,J)) IS A VECTOR OF WEIGHTS WHICH MUST
727 C ALWAYS BE POSITIVE, AND THE VALUES OF RTOL AND ATOL SHOULD
728 C ALL BE NON-NEGATIVE. THE FOLLOWING TABLE GIVES THE TYPES
729 C (SCALAR/ARRAY) OF RTOL AND ATOL, AND THE CORRESPONDING FORM
730 C OF EWT(I,J).
732 C ITOL RTOL ATOL EWT(I,J)
733 C 1 SCALAR SCALAR RTOL*ABS(Y(I,J)) + ATOL
734 C 2 SCALAR ARRAY RTOL*ABS(Y(I,J)) + ATOL(I,J)
735 C 3 ARRAY SCALAR RTOL(I,J)*ABS(Y(I,J)) + ATOL
736 C 4 ARRAY ARRAY RTOL(I,J)*ABS(Y(I,J)) + ATOL(I,J)
738 C WHEN EITHER OF THESE PARAMETERS IS A SCALAR, IT NEED NOT
739 C BE DIMENSIONED IN THE USER-S CALLING PROGRAM.
741 C THE TOTAL NUMBER OF ERROR TEST FAILURES DUE TO THE SENSITIVITY
742 C ANALYSIS, AND WHICH REQUIRE AN INTEGRATION STEP TO BE
743 C REPEATED, ARE ACCUMULATED IN THE LAST NPAR+1 LOCATIONS OF THE
744 C INTEGER WORK ARRAY IWORK (SEE OPTIONAL OUTPUTS BELOW).
745 C THIS INFORMATION MAY BE OF VALUE IN DETERMINING APPROPRIATE
746 C ERROR TOLERANCES TO BE APPLIED TO THE SENSITIVITY FUNCTIONS.
748 C IF NONE OF THE ABOVE CHOICES (WITH ITOL, RTOL, AND ATOL
749 C FIXED THROUGHOUT THE PROBLEM) IS SUITABLE, MORE GENERAL
750 C ERROR CONTROLS CAN BE OBTAINED BY SUBSTITUTING
751 C USER-SUPPLIED ROUTINES FOR THE SETTING OF EWT AND/OR FOR
752 C THE NORM CALCULATION. SEE PART IV BELOW.
754 C IF GLOBAL ERRORS ARE TO BE ESTIMATED BY MAKING A REPEATED
755 C RUN ON THE SAME PROBLEM WITH SMALLER TOLERANCES, THEN ALL
756 C COMPONENTS OF RTOL AND ATOL (I.E. OF EWT) SHOULD BE SCALED
757 C DOWN UNIFORMLY.
759 C ITASK = AN INDEX SPECIFYING THE TASK TO BE PERFORMED.
760 C INPUT ONLY. ITASK HAS THE FOLLOWING VALUES AND MEANINGS.
761 C 1 MEANS NORMAL COMPUTATION OF OUTPUT VALUES OF Y(T) AT
762 C T = TOUT (BY OVERSHOOTING AND INTERPOLATING).
763 C 2 MEANS TAKE ONE STEP ONLY AND RETURN.
764 C 3 MEANS STOP AT THE FIRST INTERNAL MESH POINT AT OR
765 C BEYOND T = TOUT AND RETURN.
766 C 4 MEANS NORMAL COMPUTATION OF OUTPUT VALUES OF Y(T) AT
767 C T = TOUT BUT WITHOUT OVERSHOOTING T = TCRIT.
768 C TCRIT MUST BE INPUT AS RWORK(1). TCRIT MAY BE EQUAL TO
769 C OR BEYOND TOUT, BUT NOT BEHIND IT IN THE DIRECTION OF
770 C INTEGRATION. THIS OPTION IS USEFUL IF THE PROBLEM
771 C HAS A SINGULARITY AT OR BEYOND T = TCRIT.
772 C 5 MEANS TAKE ONE STEP, WITHOUT PASSING TCRIT, AND RETURN.
773 C TCRIT MUST BE INPUT AS RWORK(1).
775 C NOTE.. IF ITASK = 4 OR 5 AND THE KppSolveR REACHES TCRIT
776 C (WITHIN ROUNDOFF), IT WILL RETURN T = TCRIT (EXACTLY) TO
777 C INDICATE THIS (UNLESS ITASK = 4 AND TOUT COMES BEFORE TCRIT,
778 C IN WHICH CASE ANSWERS AT T = TOUT ARE RETURNED FIRST).
780 C ISTATE = AN INDEX USED FOR INPUT AND OUTPUT TO SPECIFY THE
781 C THE STATE OF THE CALCULATION.
783 C ON INPUT, THE VALUES OF ISTATE ARE AS FOLLOWS.
784 C 1 MEANS THIS IS THE FIRST CALL FOR THE PROBLEM
785 C (INITIALIZATIONS WILL BE DONE). SEE NOTE BELOW.
786 C 2 MEANS THIS IS NOT THE FIRST CALL, AND THE CALCULATION
787 C IS TO CONTINUE NORMALLY, WITH NO CHANGE IN ANY INPUT
788 C PARAMETERS EXCEPT POSSIBLY TOUT AND ITASK.
789 C (IF ITOL, RTOL, AND/OR ATOL ARE CHANGED BETWEEN CALLS
790 C WITH ISTATE = 2, THE NEW VALUES WILL BE USED BUT NOT
791 C TESTED FOR LEGALITY.)
792 C 3 MEANS THIS IS NOT THE FIRST CALL, AND THE
793 C CALCULATION IS TO CONTINUE NORMALLY, BUT WITH
794 C A CHANGE IN INPUT PARAMETERS OTHER THAN
795 C TOUT AND ITASK. CHANGES ARE ALLOWED IN
796 C ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU,
797 C AND ANY OF THE OPTIONAL INPUTS EXCEPT H0.
798 C (SEE IWORK DESCRIPTION FOR ML AND MU.)
799 C NOTE.. A PRELIMINARY CALL WITH TOUT = T IS NOT COUNTED
800 C AS A FIRST CALL HERE, AS NO INITIALIZATION OR CHECKING OF
801 C INPUT IS DONE. (SUCH A CALL IS SOMETIMES USEFUL FOR THE
802 C PURPOSE OF OUTPUTTING THE INITIAL CONDITIONS.)
803 C THUS THE FIRST CALL FOR WHICH TOUT .NE. T REQUIRES
804 C ISTATE = 1 ON INPUT.
806 C ON OUTPUT, ISTATE HAS THE FOLLOWING VALUES AND MEANINGS.
807 C 1 MEANS NOTHING WAS DONE, AS TOUT WAS EQUAL TO T WITH
808 C ISTATE = 1 ON INPUT. (HOWEVER, AN INTERNAL COUNTER WAS
809 C SET TO DETECT AND PREVENT REPEATED CALLS OF THIS TYPE.)
810 C 2 MEANS THE INTEGRATION WAS PERFORMED SUCCESSFULLY.
811 C -1 MEANS AN EXCESSIVE AMOUNT OF WORK (MORE THAN MXSTEP
812 C STEPS) WAS DONE ON THIS CALL, BEFORE COMPLETING THE
813 C REQUESTED TASK, BUT THE INTEGRATION WAS OTHERWISE
814 C SUCCESSFUL AS FAR AS T. (MXSTEP IS AN OPTIONAL INPUT
815 C AND IS NORMALLY 500.) TO CONTINUE, THE USER MAY
816 C SIMPLY RESET ISTATE TO A VALUE .GT. 1 AND CALL AGAIN
817 C (THE EXCESS WORK STEP COUNTER WILL BE RESET TO 0).
818 C IN ADDITION, THE USER MAY INCREASE MXSTEP TO AVOID
819 C THIS ERROR RETURN (SEE BELOW ON OPTIONAL INPUTS).
820 C -2 MEANS TOO MUCH ACCURACY WAS REQUESTED FOR THE PRECISION
821 C OF THE MACHINE BEING USED. THIS WAS DETECTED BEFORE
822 C COMPLETING THE REQUESTED TASK, BUT THE INTEGRATION
823 C WAS SUCCESSFUL AS FAR AS T. TO CONTINUE, THE TOLERANCE
824 C PARAMETERS MUST BE RESET, AND ISTATE MUST BE SET
825 C TO 3. THE OPTIONAL OUTPUT TOLSF MAY BE USED FOR THIS
826 C PURPOSE. (NOTE.. IF THIS CONDITION IS DETECTED BEFORE
827 C TAKING ANY STEPS, THEN AN ILLEGAL INPUT RETURN
828 C (ISTATE = -3) OCCURS INSTEAD.)
829 C -3 MEANS ILLEGAL INPUT WAS DETECTED, BEFORE TAKING ANY
830 C INTEGRATION STEPS. SEE WRITTEN MESSAGE FOR DETAILS.
831 C NOTE.. IF THE KppSolveR DETECTS AN INFINITE LOOP OF CALLS
832 C TO THE KppSolveR WITH ILLEGAL INPUT, IT WILL CAUSE
833 C THE RUN TO STOP.
834 C -4 MEANS THERE WERE REPEATED ERROR TEST FAILURES ON
835 C ONE ATTEMPTED STEP, BEFORE COMPLETING THE REQUESTED
836 C TASK, BUT THE INTEGRATION WAS SUCCESSFUL AS FAR AS T.
837 C THE PROBLEM MAY HAVE A SINGULARITY, OR THE INPUT
838 C MAY BE INAPPROPRIATE.
839 C -5 MEANS THERE WERE REPEATED CONVERGENCE TEST FAILURES ON
840 C ONE ATTEMPTED STEP, BEFORE COMPLETING THE REQUESTED
841 C TASK, BUT THE INTEGRATION WAS SUCCESSFUL AS FAR AS T.
842 C THIS MAY BE CAUSED BY AN INACCURATE JACOBIAN MATRIX,
843 C IF ONE IS BEING USED.
844 C -6 MEANS EWT(I,J) BECAME ZERO FOR SOME I,J DURING THE
845 C INTEGRATION. PURE RELATIVE ERROR CONTROL (ATOL(I,J)=0.0)
846 C WAS REQUESTED ON A VARIABLE WHICH HAS NOW VANISHED.
847 C THE INTEGRATION WAS SUCCESSFUL AS FAR AS T.
849 C NOTE.. SINCE THE NORMAL OUTPUT VALUE OF ISTATE IS 2,
850 C IT DOES NOT NEED TO BE RESET FOR NORMAL CONTINUATION.
851 C ALSO, SINCE A NEGATIVE INPUT VALUE OF ISTATE WILL BE
852 C REGARDED AS ILLEGAL, A NEGATIVE OUTPUT VALUE REQUIRES THE
853 C USER TO CHANGE IT, AND POSSIBLY OTHER INPUTS, BEFORE
854 C CALLING THE KppSolveR AGAIN.
856 C IOPT = AN INTEGER ARRAY FLAG TO SPECIFY WHETHER OR NOT ANY OPTIONAL
857 C INPUTS ARE BEING USED ON THIS CALL. INPUT ONLY.
858 C THE OPTIONAL INPUTS ARE LISTED SEPARATELY BELOW.
859 C IOPT(1) = 0 MEANS NO OPTIONAL INPUTS FOR THE KppSolveR WILL BE
860 C USED. DEFAULT VALUES WILL BE USED IN ALL CASES.
861 C = 1 MEANS ONE OR MORE OPTIONAL INPUTS FOR THE
862 C KppSolveR ARE BEING USED.
863 C NOTE : IOPT(1) IS INDEPENDENT OF ISOPT AND IDF.
864 C IOPT(2) = 0 MEANS NO SENSITIVITY ANALYSIS WILL BE PERFORMED.
865 C = 1 MEANS A SENSITIVITY ANALYSIS WILL BE PERFORMED.
866 C NOTE : IOPT(2) IS RENAMED TO ISOPT IN ODESSA.
867 C = 0 MEANS DF/DP WILL BE CALCULATED BY FINITE
868 C DIFFERENCE WITHIN ODESSA.
869 C IOPT(3) = 1 MEANS DF/DP WILL BE CALCULATED BY A USER-SUPPLIED
870 C ROUTINE.
871 C NOTE : IOPT(3) IS RENAMED TO IDF IN ODESSA.
872 C IF IDF = 1, THE USER MUST SUPPLY A
873 C SUBROUTINE DF (THE NAME IS ARBITRARY) AS
874 C DESCRIBED BELOW UNDER DF. FOR IDF = 0,
875 C A DUMMY ARGUMENT CAN BE USED.
877 C RWORK = A REAL WORKING ARRAY (DOUBLE PRECISION).
878 C FOR ISOPT = 0, THE LENGTH OF RWORK MUST BE AT LEAST..
879 C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM
880 C FOR ISOPT = 1, THE LENGTH OF RWORK MUST BE AT LEAST..
881 C 20 + NYH*(MAXORD + 1) + 2*NYH + LWM + N
882 C WHERE..
883 C NYH = THE TOTAL NUMBER OF DEPENDENT VARIABLES;
884 C (= N IF ISOPT = 0, AND N*(NPAR+1) IF ISOPT = 1).
885 C MAXORD = 12 (IF METH = 1) OR 5 (IF METH = 2) (UNLESS A
886 C SMALLER VALUE IS GIVEN AS AN OPTIONAL INPUT),
887 C LWM = 0 IF MITER = 0,
888 C LWM = N**2 + 2 IF MITER IS 1 OR 2,
889 C LWM = N + 2 IF MITER = 3, AND
890 C LWM = (2*ML+MU+1)*N + 2 IF MITER IS 4 OR 5.
891 C (SEE THE MF DESCRIPTION FOR METH AND MITER.)
893 C THE FIRST 20 WORDS OF RWORK ARE RESERVED FOR CONDITIONAL
894 C AND OPTIONAL INPUTS AND OPTIONAL OUTPUTS.
896 C THE FOLLOWING WORD IN RWORK IS A CONDITIONAL INPUT..
897 C RWORK(1) = TCRIT = CRITICAL VALUE OF T WHICH THE KppSolveR
898 C IS NOT TO OVERSHOOT. REQUIRED IF ITASK IS
899 C 4 OR 5, AND IGNORED OTHERWISE. (SEE ITASK.)
901 C LRW = THE LENGTH OF THE ARRAY RWORK, AS DECLARED BY THE USER.
902 C (THIS WILL BE CHECKED BY THE KppSolveR.)
904 C IWORK = AN INTEGER WORK ARRAY. THE LENGTH MUST BE AT LEAST..
905 C 20 IF MITER = 0 OR 3 (MF = 10, 13, 20, 23), OR
906 C 20 + N OTHERWISE (MF = 11, 12, 14, 15, 21, 22, 24, 25).
907 C FOR ISOPT = 0, OR..
908 C 21 + N + NPAR
909 C FOR ISOPT = 1.
910 C THE FIRST FEW WORDS OF IWORK ARE USED FOR CONDITIONAL AND
911 C OPTIONAL INPUTS AND OPTIONAL OUTPUTS.
913 C THE FOLLOWING 2 WORDS IN IWORK ARE CONDITIONAL INPUTS..
914 C IWORK(1) = ML THESE ARE THE LOWER AND UPPER
915 C IWORK(2) = MU HALF-BANDWIDTHS, RESPECTIVELY, OF THE
916 C BANDED JACOBIAN, EXCLUDING THE MAIN DIAGONAL.
917 C THE BAND IS DEFINED BY THE MATRIX LOCATIONS
918 C (I,J) WITH I-ML .LE. J .LE. I+MU. ML AND MU
919 C MUST SATISFY 0 .LE. ML,MU .LE. NEQ-1.
920 C THESE ARE REQUIRED IF MITER IS 4 OR 5, AND
921 C IGNORED OTHERWISE. ML AND MU MAY IN FACT BE
922 C THE BAND PARAMETERS FOR A MATRIX TO WHICH
923 C DF/DY IS ONLY APPROXIMATELY EQUAL.
926 C LIW = THE LENGTH OF THE ARRAY IWORK, AS DECLARED BY THE USER.
927 C (THIS WILL BE CHECKED BY THE KppSolveR.)
929 C NOTE.. THE WORK ARRAYS MUST NOT BE ALTERED BETWEEN CALLS TO ODESSA
930 C FOR THE SAME PROBLEM, EXCEPT POSSIBLY FOR THE CONDITIONAL AND
931 C OPTIONAL INPUTS, AND EXCEPT FOR THE LAST 2*NYH + N WORDS OF RWORK.
932 C THE LATTER SPACE IS USED FOR INTERNAL SCRATCH SPACE, AND SO IS
933 C AVAILABLE FOR USE BY THE USER OUTSIDE ODESSA BETWEEN CALLS, IF
934 C DESIRED (BUT NOT FOR USE BY F, DF, OR JAC).
936 C JAC = THE NAME OF THE USER-SUPPLIED ROUTINE (MITER = 1 OR 4) TO
937 C COMPUTE THE JACOBIAN MATRIX, DF/DY, AS A FUNCTION OF THE
938 C SCALAR T AND THE VECTORS Y, AND PAR. IT IS TO HAVE THE FORM
939 C SUBROUTINE JAC (NEQ, T, Y, PAR, ML, MU, PD, NROWPD)
940 C DOUBLE PRECISION T, Y, PAR, PD
941 C DIMENSION Y(1), PAR(1), PD(NROWPD,1)
942 C WHERE NEQ, T, Y, PAR, ML, MU, AND NROWPD ARE INPUT AND THE
943 C ARRAY PD IS TO BE LOADED WITH PARTIAL DERIVATIVES (ELEMENTS
944 C OF THE JACOBIAN MATRIX) ON OUTPUT. PD MUST BE GIVEN A FIRST
945 C DIMENSION OF NROWPD. T, Y, AND PAR HAVE THE SAME MEANING AS
946 C IN SUBROUTINE F. (IN THE DIMENSION STATEMENT ABOVE, 1 IS A
947 C DUMMY DIMENSION.. IT CAN BE REPLACED BY ANY VALUE.)
948 C IN THE FULL MATRIX CASE (MITER = 1), ML AND MU ARE
949 C IGNORED, AND THE JACOBIAN IS TO BE LOADED INTO PD IN
950 C COLUMNWISE MANNER, WITH DF(I)/DY(J) LOADED INTO PD(I,J).
951 C IN THE BAND MATRIX CASE (MITER = 4), THE ELEMENTS
952 C WITHIN THE BAND ARE TO BE LOADED INTO PD IN COLUMNWISE
953 C MANNER, WITH DIAGONAL LINES OF DF/DY LOADED INTO THE ROWS
954 C OF PD. THUS DF(I)/DY(J) IS TO BE LOADED INTO PD(I-J+MU+1,J).
955 C ML AND MU ARE THE HALF-BANDWIDTH PARAMETERS (SEE IWORK).
956 C THE LOCATIONS IN PD IN THE TWO TRIANGULAR AREAS WHICH
957 C CORRESPOND TO NONEXISTENT MATRIX ELEMENTS CAN BE IGNORED
958 C OR LOADED ARBITRARILY, AS THEY ARE OVERWRITTEN BY ODESSA.
959 C PD IS PRESET TO ZERO BY THE KppSolveR, SO THAT ONLY THE
960 C NONZERO ELEMENTS NEED BE LOADED BY JAC. EACH CALL TO JAC IS
961 C PRECEDED BY A CALL TO F WITH THE SAME ARGUMENTS NEQ, T, Y,
962 C AND PAR. THUS TO GAIN SOME EFFICIENCY, INTERMEDIATE
963 C QUANTITIES SHARED BY BOTH CALCULATIONS MAY BE SAVED IN A
964 C USER COMMON BLOCK BY F AND NOT RECOMPUTED BY JAC, IF
965 C DESIRED. ALSO, JAC MAY ALTER THE Y ARRAY, IF DESIRED.
966 C JAC MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM.
967 C SUBROUTINE JAC MAY ACCESS USER-DEFINED QUANTITIES IN
968 C NEQ(2),... AND PAR(NPAR+1),.... SEE THE DESCRIPTIONS OF
969 C NEQ (ABOVE) AND PAR (BELOW).
971 C MF = THE METHOD FLAG. USED ONLY FOR INPUT. THE LEGAL VALUES OF
972 C MF ARE 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, AND 25.
973 C MF HAS DECIMAL DIGITS METH AND MITER.. MF = 10*METH + MITER.
974 C METH INDICATES THE BASIC LINEAR MULTISTEP METHOD..
975 C METH = 1 MEANS THE IMPLICIT ADAMS METHOD.
977 C METH = 2 MEANS THE METHOD BASED ON BACKWARD
978 C DIFFERENTIATION FORMULAS (BDF-S).
979 C MITER INDICATES THE CORRECTOR ITERATION METHOD..
980 C MITER = 0 MEANS FUNCTIONAL ITERATION (NO JACOBIAN MATRIX
981 C IS INVOLVED).
982 C MITER = 1 MEANS CHORD ITERATION WITH A USER-SUPPLIED
983 C FULL (NEQ BY NEQ) JACOBIAN.
984 C MITER = 2 MEANS CHORD ITERATION WITH AN INTERNALLY
985 C GENERATED (DIFFERENCE QUOTIENT) FULL JACOBIAN
986 C (USING NEQ EXTRA CALLS TO F PER DF/DY VALUE).
987 C MITER = 3 MEANS CHORD ITERATION WITH AN INTERNALLY
988 C GENERATED DIAGONAL JACOBIAN APPROXIMATION.
989 C (USING 1 EXTRA CALL TO F PER DF/DY EVALUATION).
990 C MITER = 4 MEANS CHORD ITERATION WITH A USER-SUPPLIED
991 C BANDED JACOBIAN.
992 C MITER = 5 MEANS CHORD ITERATION WITH AN INTERNALLY
993 C GENERATED BANDED JACOBIAN (USING ML+MU+1 EXTRA
994 C CALLS TO F PER DF/DY EVALUATION).
995 C IF MITER = 1 OR 4, THE USER MUST SUPPLY A SUBROUTINE JAC
996 C (THE NAME IS ARBITRARY) AS DESCRIBED ABOVE UNDER JAC.
997 C FOR OTHER VALUES OF MITER, A DUMMY ARGUMENT CAN BE USED.
999 C IF A SENSITIVITY ANLYSIS IS DESIRED (ISOPT = 1), MITER = 0
1000 C AND 3 ARE DISALLOWED. IN THESE CASES, THE USER IS RECOMMENDED
1001 C TO SUPPLY AN ANALYTICAL JACOBIAN (MITER = 1 OR 4) AND AN
1002 C ANALYTICAL INHOMOGENEITY MATRIX (IDF = 1).
1003 C----------------------------------------------------------------------
1004 C OPTIONAL INPUTS.
1006 C THE FOLLOWING IS A LIST OF THE OPTIONAL INPUTS PROVIDED FOR IN THE
1007 C CALL SEQUENCE. (SEE ALSO PART II.) FOR EACH SUCH INPUT VARIABLE,
1008 C THIS TABLE LISTS ITS NAME AS USED IN THIS DOCUMENTATION, ITS
1009 C LOCATION IN THE CALL SEQUENCE, ITS MEANING, AND THE DEFAULT VALUE.
1010 C THE USE OF ANY OF THESE INPUTS REQUIRES IOPT(1) = 1, AND IN THAT
1011 C CASE ALL OF THESE INPUTS ARE EXAMINED. A VALUE OF ZERO FOR ANY
1012 C OF THESE OPTIONAL INPUTS WILL CAUSE THE DEFAULT VALUE TO BE USED.
1013 C THUS TO USE A SUBSET OF THE OPTIONAL INPUTS, SIMPLY PRELOAD
1014 C LOCATIONS 5 TO 10 IN RWORK AND IWORK TO 0.0 AND 0 RESPECTIVELY, AND
1015 C THEN SET THOSE OF INTEREST TO NONZERO VALUES.
1017 C NAME LOCATION MEANING AND DEFAULT VALUE
1019 C H0 RWORK(5) THE STEP SIZE TO BE ATTEMPTED ON THE FIRST STEP.
1020 C THE DEFAULT VALUE IS DETERMINED BY THE KppSolveR.
1022 C HMAX RWORK(6) THE MAXIMUM ABSOLUTE STEP SIZE ALLOWED.
1023 C THE DEFAULT VALUE IS INFINITE.
1025 C HMIN RWORK(7) THE MINIMUM ABSOLUTE STEP SIZE ALLOWED.
1026 C THE DEFAULT VALUE IS 0. (THIS LOWER BOUND IS NOT
1027 C ENFORCED ON THE FINAL STEP BEFORE REACHING TCRIT
1028 C WHEN ITASK = 4 OR 5.)
1030 C MAXORD IWORK(5) THE MAXIMUM ORDER TO BE ALLOWED. THE DEFAULT
1031 C VALUE IS 12 IF METH = 1, AND 5 IF METH = 2.
1032 C IF MAXORD EXCEEDS THE DEFAULT VALUE, IT WILL
1033 C BE REDUCED TO THE DEFAULT VALUE.
1034 C IF MAXORD IS CHANGED DURING THE PROBLEM, IT MAY
1035 C CAUSE THE CURRENT ORDER TO BE REDUCED.
1037 C MXSTEP IWORK(6) MAXIMUM NUMBER OF (INTERNALLY DEFINED) STEPS
1038 C ALLOWED DURING ONE CALL TO THE KppSolveR.
1039 C THE DEFAULT VALUE IS 500.
1041 C MXHNIL IWORK(7) MAXIMUM NUMBER OF MESSAGES PRINTED (PER PROBLEM)
1042 C WARNING THAT T + H = T ON A STEP (H = STEP SIZE).
1043 C THIS MUST BE POSITIVE TO RESULT IN A NON-DEFAULT
1044 C VALUE. THE DEFAULT VALUE IS 10.
1045 C----------------------------------------------------------------------
1046 C OPTIONAL OUTPUTS.
1048 C AS OPTIONAL ADDITIONAL OUTPUT FROM ODESSA, THE VARIABLES LISTED
1049 C BELOW ARE QUANTITIES RELATED TO THE PERFORMANCE OF ODESSA
1050 C WHICH ARE AVAILABLE TO THE USER. THESE ARE COMMUNICATED BY WAY OF
1051 C THE WORK ARRAYS, BUT ALSO HAVE INTERNAL MNEMONIC NAMES AS SHOWN.
1052 C EXCEPT WHERE STATED OTHERWISE, ALL OF THESE OUTPUTS ARE DEFINED
1053 C ON ANY SUCCESSFUL RETURN FROM ODESSA, AND ON ANY RETURN WITH
1054 C ISTATE = -1, -2, -4, -5, OR -6. ON AN ILLEGAL INPUT RETURN
1055 C (ISTATE = -3), THEY WILL BE UNCHANGED FROM THEIR EXISTING VALUES
1056 C (IF ANY), EXCEPT POSSIBLY FOR TOLSF, LENRW, AND LENIW.
1057 C ON ANY ERROR RETURN, OUTPUTS RELEVANT TO THE ERROR WILL BE DEFINED,
1058 C AS NOTED BELOW.
1060 C NAME LOCATION MEANING
1062 C HU RWORK(11) THE STEP SIZE IN T LAST USED (SUCCESSFULLY).
1064 C HCUR RWORK(12) THE STEP SIZE TO BE ATTEMPTED ON THE NEXT STEP.
1066 C TCUR RWORK(13) THE CURRENT VALUE OF THE INDEPENDENT VARIABLE
1067 C WHICH THE KppSolveR HAS ACTUALLY REACHED, I.E. THE
1068 C CURRENT INTERNAL MESH POINT IN T. ON OUTPUT, TCUR
1069 C WILL ALWAYS BE AT LEAST AS FAR AS THE ARGUMENT
1070 C T, BUT MAY BE FARTHER (IF INTERPOLATION WAS DONE).
1072 C TOLSF RWORK(14) A TOLERANCE SCALE FACTOR, GREATER THAN 1.0,
1073 C COMPUTED WHEN A REQUEST FOR TOO MUCH ACCURACY WAS
1074 C DETECTED (ISTATE = -3 IF DETECTED AT THE START OF
1075 C THE PROBLEM, ISTATE = -2 OTHERWISE). IF ITOL IS
1076 C LEFT UNALTERED BUT RTOL AND ATOL ARE UNIFORMLY
1077 C SCALED UP BY A FACTOR OF TOLSF FOR THE NEXT CALL,
1078 C THEN THE KppSolveR IS DEEMED LIKELY TO SUCCEED.
1079 C (THE USER MAY ALSO IGNORE TOLSF AND ALTER THE
1080 C TOLERANCE PARAMETERS IN ANY OTHER WAY APPROPRIATE.)
1082 C NST IWORK(11) THE NUMBER OF STEPS TAKEN FOR THE PROBLEM SO FAR.
1084 C NFE IWORK(12) THE NUMBER OF F EVALUATIONS FOR THE PROBLEM SO FAR.
1086 C NJE IWORK(13) THE NUMBER OF JACOBIAN EVALUATIONS (AND OF MATRIX
1087 C LU DECOMPOSITIONS IF ISOPT = 0) FOR THE PROBLEM SO
1088 C FAR. IF ISOPT = 1, THE NUMBER OF LU DECOMPOSITIONS
1089 C IS EQUAL TO NJE - NSPE (SEE BELOW).
1091 C NQU IWORK(14) THE METHOD ORDER LAST USED (SUCCESSFULLY).
1093 C NQCUR IWORK(15) THE ORDER TO BE ATTEMPTED ON THE NEXT STEP.
1095 C IMXER IWORK(16) THE INDEX OF THE COMPONENT OF LARGEST MAGNITUDE IN
1096 C THE WEIGHTED LOCAL ERROR VECTOR (E(I,J)/EWT(I,J)),
1097 C ON AN ERROR RETURN WITH ISTATE = -4 OR -5.
1099 C LENRW IWORK(17) THE LENGTH OF RWORK ACTUALLY REQUIRED.
1100 C THIS IS DEFINED ON NORMAL RETURNS AND ON AN ILLEGAL
1101 C INPUT RETURN FOR INSUFFICIENT STORAGE.
1103 C LENIW IWORK(18) THE LENGTH OF IWORK ACTUALLY REQUIRED.
1104 C THIS IS DEFINED ON NORMAL RETURNS AND ON AN ILLEGAL
1105 C INPUT RETURN FOR INSUFFICIENT STORAGE.
1107 C NDFE IWORK(19) THE NUMBER OF DF/DP (VECTOR) EVALUATIONS.
1109 C NSPE IWORK(20) THE NUMBER OF CALLS TO SUBROUTINE SPRIME. EACH CALL
1110 C TO SPRIME REQUIRES A JACOBIAN EVALUATION, BUT NOT
1111 C AN LU DECOMPOSITION.
1113 C THE FOLLOWING ARRAYS ARE SEGMENTS OF THE RWORK AND IWORK ARRAYS
1114 C WHICH MAY ALSO BE OF INTEREST TO THE USER AS OPTIONAL OUTPUTS.
1115 C FOR EACH ARRAY, THE TABLE BELOW GIVES ITS INTERNAL NAME, ITS BASE
1116 C ADDRESS IN RWORK OR IWORK, AND ITS DESCRIPTION.
1118 C NAME BASE ADDRESS DESCRIPTION
1120 C YH 21 IN RWORK THE NORDSIECK HISTORY ARRAY, OF SIZE NYH BY
1121 C (NQCUR + 1). FOR J = 0,1,...,NQCUR, COLUMN J+1
1122 C OF YH CONTAINS HCUR**J/FACTORIAL(J) TIMES
1123 C THE J-TH DERIVATIVE OF THE INTERPOLATING
1124 C POLYNOMIAL CURRENTLY REPRESENTING THE SOLUTION,
1125 C EVALUATED AT T = TCUR.
1127 C ACOR LENRW-NYH+1 ARRAY OF SIZE NYH USED FOR THE ACCUMULATED
1128 C IN RWORK CORRECTIONS ON EACH STEP, SCALED ON OUTPUT
1129 C TO REPRESENT THE ESTIMATED LOCAL ERROR IN Y
1130 C ON THE LAST STEP. THIS IS THE VECTOR E IN
1131 C THE DESCRIPTION OF THE ERROR CONTROL.
1132 C IT IS DEFINED ONLY ON A SUCCESSFUL RETURN
1133 C FROM ODESSA.
1134 C NRS LENIW-NPAR ARRAY OF SIZE NPAR+1, USED TO STORE THE
1135 C IN IWORK ACCUMULATED NUMBER OF REPEATED STEPS DUE TO
1136 C THE SENSITIVITY ANALYSIS..
1137 C NRS(1) = TOTAL NUMBER OF REPEATED STEPS,
1138 C NRS(2),... = NUMBER OF REPEATED STEPS DUE TO
1139 C MODEL PARAMETER 1,...
1141 C----------------------------------------------------------------------
1142 C PART II. OTHER ROUTINES CALLABLE.
1144 C THE FOLLOWING ARE OPTIONAL CALLS WHICH THE USER MAY MAKE TO
1145 C GAIN ADDITIONAL CAPABILITIES IN CONJUNCTION WITH ODESSA.
1146 C (THE ROUTINES XSETUN AND XSETF ARE DESIGNED TO CONFORM TO THE
1147 C SLATEC ERROR HANDLING PACKAGE.)
1149 C FORM OF CALL FUNCTION
1150 C CALL XSETUN(LUN) SET THE LOGICAL UNIT NUMBER, LUN, FOR
1151 C OUTPUT OF MESSAGES FROM ODESSA, IF
1152 C THE DEFAULT IS NOT DESIRED.
1153 C THE DEFAULT VALUE OF LUN IS 6.
1155 C CALL XSETF(MFLAG) SET A FLAG TO CONTROL THE PRINTING OF
1156 C MESSAGES BY ODESSA..
1157 C MFLAG = 0 MEANS DO NOT PRINT. (DANGER..
1158 C THIS RISKS LOSING VALUABLE INFORMATION.)
1159 C MFLAG = 1 MEANS PRINT (THE DEFAULT).
1161 C EITHER OF THE ABOVE CALLS MAY BE MADE AT
1162 C ANY TIME AND WILL TAKE EFFECT IMMEDIATELY.
1164 C CALL SVCOM (RSAV, ISAV) STORE IN RSAV AND ISAV THE CONTENTS
1165 C OF THE INTERNAL COMMON BLOCKS USED BY
1166 C ODESSA (SEE PART III BELOW).
1167 C RSAV MUST BE A REAL ARRAY OF LENGTH 222
1168 C OR MORE, AND ISAV MUST BE AN INTEGER
1169 C ARRAY OF LENGTH 54 OR MORE.
1171 C CALL RSCOM (RSAV, ISAV) RESTORE, FROM RSAV AND ISAV, THE CONTENTS
1172 C OF THE INTERNAL COMMON BLOCKS USED BY
1173 C ODESSA. PRESUMES A PRIOR CALL TO SVCOM
1174 C WITH THE SAME ARGUMENTS.
1176 C SVCOM AND RSCOM ARE USEFUL IF
1177 C INTERRUPTING A RUN AND RESTARTING
1178 C LATER, OR ALTERNATING BETWEEN TWO OR
1179 C MORE PROBLEMS KppSolveD WITH ODESSA.
1181 C CALL INTDY(,,,,,) PROVIDE DERIVATIVES OF Y, OF VARIOUS
1182 C (SEE BELOW) ORDERS, AT A SPECIFIED POINT T, IF
1183 C DESIRED. IT MAY BE CALLED ONLY AFTER
1184 C A SUCCESSFUL RETURN FROM ODESSA.
1186 C THE DETAILED INSTRUCTIONS FOR USING INTDY ARE AS FOLLOWS.
1187 C THE FORM OF THE CALL IS..
1189 C CALL INTDY (T, K, RWORK(21), NYH, DKY, IFLAG)
1191 C THE INPUT PARAMETERS ARE..
1193 C T = VALUE OF INDEPENDENT VARIABLE WHERE ANSWERS ARE DESIRED
1194 C (NORMALLY THE SAME AS THE T LAST RETURNED BY ODESSA).
1195 C FOR VALID RESULTS, T MUST LIE BETWEEN TCUR - HU AND TCUR.
1196 C (SEE OPTIONAL OUTPUTS FOR TCUR AND HU.)
1197 C K = INTEGER ORDER OF THE DERIVATIVE DESIRED. K MUST SATISFY
1198 C 0 .LE. K .LE. NQCUR, WHERE NQCUR IS THE CURRENT ORDER
1199 C (SEE OPTIONAL OUTPUTS). THE CAPABILITY CORRESPONDING
1200 C TO K = 0, I.E. COMPUTING Y(T), IS ALREADY PROVIDED
1201 C BY ODESSA DIRECTLY. SINCE NQCUR .GE. 1, THE FIRST
1202 C DERIVATIVE DY/DT IS ALWAYS AVAILABLE WITH INTDY.
1203 C RWORK(21) = THE BASE ADDRESS OF THE HISTORY ARRAY YH.
1204 C NYH = COLUMN LENGTH OF YH, EQUAL TO THE TOTAL NUMBER OF
1205 C DEPENDENT VARIABLES. IF ISOPT = 0, NYH = N. IF ISOPT = 1,
1206 C NYH = N * (NPAR + 1).
1208 C THE OUTPUT PARAMETERS ARE..
1210 C DKY = A REAL ARRAY OF LENGTH NYH CONTAINING THE COMPUTED VALUE
1211 C OF THE K-TH DERIVATIVE OF Y(T).
1212 C IFLAG = INTEGER FLAG, RETURNED AS 0 IF K AND T WERE LEGAL,
1213 C -1 IF K WAS ILLEGAL, AND -2 IF T WAS ILLEGAL.
1214 C ON AN ERROR RETURN, A MESSAGE IS ALSO WRITTEN.
1215 C----------------------------------------------------------------------
1216 C PART III. COMMON BLOCKS.
1218 C IF ODESSA IS TO BE USED IN AN OVERLAY SITUATION, THE USER
1219 C MUST DECLARE, IN THE PRIMARY OVERLAY, THE VARIABLES IN..
1220 C (1) THE CALL SEQUENCE TO ODESSA,
1221 C (2) THE THREE INTERNAL COMMON BLOCKS
1222 C /ODE001/ OF LENGTH 258 (219 DOUBLE PRECISION WORDS
1223 C FOLLOWED BY 39 INTEGER WORDS),
1224 C /ODE002/ OF LENGTH 14 (3 DOUBLE PRECISION WORDS FOLLOWED
1225 C BY 11 INTEGER WORDS),
1226 C /EH0001/ OF LENGTH 2 (INTEGER WORDS).
1228 C IF ODESSA IS USED ON A SYSTEM IN WHICH THE CONTENTS OF INTERNAL
1229 C COMMON BLOCKS ARE NOT PRESERVED BETWEEN CALLS, THE USER SHOULD
1230 C DECLARE THE ABOVE THREE COMMON BLOCKS IN HIS MAIN PROGRAM TO INSURE
1231 C THAT THEIR CONTENTS ARE PRESERVED.
1233 C IF THE SOLUTION OF A GIVEN PROBLEM BY ODESSA IS TO BE INTERRUPTED
1234 C AND THEN LATER CONTINUED, SUCH AS WHEN RESTARTING AN INTERRUPTED RUN
1235 C OR ALTERNATING BETWEEN TWO OR MORE PROBLEMS, THE USER SHOULD SAVE,
1236 C FOLLOWING THE RETURN FROM THE LAST ODESSA CALL PRIOR TO THE
1237 C INTERRUPTION, THE CONTENTS OF THE CALL SEQUENCE VARIABLES AND THE
1238 C INTERNAL COMMON BLOCKS, AND LATER RESTORE THESE VALUES BEFORE THE
1239 C NEXT ODESSA CALL FOR THAT PROBLEM. TO SAVE AND RESTORE THE COMMON
1240 C BLOCKS, USE SUBROUTINES SVCOM AND RSCOM (SEE PART II ABOVE).
1242 C----------------------------------------------------------------------
1243 C PART IV. OPTIONALLY REPLACEABLE KppSolveR ROUTINES.
1245 C BELOW ARE DESCRIPTIONS OF TWO ROUTINES IN THE ODESSA PACKAGE WHICH
1246 C RELATE TO THE MEASUREMENT OF ERRORS. EITHER ROUTINE CAN BE
1247 C REPLACED BY A USER-SUPPLIED VERSION, IF DESIRED. HOWEVER, SINCE SUCH
1248 C A REPLACEMENT MAY HAVE A MAJOR IMPACT ON PERFORMANCE, IT SHOULD BE
1249 C DONE ONLY WHEN ABSOLUTELY NECESSARY, AND ONLY WITH GREAT CAUTION.
1250 C (NOTE.. THE MEANS BY WHICH THE PACKAGE VERSION OF A ROUTINE IS
1251 C SUPERSEDED BY THE USER-S VERSION MAY BE SYSTEM-DEPENDENT.)
1253 C (A) EWSET.
1254 C THE FOLLOWING SUBROUTINE IS CALLED JUST BEFORE EACH INTERNAL
1255 C INTEGRATION STEP, AND SETS THE ARRAY OF ERROR WEIGHTS, EWT, AS
1256 C DESCRIBED UNDER ITOL/RTOL/ATOL ABOVE..
1257 C SUBROUTINE EWSET (NYH, ITOL, RTOL, ATOL, YCUR, EWT)
1258 C WHERE NEQ, ITOL, RTOL, AND ATOL ARE AS IN THE ODESSA CALL SEQUENCE,
1259 C YCUR CONTAINS THE CURRENT DEPENDENT VARIABLE VECTOR, AND
1260 C EWT IS THE ARRAY OF WEIGHTS SET BY EWSET.
1262 C IF THE USER SUPPLIES THIS SUBROUTINE, IT MUST RETURN IN EWT(I)
1263 C (I = 1,...,NYH) A POSITIVE QUANTITY SUITABLE FOR COMPARING ERRORS
1264 C IN Y(I) TO. THE EWT ARRAY RETURNED BY EWSET IS PASSED TO THE
1265 C VNORM ROUTINE (SEE BELOW), AND ALSO USED BY ODESSA IN THE COMPUTATION
1266 C OF THE OPTIONAL OUTPUT IMXER, THE DIAGONAL JACOBIAN APPROXIMATION,
1267 C AND THE INCREMENTS FOR DIFFERENCE QUOTIENT JACOBIANS.
1269 C IN THE USER-SUPPLIED VERSION OF EWSET, IT MAY BE DESIRABLE TO USE
1270 C THE CURRENT VALUES OF DERIVATIVES OF Y. DERIVATIVES UP TO ORDER NQ
1271 C ARE AVAILABLE FROM THE HISTORY ARRAY YH, DESCRIBED ABOVE UNDER
1272 C OPTIONAL OUTPUTS. IN EWSET, YH IS IDENTICAL TO THE YCUR ARRAY,
1273 C EXTENDED TO NQ + 1 COLUMNS WITH A COLUMN LENGTH OF NYH AND SCALE
1274 C FACTORS OF H**J/FACTORIAL(J). ON THE FIRST CALL FOR THE PROBLEM,
1275 C GIVEN BY NST = 0, NQ IS 1 AND H IS TEMPORARILY SET TO 1.0.
1276 C THE QUANTITIES NQ, NYH, H, AND NST CAN BE OBTAINED BY INCLUDING
1277 C IN EWSET THE STATEMENTS..
1278 C DOUBLE PRECISION H, RLS
1279 C COMMON /ODE001/ RLS(219),ILS(39)
1280 C NQ = ILS(35)
1281 C NYH = ILS(14)
1282 C NST = ILS(36)
1283 C H = RLS(213)
1284 C THUS, FOR EXAMPLE, THE CURRENT VALUE OF DY/DT CAN BE OBTAINED AS
1285 C YCUR(NYH+I)/H (I=1,...,N) (AND THE DIVISION BY H IS
1286 C UNNECESSARY WHEN NST = 0).
1288 C (B) VNORM.
1289 C THE FOLLOWING IS A REAL FUNCTION ROUTINE WHICH COMPUTES THE WEIGHTED
1290 C ROOT-MEAN-SQUARE NORM OF A VECTOR V..
1291 C D = VNORM (LV, V, W)
1292 C WHERE..
1293 C LV = THE LENGTH OF THE VECTOR,
1294 C V = REAL ARRAY OF LENGTH N CONTAINING THE VECTOR,
1295 C W = REAL ARRAY OF LENGTH N CONTAINING WEIGHTS,
1296 C D = SQRT( (1/N) * SUM(V(I)*W(I))**2 ).
1297 C VNORM IS CALLED WITH LV = N AND WITH W(I) = 1.0/EWT(I), WHERE
1298 C EWT IS AS SET BY SUBROUTINE EWSET.
1300 C IF THE USER SUPPLIES THIS FUNCTION, IT SHOULD RETURN A NON-NEGATIVE
1301 C VALUE OF VNORM SUITABLE FOR USE IN THE ERROR CONTROL IN ODESSA.
1302 C NONE OF THE ARGUMENTS SHOULD BE ALTERED BY VNORM.
1303 C FOR EXAMPLE, A USER-SUPPLIED VNORM ROUTINE MIGHT..
1304 C -SUBSTITUTE A MAX-NORM OF (V(I)*W(I)) FOR THE RMS-NORM, OR
1305 C -IGNORE SOME COMPONENTS OF V IN THE NORM, WITH THE EFFECT OF
1306 C SUPPRESSING THE ERROR CONTROL ON THOSE COMPONENTS OF Y.
1307 C----------------------------------------------------------------------
1308 C OTHER ROUTINES IN THE ODESSA PACKAGE.
1310 C IN ADDITION TO SUBROUTINE ODESSA, THE ODESSA PACKAGE INCLUDES THE
1311 C FOLLOWING SUBROUTINES AND FUNCTION ROUTINES..
1312 C INTDY COMPUTES AN INTERPOLATED VALUE OF THE Y VECTOR AT T = TOUT.
1313 C STODE IS THE CORE INTEGRATOR, WHICH DOES ONE STEP OF THE
1314 C INTEGRATION AND THE ASSOCIATED ERROR CONTROL.
1315 C STESA MANAGES THE SOLUTION OF THE SENSITIVITY FUNCTIONS.
1316 C CFODE SETS ALL METHOD COEFFICIENTS AND TEST CONSTANTS.
1317 C PREPJ COMPUTES AND PREPROCESSES THE JACOBIAN MATRIX J = DF/DY
1318 C AND THE NEWTON ITERATION MATRIX P = I - H*L0*J.
1319 C IT IS ALSO CALLED BY SPRIME (WITH JOPT = 1) TO JUST
1320 C COMPUTE THE JACOBIAN MATRIX.
1321 C PREPDF COMPUTES THE INHOMOGENEITY MATRIX DF/DP.
1322 C SPRIME DEFINES THE SYSTEM OF SENSITIVITY EQUATIONS.
1323 C SOLSY MANAGES SOLUTION OF LINEAR SYSTEM IN CHORD ITERATION.
1324 C EWSET SETS THE ERROR WEIGHT VECTOR EWT BEFORE EACH STEP.
1325 C VNORM COMPUTES THE WEIGHTED R.M.S. NORM OF A VECTOR.
1326 C SVCOM AND RSCOM ARE USER-CALLABLE ROUTINES TO SAVE AND RESTORE,
1327 C RESPECTIVELY, THE CONTENTS OF THE INTERNAL COMMON BLOCKS.
1328 C DGEFA AND DGESL ARE ROUTINES FROM LINPACK FOR SOLVING FULL
1329 C SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS.
1330 C DGBFA AND DGBSL ARE ROUTINES FROM LINPACK FOR SOLVING BANDED
1331 C LINEAR SYSTEMS.
1332 C DAXPY, DSCAL, IDAMAX, AND DDOT ARE BASIC LINEAR ALGEBRA MODULES
1333 C (BLAS) USED BY THE ABOVE LINPACK ROUTINES.
1334 C D1MACH COMPUTES THE UNIT ROUNDOFF IN A MACHINE-INDEPENDENT MANNER.
1335 C XERR, XSETUN, AND XSETF HANDLE THE PRINTING OF ALL ERROR
1336 C MESSAGES AND WARNINGS.
1337 C NOTE.. VNORM, IDAMAX, DDOT, AND D1MACH ARE FUNCTION ROUTINES.
1338 C ALL THE OTHERS ARE SUBROUTINES.
1340 C THE FORTRAN GENERIC INTRINSIC FUNCTIONS USED BY ODESSA ARE..
1341 C ABS, MAX, MIN, REAL, MOD, SIGN, SQRT, AND WRITE
1343 C A BLOCK DATA SUBPROGRAM IS ALSO INCLUDED WITH THE PACKAGE,
1344 C FOR LOADING SOME OF THE VARIABLES IN INTERNAL COMMON.
1346 C----------------------------------------------------------------------
1347 C PART V. GENERAL REMARKS
1349 C THIS SECTION HIGHLIGHTS THE BASIC DIFFERENCES BETWEEN THE ORIGINAL
1350 C LSODE PACKAGE AND THE ODESSA MODIFICATION. THIS IS PROVIDED AS A
1351 C SERVICE TO EXPERIENCED LSODE USERS TO EXPEDITE FAMILIARIZATION WITH
1352 C ODESSA.
1354 C (A). ORIGINAL SUBROUTINES AND FUNCTIONS.
1356 C OF THE ORIGINAL 22 SUBROUTINES AND FUNCTIONS USED IN THE LSODE
1357 C PACKAGE, ALL ARE USED BY ODESSA, WITH THE FOLLOWING HAVING BEEN
1358 C MODIFIED..
1360 C LSODE THE ORIGINAL DRIVER SUBROUTINE FOR THE LSODE PACKAGE IS
1361 C EXTENSIVELY MODIFIED AND RENAMED ODESSA, WHICH NOW
1362 C CONTAINS A CALL TO SPRIME TO ESTABLISH INITIAL CONDITIONS
1363 C FOR THE SENSITIVITY CALCULATIONS.
1365 C STODE THE ONE STEP INTEGRATOR IS SLIGHTLY MODIFIED AND RETAINS
1366 C ITS ORIGINAL NAME. IT NOW CONTAINS THE CALL TO STESA,
1367 C AND ALSO CALLS SPRIME IF KFLAG .LE. -3.
1369 C PREPJ ALSO NAMED PREPJ IN ODESSA IS SLIGHTLY MODIFIED TO ALLOW
1370 C FOR THE CALCULATION OF JACOBIAN WITH NO PREPROCESSING
1371 C (JOPT = 1).
1373 C (B). NEW SUBROUTINES.
1375 C IN ADDITION TO THE CHANGES NOTED ABOVE, THREE NEW SUBROUTINES
1376 C HAVE BEEN INTRODUCED (SEE STESA, SPRIME, AND PREPDF AS DESCRIBED
1377 C IN PART IV. ABOVE).
1379 C (C). COMMON BLOCKS.
1381 C /LS0001/ RETAINS THE SAME LENGTH AND IS RENAMED /ODE001/;
1382 C HOWEVER THE REAL ARRAY ROWNS(209) IS SHORTENED TO A
1383 C LENGTH OF (173) REAL WORDS, ALLOWING THE REMOVAL OF
1384 C TESCO(3,12) WHICH IS NOW PASSED FROM STODE TO STESA.
1385 C IN ADDITION, THE INTEGER ARRAY IOWNS(6) IS SHORTENED
1386 C TO A LENGTH OF (4) INTEGER WORDS, ALLOWING THE REMOVAL
1387 C OF IALTH AND LMAX WHICH ARE NOW PASSED FROM STODE TO
1388 C STESA.
1390 C /ODE002/ ADDED COMMON BLOCK FOR VARIABLES IMPORTANT TO
1391 C SENSITIVITY ANALYSIS (SEE PART III. ABOVE). A BLOCK
1392 C DATA PROGRAM IS NOT REQUIRED FOR THIS COMMON BLOCK.
1394 C SVCOM,RSCOM THESE TWO SUBROUTINES ARE MODIFIED TO HANDLE
1395 C COMMON BLOCK /ODE002/ AS WELL.
1397 C (D). OPTIONAL INPUTS.
1399 C THE FULL SET OF OPTIONAL INPUTS AVAILABLE IN LSODE IS ALSO
1400 C AVAILABLE IN ODESSA, WITH THE EXCEPTION THAT THE NUMBER OF ODE'S
1401 C IN THE MODEL (NEQ(1)), MAY NOT BE CHANGED DURING THE PROBLEM.
1402 C IN ODESSA, NYH NOW REFERS TO THE TOTAL NUMBER OF FIRST-ORDER
1403 C ODE'S (MODEL AND SENSITIVITY EQUATIONS) WHICH IS EQUAL TO
1404 C NEQ(1) IF ISOPT = 0, OR NEQ(1)*(NEQ(2)+1) IF ISOPT = 1.
1405 C NEQ(1), NEQ(2), AND NYH ARE NOT ALLOWED TO CHANGE DURING
1406 C THE COURSE OF AN INTEGRATION.
1408 C (E). OPTIONAL OUTPUTS.
1410 C THE FULL SET OF OPTIONAL OUTPUTS AVAILABLE IN LSODE IS ALSO
1411 C AVAILABLE IN ODESSA. IN ADDITION, IWORK(19) AND IWORK(20) ARE
1412 C LOADED WITH NDFE AND NSPE, RESPECTIVELY, UPON OUTPUT. THE TOTAL
1413 C NUMBER OF LU DECOMPOSITIONS OF THE PROCESSED JACOBIAN IS EQUAL
1414 C TO NJE - NSPE.
1415 C-----------------------------------------------------------------------
1416 SUBROUTINE KPP_ODESSA (F, DF, NEQ, Y, PAR, T, TOUT,
1417 1 ITOL, RTOL, ATOL,
1418 1 ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
1419 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1420 LOGICAL IHIT
1421 EXTERNAL F, DF, JAC, PREPJ, SOLSY, PREPDF
1422 DIMENSION NEQ(*), Y(*), PAR(*), RTOL(*), ATOL(*), IOPT(*),
1423 1 RWORK(LRW), IWORK(LIW), MORD(2)
1424 C-----------------------------------------------------------------------
1425 C THIS IS THE SEPTEMBER 1, 1986 VERSION OF ODESSA..
1426 C AN ORDINARY DIFFERENTIAL EQUATION KppSolveR WITH EXPLICIT SIMULTANEOUS
1427 C SENSITIVITY ANALYSIS.
1429 C THIS PACKAGE IS A MODIFICATION OF THE AUGUST 13, 1981 VERSION OF
1430 C LSODE.. LIVERMORE KppSolveR FOR ORDINARY DIFFERENTIAL EQUATIONS.
1431 C THIS VERSION IS IN DOUBLE PRECISION.
1433 C ODESSA KppSolveS FOR THE FIRST-ORDER SENSITIVITY COEFFICIENTS..
1434 C DY(I)/DP, FOR A SINGLE PARAMETER, OR,
1435 C DY(I)/DP(J), FOR MULTIPLE PARAMETERS,
1436 C ASSOCIATED WITH A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS..
1437 C DY(T)/DT = F(Y,T;P).
1438 C-----------------------------------------------------------------------
1439 C REFERENCES...
1441 C 1. JORGE R. LEIS AND MARK A. KRAMER, THE SIMULTANEOUS SOLUTION AND
1442 C EXPLICIT SENSITIVITY ANALYSIS OF SYSTEMS DESCRIBED BY ORDINARY
1443 C DIFFERENTIAL EQUATIONS, SUBMITTED TO ACM TRANS. MATH. SOFTWARE,
1444 C (1985).
1446 C 2. JORGE R. LEIS AND MARK A. KRAMER, ODESSA - AN ORDINARY
1447 C DIFFERENTIAL EQUATION KppSolveR WITH EXPLICIT SIMULTANEOUS
1448 C SENSITIVITY ANALYSIS, SUBMITTED TO ACM TRANS. MATH. SOFTWARE.
1449 C (1985).
1451 C 3. ALAN C. HINDMARSH, LSODE AND LSODI, TWO NEW INITIAL VALUE
1452 C ORDINARY DIFFERENTIAL EQUATION KppSolveRS, ACM-SIGNUM NEWSLETTER,
1453 C VOL. 15, NO. 4 (1980), PP. 10-11.
1454 C-----------------------------------------------------------------------
1455 C THE FOLLOWING INTERNAL COMMON BLOCKS CONTAIN
1456 C (A) VARIABLES WHICH ARE LOCAL TO ANY SUBROUTINE BUT WHOSE VALUES MUST
1457 C BE PRESERVED BETWEEN CALLS TO THE ROUTINE (OWN VARIABLES), AND
1458 C (B) VARIABLES WHICH ARE COMMUNICATED BETWEEN SUBROUTINES.
1459 C THE STRUCTURE OF THE BLOCKS ARE AS FOLLOWS.. ALL REAL VARIABLES ARE
1460 C LISTED FIRST, FOLLOWED BY ALL INTEGERS. WITHIN EACH TYPE, THE
1461 C VARIABLES ARE GROUPED WITH THOSE LOCAL TO SUBROUTINE ODESSA FIRST,
1462 C THEN THOSE LOCAL TO SUBROUTINE STODE, AND FINALLY THOSE USED
1463 C FOR COMMUNICATION. THE BLOCKS ARE DECLARED IN SUBROUTINES ODESSA
1464 C INTDY, STODE, STESA, PREPJ, PREPDF, AND SOLSY. GROUPS OF VARIABLES
1465 C ARE REPLACED BY DUMMY ARRAYS IN THE COMMON DECLARATIONS IN ROUTINES
1466 C WHERE THOSE VARIABLES ARE NOT USED.
1467 C-----------------------------------------------------------------------
1468 COMMON /ODE001/ TRET, ROWNS(173),
1469 1 TESCO(3,12), CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
1470 2 ILLIN, INIT, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1471 3 MXSTEP, MXHNIL, NHNIL, NTREP, NSLAST, NYH, IOWNS(4),
1472 4 IALTH, LMAX, ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH,
1473 5 MITER, MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
1474 COMMON /ODE002/ DUPS, DSMS, DDNS,
1475 1 NPAR, LDFDP, LNRS,
1476 2 ISOPT, NSV, NDFE, NSPE, IDF, IERSP, JOPT, KFLAGS
1477 PARAMETER (ZERO=0.0D0,ONE=1.0D0,TWO=2.0D0,FOUR=4.0D0)
1478 DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/
1479 C-----------------------------------------------------------------------
1480 C BLOCK A.
1481 C THIS CODE BLOCK IS EXECUTED ON EVERY CALL.
1482 C IT TESTS ISTATE AND ITASK FOR LEGALITY AND BRANCHES APPROPIATELY.
1483 C IF ISTATE .GT. 1 BUT THE FLAG INIT SHOWS THAT INITIALIZATION HAS
1484 C NOT YET BEEN DONE, AN ERROR RETURN OCCURS.
1485 C IF ISTATE = 1 AND TOUT = T, JUMP TO BLOCK G AND RETURN IMMEDIATELY.
1486 C-----------------------------------------------------------------------
1487 IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
1488 IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
1489 IF (ISTATE .EQ. 1) GO TO 10
1490 IF (INIT .EQ. 0) GO TO 603
1491 IF (ISTATE .EQ. 2) GO TO 200
1492 GO TO 20
1493 10 INIT = 0
1494 IF (TOUT .EQ. T) GO TO 430
1495 20 NTREP = 0
1496 C-----------------------------------------------------------------------
1497 C BLOCK B.
1498 C THE NEXT CODE BLOCK IS EXECUTED FOR THE INITIAL CALL (ISTATE = 1),
1499 C OR FOR A CONTINUATION CALL WITH PARAMETER CHANGES (ISTATE = 3).
1500 C IT CONTAINS CHECKING OF ALL INPUTS AND VARIOUS INITIALIZATIONS.
1502 C FIRST CHECK LEGALITY OF THE NON-OPTIONAL INPUTS NEQ, ITOL, IOPT,
1503 C MF, ML, AND MU.
1504 C-----------------------------------------------------------------------
1505 IF (NEQ(1) .LE. 0) GO TO 604
1506 IF (ISTATE .EQ. 1) GO TO 25
1507 IF (NEQ(1) .NE. N) GO TO 605
1508 25 N = NEQ(1)
1509 IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606
1510 DO 26 I = 1,3
1511 26 IF (IOPT(I) .LT. 0 .OR. IOPT(I) .GT. 1) GO TO 607
1512 ISOPT = IOPT(2)
1513 IDF = IOPT(3)
1514 NYH = N
1515 NSV = 1
1516 METH = MF/10
1517 MITER = MF - 10*METH
1518 IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608
1519 IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608
1520 IF (MITER .LE. 3) GO TO 30
1521 ML = IWORK(1)
1522 MU = IWORK(2)
1523 IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609
1524 IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610
1525 30 IF (ISOPT .EQ. 0) GO TO 32
1526 C CHECK LEGALITY OF THE NON-OPTIONAL INPUTS ISOPT, NPAR.
1527 C COMPUTE NUMBER OF SOLUTION VECTORS AND TOTAL NUMBER OF EQUATIONS.
1528 IF (NEQ(2) .LE. 0) GO TO 628
1529 IF (ISTATE .EQ. 1) GO TO 31
1530 IF (NEQ(2) .NE. NPAR) GO TO 629
1531 31 NPAR = NEQ(2)
1532 NSV = NPAR + 1
1533 NYH = NSV * N
1534 IF (MITER .EQ. 0 .OR. MITER .EQ. 3) GO TO 630
1535 C NEXT PROCESS AND CHECK THE OPTIONAL INPUTS. --------------------------
1536 32 IF (IOPT(1) .EQ. 1) GO TO 40
1537 MAXORD = MORD(METH)
1538 MXSTEP = MXSTP0
1539 MXHNIL = MXHNL0
1540 IF (ISTATE .EQ. 1) H0 = ZERO
1541 HMXI = ZERO
1542 HMIN = ZERO
1543 GO TO 60
1544 40 MAXORD = IWORK(5)
1545 IF (MAXORD .LT. 0) GO TO 611
1546 IF (MAXORD .EQ. 0) MAXORD = 100
1547 MAXORD = MIN(MAXORD,MORD(METH))
1548 MXSTEP = IWORK(6)
1549 IF (MXSTEP .LT. 0) GO TO 612
1550 IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0
1551 MXHNIL = IWORK(7)
1552 IF (MXHNIL .LT. 0) GO TO 613
1553 IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0
1554 IF (ISTATE .NE. 1) GO TO 50
1555 H0 = RWORK(5)
1556 IF ((TOUT - T)*H0 .LT. ZERO) GO TO 614
1557 50 HMAX = RWORK(6)
1558 IF (HMAX .LT. ZERO) GO TO 615
1559 HMXI = ZERO
1560 IF (HMAX .GT. ZERO) HMXI = ONE/HMAX
1561 HMIN = RWORK(7)
1562 IF (HMIN .LT. ZERO) GO TO 616
1563 C-----------------------------------------------------------------------
1564 C SET WORK ARRAY POINTERS AND CHECK LENGTHS LRW AND LIW.
1565 C POINTERS TO SEGMENTS OF RWORK AND IWORK ARE NAMED BY PREFIXING L TO
1566 C THE NAME OF THE SEGMENT. E.G., THE SEGMENT YH STARTS AT RWORK(LYH).
1567 C SEGMENTS OF RWORK (IN ORDER) ARE DENOTED YH, WM, EWT, SAVF, ACOR.
1568 C WORK SPACE FOR DFDP IS CONTAINED IN ACOR.
1569 C-----------------------------------------------------------------------
1570 60 LYH = 21
1571 LWM = LYH + (MAXORD + 1)*NYH
1572 IF (MITER .EQ. 0) LENWM = 0
1573 IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENWM = N*N + 2
1574 IF (MITER .EQ. 3) LENWM = N + 2
1575 IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2
1576 LEWT = LWM + LENWM
1577 LSAVF = LEWT + NYH
1578 LACOR = LSAVF + N
1579 LDFDP = LACOR + N
1580 LENRW = LACOR + NYH - 1
1581 IWORK(17) = LENRW
1582 LIWM = 1
1583 LENIW = 20 + N
1584 IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 20
1585 LNRS = LENIW + LIWM
1586 IF (ISOPT .EQ. 1) LENIW = LNRS + NPAR
1587 IWORK(18) = LENIW
1588 IF (LENRW .GT. LRW) GO TO 617
1589 IF (LENIW .GT. LIW) GO TO 618
1590 C CHECK RTOL AND ATOL FOR LEGALITY. ------------------------------------
1591 RTOLI = RTOL(1)
1592 ATOLI = ATOL(1)
1593 DO 70 I = 1,NYH
1594 IF (ITOL .GE. 3) RTOLI = RTOL(I)
1595 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
1596 IF (RTOLI .LT. ZERO) GO TO 619
1597 IF (ATOLI .LT. ZERO) GO TO 620
1598 70 CONTINUE
1599 IF (ISTATE .EQ. 1) GO TO 100
1600 C IF ISTATE = 3, SET FLAG TO SIGNAL PARAMETER CHANGES TO STODE. --------
1601 JSTART = -1
1602 IF (NQ .LE. MAXORD) GO TO 90
1603 C MAXORD WAS REDUCED BELOW NQ. COPY YH(*,MAXORD+2) INTO SAVF. ---------
1604 DO 80 I = 1,N
1605 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1)
1606 C RELOAD WM(1) = RWORK(LWM), SINCE LWM MAY HAVE CHANGED. ---------------
1607 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1608 GO TO 200
1609 C-----------------------------------------------------------------------
1610 C BLOCK C.
1611 C THE NEXT BLOCK IS FOR THE INITIAL CALL ONLY (ISTATE = 1).
1612 C IT CONTAINS ALL REMAINING INITIALIZATIONS, THE INITIAL CALL TO F,
1613 C THE INITIAL CALL TO SPRIME IF ISOPT = 1,
1614 C AND THE CALCULATION OF THE INITIAL STEP SIZE.
1615 C THE ERROR WEIGHTS IN EWT ARE INVERTED AFTER BEING LOADED.
1616 C-----------------------------------------------------------------------
1617 100 UROUND = D1MACH(4)
1618 TN = T
1619 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 105
1620 TCRIT = RWORK(1)
1621 IF ((TCRIT - TOUT)*(TOUT - T) .LT. ZERO) GO TO 625
1622 IF (H0 .NE. ZERO .AND. (T + H0 - TCRIT)*H0 .GT. ZERO)
1623 1 H0 = TCRIT - T
1624 105 JSTART = 0
1625 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND)
1626 NHNIL = 0
1627 NST = 0
1628 NJE = 0
1629 NSLAST = 0
1630 HU = ZERO
1631 NQU = 0
1632 CCMAX = 0.3D0
1633 MAXCOR = 3
1634 IF (ISOPT .EQ. 1) MAXCOR = 4
1635 MSBP = 20
1636 MXNCF = 10
1637 C INITIAL CALL TO F. (LF0 POINTS TO YH(1,2) AND LOADS IN VALUES).
1638 LF0 = LYH + NYH
1639 CALL F (NEQ, T, Y, PAR, RWORK(LF0))
1640 NFE = 1
1641 DUPS = ZERO
1642 DSMS = ZERO
1643 DDNS = ZERO
1644 NDFE = 0
1645 NSPE = 0
1646 IF (ISOPT .EQ. 0) GO TO 114
1647 C INITIALIZE COUNTS FOR REPEATED STEPS DUE TO SENSITIVITY ANALYSIS.
1648 DO 110 J = 1,NSV
1649 110 IWORK(J + LNRS - 1) = 0
1650 C LOAD THE INITIAL VALUE VECTOR IN YH. ---------------------------------
1651 114 DO 115 I = 1,NYH
1652 115 RWORK(I+LYH-1) = Y(I)
1653 C LOAD AND INVERT THE EWT ARRAY. (H IS TEMPORARILY SET TO ONE.) -------
1654 NQ = 1
1655 H = ONE
1656 CALL EWSET (NYH, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
1657 DO 120 I = 1,NYH
1658 IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 621
1659 120 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
1660 IF (ISOPT .EQ. 0) GO TO 125
1661 C CALL SPRIME TO LOAD FIRST-ORDER SENSITIVITY DERIVATIVES INTO
1662 C REMAINING YH(*,2) POSITIONS.
1663 CALL SPRIME (NEQ, Y, RWORK(LYH), NYH, N, NSV, RWORK(LWM),
1664 1 IWORK(LIWM), RWORK(LEWT), RWORK(LF0), RWORK(LACOR),
1665 2 RWORK(LDFDP), PAR, F, JAC, DF, PREPJ, PREPDF)
1666 IF (IERSP .EQ. -1) GO TO 631
1667 IF (IERSP .EQ. -2) GO TO 632
1668 C-----------------------------------------------------------------------
1669 C THE CODING BELOW COMPUTES THE STEP SIZE, H0, TO BE ATTEMPTED ON THE
1670 C FIRST STEP, UNLESS THE USER HAS SUPPLIED A VALUE FOR THIS.
1671 C FIRST CHECK THAT TOUT - T DIFFERS SIGNIFICANTLY FROM ZERO.
1672 C A SCALAR TOLERANCE QUANTITY TOL IS COMPUTED, AS MAX(RTOL(I))
1673 C IF THIS IS POSITIVE, OR MAX(ATOL(I)/ABS(Y(I))) OTHERWISE, ADJUSTED
1674 C SO AS TO BE BETWEEN 100*UROUND AND 1.0E-3. ONLY THE ORIGINAL
1675 C SOLUTION VECTOR IS CONSIDERED IN THIS CALCULATION (ISOPT = 0 OR 1).
1676 C THEN THE COMPUTED VALUE H0 IS GIVEN BY..
1677 C NEQ
1678 C H0**2 = TOL / ( W0**-2 + (1/NEQ) * SUM ( F(I)/YWT(I) )**2 )
1680 C WHERE W0 = MAX ( ABS(T), ABS(TOUT) ),
1681 C F(I) = I-TH COMPONENT OF INITIAL VALUE OF F,
1682 C YWT(I) = EWT(I)/TOL (A WEIGHT FOR Y(I)).
1683 C THE SIGN OF H0 IS INFERRED FROM THE INITIAL VALUES OF TOUT AND T.
1684 C-----------------------------------------------------------------------
1685 125 IF (H0 .NE. ZERO) GO TO 180
1686 TDIST = ABS(TOUT - T)
1687 W0 = MAX(ABS(T),ABS(TOUT))
1688 IF (TDIST .LT. TWO*UROUND*W0) GO TO 622
1689 TOL = RTOL(1)
1690 IF (ITOL .LE. 2) GO TO 140
1691 DO 130 I = 1,N
1692 130 TOL = MAX(TOL,RTOL(I))
1693 140 IF (TOL .GT. ZERO) GO TO 160
1694 ATOLI = ATOL(1)
1695 DO 150 I = 1,N
1696 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
1697 AYI = ABS(Y(I))
1698 IF (AYI .NE. ZERO) TOL = MAX(TOL,ATOLI/AYI)
1699 150 CONTINUE
1700 160 TOL = MAX(TOL,100.0D0*UROUND)
1701 TOL = MIN(TOL,0.001D0)
1702 SUM = VNORM (N, RWORK(LF0), RWORK(LEWT))
1703 SUM = ONE/(TOL*W0*W0) + TOL*SUM**2
1704 H0 = ONE/SQRT(SUM)
1705 H0 = MIN(H0,TDIST)
1706 H0 = SIGN(H0,TOUT-T)
1707 C ADJUST H0 IF NECESSARY TO MEET HMAX BOUND. ---------------------------
1708 180 RH = ABS(H0)*HMXI
1709 IF (RH .GT. ONE) H0 = H0/RH
1710 C LOAD H WITH H0 AND SCALE YH(*,2) BY H0. ------------------------------
1711 H = H0
1712 DO 190 I = 1,NYH
1713 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1)
1714 GO TO 270
1715 C-----------------------------------------------------------------------
1716 C BLOCK D.
1717 C THE NEXT CODE BLOCK IS FOR CONTINUATION CALLS ONLY (ISTATE = 2 OR 3)
1718 C AND IS TO CHECK STOP CONDITIONS BEFORE TAKING A STEP.
1719 C-----------------------------------------------------------------------
1720 200 NSLAST = NST
1721 GO TO (210, 250, 220, 230, 240), ITASK
1722 210 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1723 CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1724 IF (IFLAG .NE. 0) GO TO 627
1725 T = TOUT
1726 GO TO 420
1727 220 TP = TN - HU*(ONE + 100.0D0*UROUND)
1728 IF ((TP - TOUT)*H .GT. ZERO) GO TO 623
1729 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1730 GO TO 400
1731 230 TCRIT = RWORK(1)
1732 IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
1733 IF ((TCRIT - TOUT)*H .LT. ZERO) GO TO 625
1734 IF ((TN - TOUT)*H .LT. ZERO) GO TO 245
1735 CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1736 IF (IFLAG .NE. 0) GO TO 627
1737 T = TOUT
1738 GO TO 420
1739 240 TCRIT = RWORK(1)
1740 IF ((TN - TCRIT)*H .GT. ZERO) GO TO 624
1741 245 HMX = ABS(TN) + ABS(H)
1742 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
1743 IF (IHIT) GO TO 400
1744 TNEXT = TN + H*(ONE + FOUR*UROUND)
1745 IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
1746 H = (TCRIT - TN)*(ONE - FOUR*UROUND)
1747 IF (ISTATE .EQ. 2) JSTART = -2
1748 C-----------------------------------------------------------------------
1749 C BLOCK E.
1750 C THE NEXT BLOCK IS NORMALLY EXECUTED FOR ALL CALLS AND CONTAINS
1751 C THE CALL TO THE ONE-STEP CORE INTEGRATOR STODE.
1753 C THIS IS A LOOPING POINT FOR THE INTEGRATION STEPS.
1755 C FIRST CHECK FOR TOO MANY STEPS BEING TAKEN, UPDATE EWT (IF NOT AT
1756 C START OF PROBLEM), CHECK FOR TOO MUCH ACCURACY BEING REQUESTED, AND
1757 C CHECK FOR H BELOW THE ROUNDOFF LEVEL IN T.
1758 C TOLSF IS CALCULATED CONSIDERING ALL SOLUTION VECTORS.
1759 C-----------------------------------------------------------------------
1760 250 CONTINUE
1761 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500
1762 CALL EWSET (NYH, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
1763 DO 260 I = 1,NYH
1764 IF (RWORK(I+LEWT-1) .LE. ZERO) GO TO 510
1765 260 RWORK(I+LEWT-1) = ONE/RWORK(I+LEWT-1)
1766 270 TOLSF = UROUND*VNORM (NYH, RWORK(LYH), RWORK(LEWT))
1767 IF (TOLSF .LE. ONE) GO TO 280
1768 TOLSF = TOLSF*2.0D0
1769 IF (NST .EQ. 0) GO TO 626
1770 GO TO 520
1771 280 IF (ADDX(TN,H) .NE. TN) GO TO 290
1772 NHNIL = NHNIL + 1
1773 IF (NHNIL .GT. MXHNIL) GO TO 290
1774 CALL XERR ('ODESSA - WARNING..INTERNAL T (=R1) AND H (=R2) ARE',
1775 1 101, 1, 0, 0, 0, 0, ZERO, ZERO)
1776 CALL XERR ('SUCH THAT IN THE MACHINE, T + H = T ON THE NEXT STEP',
1777 1 101, 1, 0, 0, 0, 0, ZERO, ZERO)
1778 CALL XERR ('(H = STEP SIZE). KppSolveR WILL CONTINUE ANYWAY',
1779 1 101, 1, 0, 0, 0, 2, TN, H)
1780 IF (NHNIL .LT. MXHNIL) GO TO 290
1781 CALL XERR ('ODESSA - ABOVE WARNING HAS BEEN ISSUED I1 TIMES.',
1782 1 102, 1, 0, 0, 0, 0, ZERO, ZERO)
1783 CALL XERR ('IT WILL NOT BE ISSUED AGAIN FOR THIS PROBLEM',
1784 1 102, 1, 1, MXHNIL, 0, 0, ZERO,ZERO)
1785 290 CONTINUE
1786 C-----------------------------------------------------------------------
1787 C CALL STODE(NEQ,Y,YH,NYH,YH,WM,IWM,EWT,SAVF,ACOR,PAR,NRS,
1788 C 1 F,JAC,DF,PREPJ,PREPDF,SOLSY)
1789 C-----------------------------------------------------------------------
1790 CALL STODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LWM),
1791 1 IWORK(LIWM), RWORK(LEWT), RWORK(LSAVF), RWORK(LACOR),
1792 2 PAR, IWORK(LNRS), F, JAC, DF, PREPJ, PREPDF, SOLSY)
1793 KGO = 1 - KFLAG
1794 GO TO (300, 530, 540, 633), KGO
1795 C-----------------------------------------------------------------------
1796 C BLOCK F.
1797 C THE FOLLOWING BLOCK HANDLES THE CASE OF A SUCCESSFUL RETURN FROM THE
1798 C CORE INTEGRATOR (KFLAG = 0). TEST FOR STOP CONDITIONS.
1799 C-----------------------------------------------------------------------
1800 300 INIT = 1
1801 GO TO (310, 400, 330, 340, 350), ITASK
1802 C ITASK = 1. IF TOUT HAS BEEN REACHED, INTERPOLATE. -------------------
1803 310 IF ((TN - TOUT)*H .LT. ZERO) GO TO 250
1804 CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1805 T = TOUT
1806 GO TO 420
1807 C ITASK = 3. JUMP TO EXIT IF TOUT WAS REACHED. ------------------------
1808 330 IF ((TN - TOUT)*H .GE. ZERO) GO TO 400
1809 GO TO 250
1810 C ITASK = 4. SEE IF TOUT OR TCRIT WAS REACHED. ADJUST H IF NECESSARY.
1811 340 IF ((TN - TOUT)*H .LT. ZERO) GO TO 345
1812 CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
1813 T = TOUT
1814 GO TO 420
1815 345 HMX = ABS(TN) + ABS(H)
1816 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
1817 IF (IHIT) GO TO 400
1818 TNEXT = TN + H*(ONE + FOUR*UROUND)
1819 IF ((TNEXT - TCRIT)*H .LE. ZERO) GO TO 250
1820 H = (TCRIT - TN)*(ONE - FOUR*UROUND)
1821 JSTART = -2
1822 GO TO 250
1823 C ITASK = 5. SEE IF TCRIT WAS REACHED AND JUMP TO EXIT. ---------------
1824 350 HMX = ABS(TN) + ABS(H)
1825 IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX
1826 C-----------------------------------------------------------------------
1827 C BLOCK G.
1828 C THE FOLLOWING BLOCK HANDLES ALL SUCCESSFUL RETURNS FROM ODESSA.
1829 C IF ITASK .NE. 1, Y IS LOADED FROM YH AND T IS SET ACCORDINGLY.
1830 C ISTATE IS SET TO 2, THE ILLEGAL INPUT COUNTER IS ZEROED, AND THE
1831 C OPTIONAL OUTPUTS ARE LOADED INTO THE WORK ARRAYS BEFORE RETURNING.
1832 C IF ISTATE = 1 AND TOUT = T, THERE IS A RETURN WITH NO ACTION TAKEN,
1833 C EXCEPT THAT IF THIS HAS HAPPENED REPEATEDLY, THE RUN IS TERMINATED.
1834 C-----------------------------------------------------------------------
1835 400 DO 410 I = 1,NYH
1836 410 Y(I) = RWORK(I+LYH-1)
1837 T = TN
1838 IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
1839 IF (IHIT) T = TCRIT
1840 420 ISTATE = 2
1841 ILLIN = 0
1842 RWORK(11) = HU
1843 RWORK(12) = H
1844 RWORK(13) = TN
1845 IWORK(11) = NST
1846 IWORK(12) = NFE
1847 IWORK(13) = NJE
1848 IWORK(14) = NQU
1849 IWORK(15) = NQ
1850 IF (ISOPT .EQ. 0) RETURN
1851 IWORK(19) = NDFE
1852 IWORK(20) = NSPE
1853 RETURN
1854 430 NTREP = NTREP + 1
1855 IF (NTREP .LT. 5) RETURN
1856 CALL XERR ('ODESSA -- REPEATED CALLS WITH ISTATE = 1 AND
1857 1TOUT = T (=R1)', 301, 1, 0, 0, 0, 1, T, ZERO)
1858 GO TO 800
1859 C-----------------------------------------------------------------------
1860 C BLOCK H.
1861 C THE FOLLOWING BLOCK HANDLES ALL UNSUCCESSFUL RETURNS OTHER THAN
1862 C THOSE FOR ILLEGAL INPUT. FIRST THE ERROR MESSAGE ROUTINE IS CALLED.
1863 C IF THERE WAS AN ERROR TEST OR CONVERGENCE TEST FAILURE, IMXER IS SET.
1864 C THEN Y IS LOADED FROM YH, T IS SET TO TN, AND THE ILLEGAL INPUT
1865 C COUNTER ILLIN IS SET TO 0. THE OPTIONAL OUTPUTS ARE LOADED INTO
1866 C THE WORK ARRAYS BEFORE RETURNING.
1867 C-----------------------------------------------------------------------
1868 C THE MAXIMUM NUMBER OF STEPS WAS TAKEN BEFORE REACHING TOUT. ----------
1869 500 CALL XERR ('ODESSA - AT CURRENT T (=R1), MXSTEP (=I1) STEPS',
1870 1 201, 1, 0, 0, 0, 0, ZERO,ZERO)
1871 CALL XERR ('TAKEN ON THIS CALL BEFORE REACHING TOUT',
1872 1 201, 1, 1, MXSTEP, 0, 1, TN, ZERO)
1873 ISTATE = -1
1874 GO TO 580
1875 C EWT(I) .LE. 0.0 FOR SOME I (NOT AT START OF PROBLEM). ----------------
1876 510 EWTI = RWORK(LEWT+I-1)
1877 CALL XERR ('ODESSA - AT T (=R1), EWT(I1) HAS BECOME R2 .LE. 0.',
1878 1 202, 1, 1, I, 0, 2, TN, EWTI)
1879 ISTATE = -6
1880 GO TO 580
1881 C TOO MUCH ACCURACY REQUESTED FOR MACHINE PRECISION. -------------------
1882 520 CALL XERR ('ODESSA - AT T (=R1), TOO MUCH ACCURACY REQUESTED',
1883 1 203, 1, 0, 0, 0, 0, ZERO,ZERO)
1884 CALL XERR ('FOR PRECISION OF MACHINE.. SEE TOLSF (=R2)',
1885 1 203, 1, 0, 0, 0, 2, TN, TOLSF)
1886 RWORK(14) = TOLSF
1887 ISTATE = -2
1888 GO TO 580
1889 C KFLAG = -1. ERROR TEST FAILED REPEATEDLY OR WITH ABS(H) = HMIN. -----
1890 530 CALL XERR ('ODESSA - AT T(=R1) AND STEP SIZE H(=R2), THE ERROR',
1891 1 204, 1, 0, 0, 0, 0, ZERO, ZERO)
1892 CALL XERR ('TEST FAILED REPEATEDLY OR WITH ABS(H) = HMIN',
1893 1 204, 1, 0, 0, 0, 2, TN, H)
1894 ISTATE = -4
1895 GO TO 560
1896 C KFLAG = -2. CONVERGENCE FAILED REPEATEDLY OR WITH ABS(H) = HMIN. ----
1897 540 CALL XERR ('ODESSA - AT T (=R1) AND STEP SIZE H (=R2), THE',
1898 1 205, 1, 0, 0, 0, 0, ZERO,ZERO)
1899 CALL XERR ('CORRECTOR CONVERGENCE FAILED REPEATEDLY',
1900 1 205, 1, 0, 0, 0, 0, ZERO,ZERO)
1901 CALL XERR ('OR WITH ABS(H) = HMIN',
1902 1 205, 1, 0, 0, 0, 2, TN, H)
1903 ISTATE = -5
1904 C COMPUTE IMXER IF RELEVANT. -------------------------------------------
1905 560 BIG = ZERO
1906 IMXER = 1
1907 DO 570 I = 1,NYH
1908 SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1))
1909 IF (BIG .GE. SIZE) GO TO 570
1910 BIG = SIZE
1911 IMXER = I
1912 570 CONTINUE
1913 IWORK(16) = IMXER
1914 C SET Y VECTOR, T, ILLIN, AND OPTIONAL OUTPUTS. ------------------------
1915 580 DO 590 I = 1,NYH
1916 590 Y(I) = RWORK(I+LYH-1)
1917 T = TN
1918 ILLIN = 0
1919 RWORK(11) = HU
1920 RWORK(12) = H
1921 RWORK(13) = TN
1922 IWORK(11) = NST
1923 IWORK(12) = NFE
1924 IWORK(13) = NJE
1925 IWORK(14) = NQU
1926 IWORK(15) = NQ
1927 IF (ISOPT .EQ. 0) RETURN
1928 IWORK(19) = NDFE
1929 IWORK(20) = NSPE
1930 RETURN
1931 C-----------------------------------------------------------------------
1932 C BLOCK I.
1933 C THE FOLLOWING BLOCK HANDLES ALL ERROR RETURNS DUE TO ILLEGAL INPUT
1934 C (ISTATE = -3), AS DETECTED BEFORE CALLING THE CORE INTEGRATOR.
1935 C FIRST THE ERROR MESSAGE ROUTINE IS CALLED. THEN IF THERE HAVE BEEN
1936 C 5 CONSECUTIVE SUCH RETURNS JUST BEFORE THIS CALL TO THE KppSolveR,
1937 C THE RUN IS HALTED.
1938 C-----------------------------------------------------------------------
1939 601 CALL XERR ('ODESSA - ISTATE (=I1) ILLEGAL',
1940 1 1, 1, 1, ISTATE, 0, 0, ZERO,ZERO)
1941 GO TO 700
1942 602 CALL XERR ('ODESSA - ITASK (=I1) ILLEGAL',
1943 1 2, 1, 1, ITASK, 0, 0, ZERO,ZERO)
1944 GO TO 700
1945 603 CALL XERR ('ODESSA - ISTATE .GT. 1 BUT ODESSA NOT INITIALIZED',
1946 1 3, 1, 0, 0, 0, 0, ZERO,ZERO)
1947 GO TO 700
1948 604 CALL XERR ('ODESSA - NEQ (=I1) .LT. 1',
1949 1 4, 1, 1, NEQ(1), 0, 0, ZERO,ZERO)
1950 GO TO 700
1951 605 CALL XERR ('ODESSA - ISTATE = 3 AND NEQ CHANGED. (I1 TO I2)',
1952 1 5, 1, 2, N, NEQ(1), 0, ZERO,ZERO)
1953 GO TO 700
1954 606 CALL XERR ('ODESSA - ITOL (=I1) ILLEGAL',
1955 1 6, 1, 1, ITOL, 0, 0, ZERO,ZERO)
1956 GO TO 700
1957 607 CALL XERR ('ODESSA - IOPT (=I1) ILLEGAL',
1958 1 7, 1, 1, IOPT, 0, 0, ZERO,ZERO)
1959 GO TO 700
1960 608 CALL XERR('ODESSA - MF (=I1) ILLEGAL',
1961 1 8, 1, 1, MF, 0, 0, ZERO,ZERO)
1962 GO TO 700
1963 609 CALL XERR('ODESSA - ML (=I1) ILLEGAL.. .LT.0 OR .GE.NEQ (=I2)',
1964 1 9, 1, 2, ML, NEQ(1), 0, ZERO,ZERO)
1965 GO TO 700
1966 610 CALL XERR('ODESSA - MU (=I1) ILLEGAL.. .LT.0 OR .GE.NEQ (=I2)',
1967 1 10, 1, 2, MU, NEQ(1), 0, ZERO,ZERO)
1968 GO TO 700
1969 611 CALL XERR('ODESSA - MAXORD (=I1) .LT. 0',
1970 1 11, 1, 1, MAXORD, 0, 0, ZERO,ZERO)
1971 GO TO 700
1972 612 CALL XERR('ODESSA - MXSTEP (=I1) .LT. 0',
1973 1 12, 1, 1, MXSTEP, 0, 0, ZERO,ZERO)
1974 GO TO 700
1975 613 CALL XERR('ODESSA - MXHNIL (=I1) .LT. 0',
1976 1 13, 1, 1, MXHNIL, 0, 0, ZERO,ZERO)
1977 GO TO 700
1978 614 CALL XERR('ODESSA - TOUT (=R1) BEHIND T (=R2)',
1979 1 14, 1, 0, 0, 0, 2, TOUT, T)
1980 CALL XERR('INTEGRATION DIRECTION IS GIVEN BY H0 (=R1)',
1981 1 14, 1, 0, 0, 0, 1, H0, ZERO)
1982 GO TO 700
1983 615 CALL XERR('ODESSA - HMAX (=R1) .LT. 0.0',
1984 1 15, 1, 0, 0, 0, 1, HMAX, ZERO)
1985 GO TO 700
1986 616 CALL XERR('ODESSA - HMIN (=R1) .LT. 0.0',
1987 1 16, 1, 0, 0, 0, 1, HMIN, ZERO)
1988 GO TO 700
1989 617 CALL XERR('ODESSA - RWORK LENGTH NEEDED, LENRW (=I1), EXCEEDS
1990 1 LRW (=I2)', 17, 1, 2, LENRW, LRW, 0, ZERO,ZERO)
1991 GO TO 700
1992 618 CALL XERR('ODESSA - IWORK LENGTH NEEDED, LENIW (=I1), EXCEEDS
1993 1 LIW (=I2)', 18, 1, 2, LENIW, LIW, 0, ZERO,ZERO)
1994 GO TO 700
1995 619 CALL XERR('ODESSA - RTOL(I1) IS R1 .LT. 0.0',
1996 1 19, 1, 1, I, 0, 1, RTOLI, ZREO)
1997 GO TO 700
1998 620 CALL XERR('ODESSA - ATOL(I1) IS R1 .LT. 0.0',
1999 1 20, 1, 1, I, 0, 1, ATOLI, ZERO)
2000 GO TO 700
2002 621 EWTI = RWORK(LEWT+I-1)
2003 CALL XERR('ODESSA - EWT(I1) IS R1 .LE. 0.0',
2004 1 21, 1, 1, I, 0, 1, EWTI, ZERO)
2005 GO TO 700
2006 622 CALL XERR('ODESSA - TOUT (=R1) TOO CLOSE TO T(=R2) TO START
2007 1 INTEGRATION', 22, 1, 0, 0, 0, 2, TOUT, T)
2008 GO TO 700
2009 623 CALL XERR('ODESSA - ITASK = I1 AND TOUT (=R1) BEHIND TCUR - HU
2010 1 (= R2)', 23, 1, 1, ITASK, 0, 2, TOUT, TP)
2011 GO TO 700
2012 624 CALL XERR('ODESSA - ITASK = 4 OR 5 AND TCRIT (=R1) BEHIND TCUR
2013 1 (=R2)', 24, 1, 0, 0, 0, 2, TCRIT, TN)
2014 GO TO 700
2015 625 CALL XERR('ODESSA - ITASK = 4 OR 5 AND TCRIT (=R1) BEHIND TOUT
2016 1 (=R2)', 25, 1, 0, 0, 0, 2, TCRIT, TOUT)
2017 GO TO 700
2018 626 CALL XERR('ODESSA - AT START OF PROBLEM, TOO MUCH ACCURACY',
2019 1 26, 1, 0, 0, 0, 0, ZERO,ZERO)
2020 CALL XERR('REQUESTED FOR PRECISION OF MACHINE. SEE TOLSF (=R1)',
2021 1 26, 1, 0, 0, 0, 1, TOLSF, ZERO)
2022 RWORK(14) = TOLSF
2023 GO TO 700
2024 627 CALL XERR('ODESSA - TROUBLE FROM INTDY. ITASK = I1, TOUT = R1',
2025 1 27, 1, 1, ITASK, 0, 1, TOUT, ZERO)
2026 GO TO 700
2027 C ERROR STATEMENTS ASSOCIATED WITH SENSITIVITY ANALYSIS.
2028 628 CALL XERR('ODESSA - NPAR (=I1) .LT. 1',
2029 1 28, 1, 1, NPAR, 0, 0, ZERO,ZERO)
2030 GO TO 700
2031 629 CALL XERR('ODESSA - ISTATE = 3 AND NPAR CHANGED (I1 TO I2)',
2032 1 29, 1, 2, NP, NPAR, 0, ZERO,ZERO)
2033 GO TO 700
2034 630 CALL XERR('ODESSA - MITER (=I1) ILLEGAL',
2035 1 30, 1, 1, MITER, 0, 0, ZERO,ZERO)
2036 GO TO 700
2037 631 CALL XERR('ODESSA - TROUBLE IN SPRIME (IERPJ)',
2038 1 31, 1, 0, 0, 0, 0, ZERO,ZERO)
2039 GO TO 700
2040 632 CALL XERR('ODESSA - TROUBLE IN SPRIME (MITER)',
2041 1 32, 1, 0, 0, 0, 0, ZERO,ZERO)
2042 GO TO 700
2043 633 CALL XERR('ODESSA - FATAL ERROR IN STODE (KFLAG = -3)',
2044 1 33, 2, 0, 0, 0, 0, ZERO,ZERO)
2045 GO TO 801
2047 700 IF (ILLIN .EQ. 5) GO TO 710
2048 ILLIN = ILLIN + 1
2049 ISTATE = -3
2050 RETURN
2051 710 CALL XERR('ODESSA - REPEATED OCCURRENCES OF ILLEGAL INPUT',
2052 1 302, 1, 0, 0, 0, 0, ZERO,ZERO)
2054 800 CALL XERR('ODESSA - RUN ABORTED.. APPARENT INFINITE LOOP',
2055 1 303, 2, 0, 0, 0, 0, ZERO,ZERO)
2056 RETURN
2057 801 CALL XERR('ODESSA - RUN ABORTED',
2058 1 304, 2, 0, 0, 0, 0, ZERO,ZERO)
2059 RETURN
2060 C-------------------- END OF SUBROUTINE ODESSA -------------------------
2062 DOUBLE PRECISION FUNCTION ADDX(A,B)
2063 DOUBLE PRECISION A,B
2065 C THIS FUNCTION IS NECESSARY TO FORCE OPTIMIZING COMPILERS TO
2066 C EXECUTE AND STORE A SUM, FOR SUCCESSFUL EXECUTION OF THE
2067 C TEST A + B = B.
2069 ADDX = A + B
2070 RETURN
2071 C-------------------- END OF FUNCTION SUM ------------------------------
2073 SUBROUTINE SPRIME (NEQ, Y, YH, NYH, NROW, NCOL, WM, IWM,
2074 1 EWT, SAVF, FTEM, DFDP, PAR, F, JAC, DF, PJAC, PDF)
2075 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2076 DIMENSION NEQ(*), Y(*), YH(NROW,NCOL,*), WM(*), IWM(*),
2077 1 EWT(*), SAVF(*), FTEM(*), DFDP(NROW,*), PAR(*)
2078 EXTERNAL F, JAC, DF, PJAC, PDF
2079 PARAMETER (ONE=1.0D0,ZERO=0.0D0)
2080 COMMON /ODE001/ ROWND, ROWNS(173),
2081 1 RDUM1(37),EL0, H, RDUM2(6),
2082 2 IOWND1(14), IOWNS(4),
2083 3 IDUM1(3), IERPJ, IDUM2(6),
2084 4 MITER, IDUM3(4), N, IDUM4(5)
2085 COMMON /ODE002/ RDUM3(3),
2086 1 IOWND2(3), IDUM5, NSV, IDUM6, NSPE, IDUM7, IERSP, JOPT, IDUM8
2087 C-----------------------------------------------------------------------
2088 C SPRIME IS CALLED BY ODESSA TO INITIALIZE THE YH ARRAY. IT IS ALSO
2089 C CALLED BY STODE TO REEVALUATE FIRST ORDER DERIVATIVES WHEN KFLAG
2090 C .LE. -3. SPRIME COMPUTES THE FIRST DERIVATIVES OF THE SENSITIVITY
2091 C COEFFICIENTS WITH RESPECT TO THE INDEPENDENT VARIABLE T...
2093 C SPRIME = D(DY/DP)/DT = JAC*DY/DP + DF/DP
2094 C WHERE JAC = JACOBIAN MATRIX
2095 C DY/DP = SENSITIVITY MATRIX
2096 C DF/DP = INHOMOGENEITY MATRIX
2097 C THIS ROUTINE USES THE COMMON VARIABLES EL0, H, IERPJ, MITER, N,
2098 C NSV, NSPE, IERSP, JOPT
2099 C-----------------------------------------------------------------------
2100 C CALL PREPJ WITH JOPT = 1.
2101 C IF MITER = 2 OR 5, EL0 IS TEMPORARILY SET TO -1.0 AND H IS
2102 C TEMPORARILY SET TO 1.0D0.
2103 C-----------------------------------------------------------------------
2104 NSPE = NSPE + 1
2105 JOPT = 1
2106 IF (MITER .EQ. 1 .OR. MITER .EQ. 4) GO TO 10
2107 HTEMP = H
2108 ETEMP = EL0
2109 H = ONE
2110 EL0 = -ONE
2111 10 CALL PJAC (NEQ, Y, YH, NYH, WM, IWM, EWT, SAVF, FTEM,
2112 1 PAR, F, JAC, JOPT)
2113 IF (IERPJ .NE. 0) GO TO 300
2114 JOPT = 0
2115 IF (MITER .EQ. 1 .OR. MITER .EQ. 4) GO TO 20
2116 H = HTEMP
2117 EL0 = ETEMP
2118 C-----------------------------------------------------------------------
2119 C CALL PREPDF AND LOAD DFDP(*,JPAR).
2120 C-----------------------------------------------------------------------
2121 20 DO 30 J = 2,NSV
2122 JPAR = J - 1
2123 CALL PDF (NEQ, Y, WM, SAVF, FTEM, DFDP(1,JPAR), PAR,
2124 1 F, DF, JPAR)
2125 30 CONTINUE
2126 C-----------------------------------------------------------------------
2127 C COMPUTE JAC*DY/DP AND STORE RESULTS IN YH(*,*,2).
2128 C-----------------------------------------------------------------------
2129 GO TO (40,40,310,100,100) MITER
2130 C THE JACOBIAN IS FULL.------------------------------------------------
2131 C FOR EACH ROW OF THE JACOBIAN..
2132 C 40 DO 70 IROW = 1,N
2133 C AND EACH COLUMN OF THE SENSITIVITY MATRIX..
2134 C DO 60 J = 2,NSV
2135 C SUM = ZERO
2136 C TAKE THE VECTOR DOT PRODUCT..
2137 C DO 50 I = 1,N
2138 C IPD = IROW + N*(I-1) + 2
2139 C SUM = SUM + WM(IPD)*YH(I,J,1)
2140 C 50 CONTINUE
2141 C YH(IROW,J,2) = SUM
2142 C 60 CONTINUE
2143 C 70 CONTINUE
2144 40 CONTINUE
2145 C FOR EACH COLUMN OF THE SENSITIVITY MATRIX..
2146 DO 60 J = 2,NSV
2147 CALL Jac_SP_Vec( WM(3), YH(1,J,1), YH(1,J,2) )
2148 60 CONTINUE
2149 GO TO 200
2150 C THE JACOBIAN IS BANDED.-----------------------------------------------
2151 100 ML = IWM(1)
2152 MU = IWM(2)
2153 ICOUNT = 1
2154 MBAND = ML + MU + 1
2155 MEBAND = MBAND + ML
2156 NMU = N - MU
2157 ML1 = ML + 1
2158 C FOR EACH ROW OF THE JACOBIAN..
2159 DO 160 IROW = 1,N
2160 IF (IROW .GT. ML1) GO TO 110
2161 IPD = MBAND + IROW + 1
2162 IYH = 1
2163 LBAND = MU + IROW
2164 GO TO 120
2165 110 ICOUNT = ICOUNT + 1
2166 IPD = ICOUNT*MEBAND + 2
2167 IYH = IYH + 1
2168 LBAND = LBAND - 1
2169 IF (IROW .LE. NMU) LBAND = MBAND
2170 C AND EACH COLUMN OF THE SENSITIVITY MATRIX..
2171 120 DO 150 J = 2,NSV
2172 SUM = ZERO
2173 I1 = IPD
2174 I2 = IYH
2175 C TAKE THE VECTOR DOT PRODUCT.
2176 DO 140 I = 1,LBAND
2177 SUM = SUM + WM(I1)*YH(I2,J,1)
2178 I1 = I1 + MEBAND - 1
2179 I2 = I2 + 1
2180 140 CONTINUE
2181 YH(IROW,J,2) = SUM
2182 150 CONTINUE
2183 160 CONTINUE
2184 C-----------------------------------------------------------------------
2185 C ADD THE INHOMOGENEITY TERM, I.E., ADD DFDP(*,JPAR) TO YH(*,JPAR+1,2).
2186 C-----------------------------------------------------------------------
2187 200 DO 220 J = 2,NSV
2188 JPAR = J - 1
2189 DO 210 I = 1,N
2190 YH(I,J,2) = YH(I,J,2) + DFDP(I,JPAR)
2191 210 CONTINUE
2192 220 CONTINUE
2193 RETURN
2194 C-----------------------------------------------------------------------
2195 C ERROR RETURNS.
2196 C-----------------------------------------------------------------------
2197 300 IERSP = -1
2198 RETURN
2199 310 IERSP = -2
2200 RETURN
2201 C------------------------END OF SUBROUTINE SPRIME-----------------------
2203 SUBROUTINE PREPJ (NEQ, Y, YH, NYH, WM, IWM, EWT, SAVF, FTEM,
2204 1 PAR, FUNC_CHEM, JAC, JOPT)
2205 C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2206 INCLUDE 'KPP_ROOT_Parameters.h'
2207 INCLUDE 'KPP_ROOT_Sparse.h'
2208 DIMENSION NEQ(*), Y(*), YH(NYH,*), WM(*), IWM(*), EWT(*),
2209 1 SAVF(*), FTEM(*), PAR(*)
2210 EXTERNAL FUNC_CHEM, JAC
2211 PARAMETER (ZERO=0.0D0,ONE=1.0D0)
2212 COMMON /ODE001/ ROWND, ROWNS(173),
2213 2 RDUM1(37), EL0, H, RDUM2(4), TN, UROUND,
2214 3 IOWND(14), IOWNS(4),
2215 4 IDUM1(3), IERPJ, IDUM2, JCUR, IDUM3(4),
2216 5 MITER, IDUM4(4), N, IDUM5(2), NFE, NJE, IDUM6
2217 C-----------------------------------------------------------------------
2218 C PREPJ IS CALLED BY STODE TO COMPUTE AND PROCESS THE MATRIX
2219 C P = I - H*EL(1)*J , WHERE J IS AN APPROXIMATION TO THE JACOBIAN.
2220 C IF ISOPT = 1, PREPJ IS ALSO CALLED BY SPRIME WITH JOPT = 1.
2221 C HERE J IS COMPUTED BY THE USER-SUPPLIED ROUTINE JAC IF
2222 C MITER = 1 OR 4, OR BY FINITE DIFFERENCING IF MITER = 2, 3, OR 5.
2223 C IF MITER = 3, A DIAGONAL APPROXIMATION TO J IS USED.
2224 C J IS STORED IN WM AND REPLACED BY P. IF MITER .NE. 3, P IS THEN
2225 C SUBJECTED TO LU DECOMPOSITION (JOPT = 0) IN PREPARATION FOR LATER
2226 C SOLUTION OF LINEAR SYSTEMS WITH P AS COEFFICIENT MATRIX. THIS IS
2227 C DONE BY DGEFA IF MITER = 1 OR 2, AND BY DGBFA IF MITER = 4 OR 5.
2229 C IN ADDITION TO VARIABLES DESCRIBED PREVIOUSLY, COMMUNICATION
2230 C WITH PREPJ USES THE FOLLOWING..
2231 C Y = ARRAY CONTAINING PREDICTED VALUES ON ENTRY.
2232 C FTEM = WORK ARRAY OF LENGTH N (ACOR IN STODE).
2233 C SAVF = ARRAY CONTAINING F EVALUATED AT PREDICTED Y.
2234 C WM = REAL WORK SPACE FOR MATRICES. ON OUTPUT IT CONTAINS THE
2235 C INVERSE DIAGONAL MATRIX IF MITER = 3 AND THE LU DECOMPOSITION
2236 C OF P IF MITER IS 1, 2 , 4, OR 5.
2237 C STORAGE OF MATRIX ELEMENTS STARTS AT WM(3).
2238 C WM ALSO CONTAINS THE FOLLOWING MATRIX-RELATED DATA..
2239 C WM(1) = SQRT(UROUND), USED IN NUMERICAL JACOBIAN INCREMENTS.
2240 C WM(2) = H*EL0, SAVED FOR LATER USE IF MITER = 3.
2241 C IWM = INTEGER WORK SPACE CONTAINING PIVOT INFORMATION, STARTING AT
2242 C IWM(21), IF MITER IS 1, 2, 4, OR 5. IWM ALSO CONTAINS BAND
2243 C PARAMETERS ML = IWM(1) AND MU = IWM(2) IF MITER IS 4 OR 5.
2244 C EL0 = EL(1) (INPUT).
2245 C IERPJ = OUTPUT ERROR FLAG, = 0 IF NO TROUBLE, .GT. 0 IF
2246 C P MATRIX FOUND TO BE SINGULAR.
2247 C JCUR = OUTPUT FLAG = 1 TO INDICATE THAT THE JACOBIAN MATRIX
2248 C (OR APPROXIMATION) IS NOW CURRENT.
2249 C JOPT = INPUT JACOBIAN OPTION, = 1 IF JAC IS DESIRED ONLY.
2250 C THIS ROUTINE ALSO USES THE COMMON VARIABLES EL0, H, TN, UROUND,
2251 C IERPJ, JCUR, MITER, N, NFE, AND NJE.
2252 C-----------------------------------------------------------------------
2253 NJE = NJE + 1
2254 IERPJ = 0
2255 JCUR = 1
2256 HL0 = H*EL0
2257 GO TO (100, 200, 300, 400, 500), MITER
2258 C IF MITER = 1, CALL JAC AND MULTIPLY BY SCALAR. -----------------------
2259 C 100 LENP = N*N
2260 100 LENP = LU_NONZERO
2261 DO 110 I = 1,LU_NONZERO
2262 110 WM(I+2) = ZERO
2263 CALL JAC (NEQ, TN, Y, PAR, 0, 0, WM(3), N)
2264 IF (JOPT .EQ. 1) RETURN
2265 CON = -HL0
2266 DO 120 I = 1,LU_NONZERO
2267 120 WM(I+2) = WM(I+2)*CON
2268 GO TO 240
2269 C IF MITER = 2, MAKE N CALLS TO F TO APPROXIMATE J. --------------------
2270 200 FAC = VNORM (N, SAVF, EWT)
2271 R0 = 1000.0D0*ABS(H)*UROUND*REAL(N)*FAC
2272 IF (R0 .EQ. ZERO) R0 = ONE
2273 SRUR = WM(1)
2274 J1 = 2
2275 DO 230 J = 1,N
2276 YJ = Y(J)
2277 R = MAX(SRUR*ABS(YJ),R0/EWT(J))
2278 Y(J) = Y(J) + R
2279 FAC = -HL0/R
2280 CALL FUNC_CHEM (NEQ, TN, Y, PAR, FTEM)
2281 DO 220 I = 1,N
2282 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
2283 Y(J) = YJ
2284 J1 = J1 + N
2285 230 CONTINUE
2286 NFE = NFE + N
2287 IF (JOPT .EQ. 1) RETURN
2288 C ADD IDENTITY MATRIX. -------------------------------------------------
2289 240 J = 3
2290 C DO 250 I = 1,N
2291 C WM(J) = WM(J) + ONE
2292 C 250 J = J + (N + 1)
2293 DO 250 I = 1,NVAR
2294 250 WM(2+LU_DIAG(I)) = WM(2+LU_DIAG(I)) + ONE
2295 C DO LU DECOMPOSITION ON P. --------------------------------------------
2296 C CALL DGEFA (WM(3), N, N, IWM(21), IER)
2297 CALL KppDecomp (WM(3), IER)
2298 IF (IER .NE. 0) THEN
2299 IERPJ = 1
2300 PRINT*,"Singular Matrix"
2301 STOP
2302 END IF
2303 RETURN
2304 C IF MITER = 3, CONSTRUCT A DIAGONAL APPROXIMATION TO J AND P. ---------
2305 300 WM(2) = HL0
2306 R = EL0*0.1D0
2307 DO 310 I = 1,N
2308 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
2309 CALL FUNC_CHEM (NEQ, TN, Y, PAR, WM(3))
2310 NFE = NFE + 1
2311 DO 320 I = 1,N
2312 R0 = H*SAVF(I) - YH(I,2)
2313 DI = 0.1D0*R0 - H*(WM(I+2) - SAVF(I))
2314 WM(I+2) = 1.0D0
2315 IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320
2316 IF (ABS(DI) .EQ. ZERO) GO TO 330
2317 WM(I+2) = 0.1D0*R0/DI
2318 320 CONTINUE
2319 RETURN
2320 330 IERPJ = 1
2321 RETURN
2322 C IF MITER = 4, CALL JAC AND MULTIPLY BY SCALAR. -----------------------
2323 400 ML = IWM(1)
2324 MU = IWM(2)
2325 ML3 = ML + 3
2326 MBAND = ML + MU + 1
2327 MEBAND = MBAND + ML
2328 LENP = MEBAND*N
2329 DO 410 I = 1,LENP
2330 410 WM(I+2) = ZERO
2331 CALL JAC (NEQ, TN, Y, PAR, ML, MU, WM(ML3), MEBAND)
2332 IF (JOPT .EQ. 1) RETURN
2333 CON = -HL0
2334 DO 420 I = 1,LENP
2335 420 WM(I+2) = WM(I+2)*CON
2336 GO TO 570
2337 C IF MITER = 5, MAKE MBAND CALLS TO F TO APPROXIMATE J. ----------------
2338 500 ML = IWM(1)
2339 MU = IWM(2)
2340 MBAND = ML + MU + 1
2341 MBA = MIN(MBAND,N)
2342 MEBAND = MBAND + ML
2343 MEB1 = MEBAND - 1
2344 SRUR = WM(1)
2345 FAC = VNORM (N, SAVF, EWT)
2346 R0 = 1000.0D0*ABS(H)*UROUND*REAL(N)*FAC
2347 IF (R0 .EQ. ZERO) R0 = ONE
2348 DO 560 J = 1,MBA
2349 DO 530 I = J,N,MBAND
2350 YI = Y(I)
2351 R = MAX(SRUR*ABS(YI),R0/EWT(I))
2352 530 Y(I) = Y(I) + R
2353 CALL FUNC_CHEM (NEQ, TN, Y, PAR, FTEM)
2354 DO 550 JJ = J,N,MBAND
2355 Y(JJ) = YH(JJ,1)
2356 YJJ = Y(JJ)
2357 R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ))
2358 FAC = -HL0/R
2359 I1 = MAX(JJ-MU,1)
2360 I2 = MIN(JJ+ML,N)
2361 II = JJ*MEB1 - ML + 2
2362 DO 540 I = I1,I2
2363 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC
2364 550 CONTINUE
2365 560 CONTINUE
2366 NFE = NFE + MBA
2367 IF (JOPT .EQ. 1) RETURN
2368 C ADD IDENTITY MATRIX. -------------------------------------------------
2369 570 II = MBAND + 2
2370 DO 580 I = 1,N
2371 WM(II) = WM(II) + ONE
2372 580 II = II + MEBAND
2373 C DO LU DECOMPOSITION OF P. --------------------------------------------
2374 CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER)
2375 IF (IER .NE. 0) IERPJ = 1
2376 RETURN
2377 C----------------------- END OF SUBROUTINE PREPJ -----------------------
2379 SUBROUTINE PREPDF (NEQ, Y, SRUR, SAVF, FTEM, DFDP, PAR,
2380 1 F, DF, JPAR)
2381 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2382 EXTERNAL F, DF
2383 DIMENSION NEQ(*), Y(*), SAVF(*), FTEM(*), DFDP(*), PAR(*)
2384 COMMON /ODE001/ ROWND, ROWNS(173),
2385 1 RDUM1(43), TN, RDUM2,
2386 2 IOWND1(14), IOWNS(4),
2387 3 IDUM1(10), MITER, IDUM2(4), N, IDUM3(2), NFE, IDUM4(2)
2388 COMMON /ODE002/ RDUM3(3),
2389 1 IOWND2(3), IDUM5(2), NDFE, IDUM6, IDF, IDUM7(3)
2390 C-----------------------------------------------------------------------
2391 C PREPDF IS CALLED BY SPRIME AND STESA TO COMPUTE THE INHOMOGENEITY
2392 C VECTORS DF(I)/DP(JPAR). HERE DF/DP IS COMPUTED BY THE USER-SUPPLIED
2393 C ROUTINE DF IF IDF = 1, OR BY FINITE DIFFERENCING IF IDF = 0.
2395 C IN ADDITION TO VARIABLES DESCRIBED PREVIOUSLY, COMMUNICATION WITH
2396 C PREPDF USES THE FOLLOWING..
2397 C Y = REAL ARRAY OF LENGTH NYH CONTAINING DEPENDENT VARIABLES.
2398 C PREPDF USES ONLY THE FIRST N ENTRIES OF Y(*).
2399 C SRUR = SQRT(UROUND) (= WM(1)).
2400 C SAVF = REAL ARRAY OF LENGTH N CONTAINING DERIVATIVES DY/DT.
2401 C FTEM = REAL ARRAY OF LENGTH N USED TO TEMPORARILY STORE DY/DT FOR
2402 C NUMERICAL DIFFERENTIATION.
2403 C DFDP = REAL ARRAY OF LENGTH N USED TO STORE DF(I)/DP(JPAR), I = 1,N.
2404 C PAR = REAL ARRAY OF LENGTH NPAR CONTAINING EQUATION PARAMETERS
2405 C OF INTEREST.
2406 C JPAR = INPUT PARAMETER, 2 .LE. JPAR .LE. NSV, DESIGNATING THE
2407 C APPROPRIATE SOLUTION VECTOR CORRESPONDING TO PAR(JPAR).
2408 C THIS ROUTINE ALSO USES THE COMMON VARIABLES TN, MITER, N, NFE, NDFE,
2409 C AND IDF.
2410 C-----------------------------------------------------------------------
2411 NDFE = NDFE + 1
2412 IDF1 = IDF + 1
2413 GO TO (100, 200), IDF1
2414 C IDF = 0, CALL F TO APPROXIMATE DFDP. ---------------------------------
2415 100 RPAR = PAR(JPAR)
2416 R = MAX(SRUR*ABS(RPAR),SRUR)
2417 PAR(JPAR) = RPAR + R
2418 FAC = 1.0D0/R
2419 CALL F (NEQ, TN, Y, PAR, FTEM)
2420 DO 110 I = 1,N
2421 110 DFDP(I) = (FTEM(I) - SAVF(I))*FAC
2422 PAR(JPAR) = RPAR
2423 NFE = NFE + 1
2424 RETURN
2425 C IDF = 1, CALL USER SUPPLIED DF. --------------------------------------
2426 200 DO 210 I = 1,N
2427 210 DFDP(I) = 0.0D0
2428 CALL DF (NEQ, TN, Y, PAR, DFDP, JPAR)
2429 RETURN
2430 C -------------------- END OF SUBROUTINE PREPDF ------------------------
2432 SUBROUTINE INTDY (T, K, YH, NYH, DKY, IFLAG)
2433 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2434 DIMENSION YH(NYH,1), DKY(1)
2435 COMMON /ODE001/ ROWND, ROWNS(173),
2436 2 RDUM1(38),H, RDUM2(2), HU, RDUM3, TN, UROUND,
2437 3 IOWND(14), IOWNS(4),
2438 4 IDUM1(8), L, IDUM2,
2439 5 IDUM3(5), N, NQ, IDUM4(4)
2440 C-----------------------------------------------------------------------
2441 C INTDY COMPUTES INTERPOLATED VALUES OF THE K-TH DERIVATIVE OF THE
2442 C DEPENDENT VARIABLE VECTOR Y, AND STORES IT IN DKY. THIS ROUTINE
2443 C IS CALLED WITHIN THE PACKAGE WITH K = 0 AND T = TOUT, BUT MAY
2444 C ALSO BE CALLED BY THE USER FOR ANY K UP TO THE CURRENT ORDER.
2445 C (SEE DETAILED INSTRUCTIONS IN THE USAGE DOCUMENTATION.)
2446 C-----------------------------------------------------------------------
2447 C THE COMPUTED VALUES IN DKY ARE GOTTEN BY INTERPOLATION USING THE
2448 C NORDSIECK HISTORY ARRAY YH. THIS ARRAY CORRESPONDS UNIQUELY TO A
2449 C VECTOR-VALUED POLYNOMIAL OF DEGREE NQCUR OR LESS, AND DKY IS SET
2450 C TO THE K-TH DERIVATIVE OF THIS POLYNOMIAL AT T.
2451 C THE FORMULA FOR DKY IS..
2453 C DKY(I) = SUM C(J,K) * (T - TN)**(J-K) * H**(-J) * YH(I,J+1)
2454 C J=K
2455 C WHERE C(J,K) = J*(J-1)*...*(J-K+1), Q = NQCUR, TN = TCUR, H = HCUR.
2456 C THE QUANTITIES NQ = NQCUR, L = NQ+1, N = NEQ, TN, AND H ARE
2457 C COMMUNICATED BY COMMON. THE ABOVE SUM IS DONE IN REVERSE ORDER.
2458 C IFLAG IS RETURNED NEGATIVE IF EITHER K OR T IS OUT OF BOUNDS.
2459 C-----------------------------------------------------------------------
2460 IFLAG = 0
2461 IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80
2462 TP = TN - HU*(1.0D0 + 100.0D0*UROUND)
2463 IF ((T-TP)*(T-TN) .GT. 0.0D0) GO TO 90
2465 S = (T - TN)/H
2466 IC = 1
2467 IF (K .EQ. 0) GO TO 15
2468 JJ1 = L - K
2469 DO 10 JJ = JJ1,NQ
2470 10 IC = IC*JJ
2471 15 C = REAL(IC)
2472 DO 20 I = 1,NYH
2473 20 DKY(I) = C*YH(I,L)
2474 IF (K .EQ. NQ) GO TO 55
2475 JB2 = NQ - K
2476 DO 50 JB = 1,JB2
2477 J = NQ - JB
2478 JP1 = J + 1
2479 IC = 1
2480 IF (K .EQ. 0) GO TO 35
2481 JJ1 = JP1 - K
2482 DO 30 JJ = JJ1,J
2483 30 IC = IC*JJ
2484 35 C = REAL(IC)
2485 DO 40 I = 1,NYH
2486 40 DKY(I) = C*YH(I,JP1) + S*DKY(I)
2487 50 CONTINUE
2488 IF (K .EQ. 0) RETURN
2489 55 R = H**(-K)
2490 DO 60 I = 1,NYH
2491 60 DKY(I) = R*DKY(I)
2492 RETURN
2494 80 CALL XERR('INTDY-- K (=I1) ILLEGAL',
2495 1 51, 1, 1, K, 0, 0, ZERO,ZERO)
2496 IFLAG = -1
2497 RETURN
2498 90 CALL XERR ('INTDY-- T (=R1) ILLEGAL',
2499 1 52, 1, 0, 0, 0, 1, T, ZERO)
2500 CALL XERR('T NOT IN INTERVAL TCUR - HU (= R1) TO TCUR (=R2)',
2501 1 52, 1, 0, 0, 0, 2, TP, TN)
2502 IFLAG = -2
2503 RETURN
2504 C----------------------- END OF SUBROUTINE INTDY -----------------------
2506 SUBROUTINE STESA (NEQ, Y, NROW, NCOL, YH, WM, IWM, EWT, SAVF,
2507 1 ACOR, PAR, NRS, F, JAC, DF, PJAC, PDF, KppSolve)
2508 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2509 EXTERNAL F, JAC, DF, PJAC, PDF, KppSolve
2510 DIMENSION NEQ(*), Y(NROW,*), YH(NROW,NCOL,*), WM(*), IWM(*),
2511 1 EWT(NROW,*), SAVF(*), ACOR(NROW,*), PAR(*), NRS(*)
2512 PARAMETER (ONE=1.0D0,ZERO=0.0D0)
2513 COMMON /ODE001/ ROWND, ROWNS(173),
2514 1 TESCO(3,12), RDUM1, EL0, H, RDUM2(4), TN, RDUM3,
2515 2 IOWND1(14), IOWNS(4),
2516 3 IALTH, LMAX, IDUM1, IERPJ, IERSL, JCUR, IDUM2, KFLAG, L, IDUM3,
2517 4 MITER, IDUM4(4), N, NQ, IDUM5, NFE, IDUM6(2)
2518 COMMON /ODE002/ DUPS, DSMS, DDNS,
2519 1 IOWND2(3), IDUM7, NSV, IDUM8(2), IDF, IDUM9, JOPT, KFLAGS
2520 C-----------------------------------------------------------------------
2521 C STESA IS CALLED BY STODE TO PERFORM AN EXPLICIT CALCULATION FOR THE
2522 C FIRST-ORDER SENSITIVITY COEFFICIENTS DY(I)/DP(J), I = 1,N; J = 1,NPAR.
2524 C IN ADDITION TO THE VARIABLES DESCRIBED PREVIOUSLY, COMMUNICATION
2525 C WITH STESA USES THE FOLLOWING..
2526 C Y = AN NROW (=N) BY NCOL (=NSV) REAL ARRAY CONTAINING THE
2527 C CORRECTED DEPENDENT VARIABLES ON OUTPUT..
2528 C Y(I,1) , I = 1,N = STATE VARIABLES (INPUT);
2529 C Y(I,J) , I = 1,N , J = 2,NSV ,
2530 C = SENSITIVITY COEFFICIENTS, DY(I)/DP(J).
2531 C YH = AN N BY NSV BY LMAX REAL ARRAY CONTAINING THE PREDICTED
2532 C DEPENDENT VARIABLES AND THEIR APPROXIMATE SCALED DERIVATIVES.
2533 C SAVF = A REAL ARRAY OF LENGTH N USED TO STORE FIRST DERIVATIVES
2534 C OF DEPENDENT VARIABLES IF MITER = 2 OR 5.
2535 C PAR = A REAL ARRAY OF LENGTH NPAR CONTAINING THE EQUATION
2536 C PARAMETERS OF INTEREST.
2537 C NRS = AN INTEGER ARRAY OF LENGTH NPAR + 1 CONTAINING THE NUMBER
2538 C OF REPEATED STEPS (KFLAGS .LT. 0) DUE TO THE SENSITIVITY
2539 C CALCULATIONS..
2540 C NRS(1) = TOTAL NUMBER OF REPEATED STEPS
2541 C NRS(I) , I = 2,NPAR = NUMBER OF REPEATED STEPS DUE
2542 C TO PARAMETER I.
2543 C NSV = NUMBER OF SOLUTION VECTORS = NPAR + 1.
2544 C KFLAGS = LOCAL ERROR TEST FLAG, = 0 IF TEST PASSES, .LT. 0 IF TEST
2545 C FAILS, AND STEP NEEDS TO BE REPEATED. ERROR TEST IS APPLIED
2546 C TO EACH SOLUTION VECTOR INDEPENDENTLY.
2547 C DUPS, DSMS, DDNS = REAL SCALARS USED FOR COMPUTING RHUP, RHSM, RHDN,
2548 C ON RETURN TO STODE (IALTH .EQ. 1).
2549 C THIS ROUTINE ALSO USES THE COMMON VARIABLES EL0, H, TN, IALTH, LMAX,
2550 C IERPJ, IERSL, JCUR, KFLAG, L, MITER, N, NQ, NFE, AND JOPT.
2551 C-----------------------------------------------------------------------
2552 DUPS = ZERO
2553 DSMS = ZERO
2554 DDNS = ZERO
2555 HL0 = H*EL0
2556 EL0I = ONE/EL0
2557 TI2 = ONE/TESCO(2,NQ)
2558 TI3 = ONE/TESCO(3,NQ)
2559 C IF MITER = 2 OR 5 (OR IDF = 0), SUPPLY DERIVATIVES AT CORRECTED
2560 C Y(*,1) VALUES FOR NUMERICAL DIFFERENTIATION IN PJAC AND/OR PDF.
2561 IF (MITER .EQ. 2 .OR. MITER .EQ. 5 .OR. IDF .EQ. 0) GO TO 10
2562 GO TO 15
2563 10 CALL F (NEQ, TN, Y, PAR, SAVF)
2564 NFE = NFE + 1
2565 C IF JCUR = 0, UPDATE THE JACOBIAN MATRIX.
2566 C IF MITER = 5, LOAD CORRECTED Y(*,1) VALUES INTO Y(*,2).
2567 15 IF (JCUR .EQ. 1) GO TO 30
2568 IF (MITER .NE. 5) GO TO 25
2569 DO 20 I = 1,N
2570 20 Y(I,2) = Y(I,1)
2571 25 CALL PJAC (NEQ, Y, Y(1,2), N, WM, IWM, EWT, SAVF, ACOR(1,2),
2572 1 PAR, F, JAC, JOPT)
2573 IF (IERPJ .NE. 0) RETURN
2574 C-----------------------------------------------------------------------
2575 C THIS IS A LOOPING POINT FOR THE SENSITIVITY CALCULATIONS.
2576 C-----------------------------------------------------------------------
2577 C FOR EACH PARAMETER PAR(*), A SENSITIVITY SOLUTION VECTOR IS COMPUTED
2578 C USING THE SAME STEP SIZE (H) AND ORDER (NQ) AS IN STODE.
2579 C A LOCAL ERROR TEST IS APPLIED INDEPENDENTLY TO EACH SOLUTION VECTOR.
2580 C-----------------------------------------------------------------------
2581 30 DO 100 J = 2,NSV
2582 JPAR = J - 1
2583 C EVALUATE INHOMOGENEITY TERM, TEMPORARILY LOAD INTO Y(*,JPAR+1). ------
2584 CALL PDF(NEQ, Y, WM, SAVF, ACOR(1,J), Y(1,J), PAR,
2585 1 F, DF, JPAR)
2586 C-----------------------------------------------------------------------
2587 C LOAD RHS OF SENSITIVITY SOLUTION (CORRECTOR) EQUATION..
2589 C RHS = DY/DP - EL(1)*H*D(DY/DP)/DT + EL(1)*H*DF/DP
2591 C-----------------------------------------------------------------------
2592 DO 40 I = 1,N
2593 40 Y(I,J) = YH(I,J,1) - EL0*YH(I,J,2) + HL0*Y(I,J)
2594 C-----------------------------------------------------------------------
2595 C KppSolve CORRECTOR EQUATION: THE SOLUTIONS ARE LOCATED IN Y(*,JPAR+1).
2596 C THE EXPLICIT FORMULA IS..
2598 C (I - EL(1)*H*JAC) * DY/DP(CORRECTED) = RHS
2600 C-----------------------------------------------------------------------
2601 CALL KppSolve (WM, IWM, Y(1,J), DUM)
2602 IF (IERSL .NE. 0) RETURN
2603 C ESTIMATE LOCAL TRUNCATION ERROR. -------------------------------------
2604 DO 50 I = 1,N
2605 50 ACOR(I,J) = (Y(I,J) - YH(I,J,1))*EL0I
2606 ERR = VNORM(N, ACOR(1,J), EWT(1,J))*TI2
2607 IF (ERR .GT. ONE) GO TO 200
2608 C-----------------------------------------------------------------------
2609 C LOCAL ERROR TEST PASSED. SET KFLAGS TO 0 TO INDICATE THIS.
2610 C IF IALTH = 1, COMPUTE DSMS, DDNS, AND DUPS (IF L .LT. LMAX).
2611 C-----------------------------------------------------------------------
2612 KFLAGS = 0
2613 IF (IALTH .GT. 1) GO TO 100
2614 IF (L .EQ. LMAX) GO TO 70
2615 DO 60 I= 1,N
2616 60 Y(I,J) = ACOR(I,J) - YH(I,J,LMAX)
2617 DUPS = MAX(DUPS,VNORM(N,Y(1,J),EWT(1,J))*TI3)
2618 70 DSMS = MAX(DSMS,ERR)
2619 100 CONTINUE
2620 RETURN
2621 C-----------------------------------------------------------------------
2622 C THIS SECTION IS REACHED IF THE ERROR TOLERANCE FOR SENSITIVITY
2623 C SOLUTION VECTOR JPAR HAS BEEN VIOLATED. KFLAGS IS MADE NEGATIVE TO
2624 C INDICATE THIS. IF KFLAGS = -1, SET KFLAG EQUAL TO ZERO SO THAT KFLAG
2625 C IS SET TO -1 ON RETURN TO STODE BEFORE REPEATING THE STEP.
2626 C INCREMENT NRS(1) (= TOTAL NUMBER OF REPEATED STEPS DUE TO ALL
2627 C SENSITIVITY SOLUTION VECTORS) BY ONE.
2628 C INCREMENT NRS(JPAR+1) (= TOTAL NUMBER OF REPEATED STEPS DUE TO
2629 C SOLUTION VECTOR JPAR+1) BY ONE.
2630 C LOAD DSMS FOR RH CALCULATION IN STODE.
2631 C-----------------------------------------------------------------------
2632 200 KFLAGS = KFLAGS - 1
2633 IF (KFLAGS .EQ. -1) KFLAG = 0
2634 NRS(1) = NRS(1) + 1
2635 NRS(J) = NRS(J) + 1
2636 DSMS = ERR
2637 RETURN
2638 C------------------------ END OF SUBROUTINE STESA ----------------------
2640 SUBROUTINE STODE (NEQ, Y, YH, NYH, YH1, WM, IWM, EWT, SAVF, ACOR,
2641 1 PAR, NRS, F, JAC, DF, PJAC, PDF, SLVS)
2642 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
2643 EXTERNAL F, JAC, DF, PJAC, PDF, SLVS
2644 DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), WM(*), IWM(*), EWT(*),
2645 1 SAVF(*), ACOR(*), PAR(*), NRS(*)
2646 PARAMETER (ONE=1.0D0,ZERO=0.0D0)
2647 COMMON /ODE001/ ROWND,
2648 1 CONIT, CRATE, EL(13), ELCO(13,12), HOLD, RMAX,
2649 2 TESCO(3,12), CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
2650 3 IOWND1(14), IPUP, MEO, NQNYH, NSLP,
2651 4 IALTH, LMAX, ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH,
2652 5 MITER, MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
2653 COMMON /ODE002/ DUPS, DSMS, DDNS,
2654 1 IOWND2(3), ISOPT, NSV, NDFE, NSPE, IDF, IERSP, JOPT, KFLAGS
2655 C-----------------------------------------------------------------------
2656 C STODE PERFORMS ONE STEP OF THE INTEGRATION OF AN INITIAL VALUE
2657 C PROBLEM FOR A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS.
2658 C NOTE.. STODE IS INDEPENDENT OF THE VALUE OF THE ITERATION METHOD
2659 C INDICATOR MITER, WHEN THIS IS .NE. 0, AND HENCE IS INDEPENDENT
2660 C OF THE TYPE OF CHORD METHOD USED, OR THE JACOBIAN STRUCTURE.
2661 C FOR ISOPT = 1, STODE CALLS STESA FOR SENSITIVITY CALCULATIONS.
2662 C VARIABLES USED FOR COMMUNICATION WITH STESA ARE DESCRIBED IN STESA.
2663 C COMMUNICATION WITH STODE IS DONE WITH THE FOLLOWING VARIABLES..
2665 C NEQ = INTEGER ARRAY CONTAINING PROBLEM SIZE IN NEQ(1), AND
2666 C NUMBER OF PARAMETERS TO BE CONSIDERED IN THE SENSITIVITY
2667 C ANALYSIS NEQ(2) (FOR ISOPT = 1), AND PASSED AS THE
2668 C NEQ ARGUMENT IN ALL CALLS TO F, JAC, AND DF.
2669 C Y = AN ARRAY OF LENGTH .GE. N USED AS THE Y ARGUMENT IN
2670 C ALL CALLS TO F, JAC, AND DF.
2671 C YH = AN NYH BY LMAX ARRAY CONTAINING THE DEPENDENT VARIABLES
2672 C AND THEIR APPROXIMATE SCALED DERIVATIVES, WHERE
2673 C LMAX = MAXORD + 1. YH(I,J+1) CONTAINS THE APPROXIMATE
2674 C J-TH DERIVATIVE OF Y(I), SCALED BY H**J/FACTORIAL(J)
2675 C (J = 0,1,...,NQ). ON ENTRY FOR THE FIRST STEP, THE FIRST
2676 C TWO COLUMNS OF YH MUST BE SET FROM THE INITIAL VALUES.
2677 C NYH = A CONSTANT INTEGER .GE. N, THE FIRST DIMENSION OF YH.
2678 C THE TOTAL NUMBER OF FIRST-ORDER DIFFERENTIAL EQUATIONS..
2679 C NYH = N, ISOPT = 0,
2680 C NYH = N * (NPAR + 1), ISOPT = 1
2681 C YH1 = A ONE-DIMENSIONAL ARRAY OCCUPYING THE SAME SPACE AS YH.
2682 C EWT = AN ARRAY OF LENGTH NYH CONTAINING MULTIPLICATIVE WEIGHTS
2683 C FOR LOCAL ERROR MEASUREMENTS. LOCAL ERRORS IN Y(I) ARE
2684 C COMPARED TO 1.0/EWT(I) IN VARIOUS ERROR TESTS.
2685 C SAVF = AN ARRAY OF WORKING STORAGE, OF LENGTH N.
2686 C ALSO USED FOR INPUT OF YH(*,MAXORD+2) WHEN JSTART = -1
2687 C AND MAXORD .LT. THE CURRENT ORDER NQ.
2688 C ACOR = A WORK ARRAY OF LENGTH NYH, USED FOR THE ACCUMULATED
2689 C CORRECTIONS. ON A SUCCESSFUL RETURN, ACOR(I) CONTAINS
2690 C THE ESTIMATED ONE-STEP LOCAL ERROR IN Y(I).
2691 C WM,IWM = REAL AND INTEGER WORK ARRAYS ASSOCIATED WITH MATRIX
2692 C OPERATIONS IN CHORD ITERATION (MITER .NE. 0).
2693 C PJAC = NAME OF ROUTINE TO EVALUATE AND PREPROCESS JACOBIAN MATRIX
2694 C AND P = I - H*EL0*JAC, IF A CHORD METHOD IS BEING USED.
2695 C IF ISOPT = 1, PJAC CAN BE CALLED TO CALCULATE JAC BY
2696 C SETTING JOPT = 1.
2697 C SLVS = NAME OF ROUTINE TO KppSolve LINEAR SYSTEM IN CHORD ITERATION.
2698 C CCMAX = MAXIMUM RELATIVE CHANGE IN H*EL0 BEFORE PJAC IS CALLED.
2699 C H = THE STEP SIZE TO BE ATTEMPTED ON THE NEXT STEP.
2700 C H IS ALTERED BY THE ERROR CONTROL ALGORITHM DURING THE
2701 C PROBLEM. H CAN BE EITHER POSITIVE OR NEGATIVE, BUT ITS
2702 C SIGN MUST REMAIN CONSTANT THROUGHOUT THE PROBLEM.
2703 C HMIN = THE MINIMUM ABSOLUTE VALUE OF THE STEP SIZE H TO BE USED.
2704 C HMXI = INVERSE OF THE MAXIMUM ABSOLUTE VALUE OF H TO BE USED.
2705 C HMXI = 0.0 IS ALLOWED AND CORRESPONDS TO AN INFINITE HMAX.
2706 C HMIN AND HMXI MAY BE CHANGED AT ANY TIME, BUT WILL NOT
2707 C TAKE EFFECT UNTIL THE NEXT CHANGE OF H IS CONSIDERED.
2708 C TN = THE INDEPENDENT VARIABLE. TN IS UPDATED ON EACH STEP TAKEN.
2709 C JSTART = AN INTEGER USED FOR INPUT ONLY, WITH THE FOLLOWING
2710 C VALUES AND MEANINGS..
2711 C 0 PERFORM THE FIRST STEP.
2712 C .GT.0 TAKE A NEW STEP CONTINUING FROM THE LAST.
2713 C -1 TAKE THE NEXT STEP WITH A NEW VALUE OF H, MAXORD,
2714 C N, METH, OR MITER.
2715 C -2 TAKE THE NEXT STEP WITH A NEW VALUE OF H,
2716 C BUT WITH OTHER INPUTS UNCHANGED.
2717 C ON RETURN, JSTART IS SET TO 1 TO FACILITATE CONTINUATION.
2718 C KFLAG = A COMPLETION CODE WITH THE FOLLOWING MEANINGS..
2719 C 0 THE STEP WAS SUCCESFUL.
2720 C -1 THE REQUESTED ERROR COULD NOT BE ACHIEVED.
2721 C -2 CORRECTOR CONVERGENCE COULD NOT BE ACHIEVED.
2722 C -3 FATAL ERROR IN PJAC, OR SLVS, (OR STESA).
2723 C A RETURN WITH KFLAG = -1 OR -2 MEANS EITHER
2724 C ABS(H) = HMIN OR 10 CONSECUTIVE FAILURES OCCURRED.
2725 C ON A RETURN WITH KFLAG NEGATIVE, THE VALUES OF TN AND
2726 C THE YH ARRAY ARE AS OF THE BEGINNING OF THE LAST
2727 C STEP, AND H IS THE LAST STEP SIZE ATTEMPTED.
2728 C MAXORD = THE MAXIMUM ORDER OF INTEGRATION METHOD TO BE ALLOWED.
2729 C MAXCOR = THE MAXIMUM NUMBER OF CORRECTOR ITERATIONS ALLOWED.
2730 C (= 3, IF ISOPT = 0)
2731 C (= 4, IF ISOPT = 1)
2732 C MSBP = MAXIMUM NUMBER OF STEPS BETWEEN PJAC CALLS (MITER .GT. 0).
2733 C IF ISOPT = 1, PJAC IS CALLED AT LEAST ONCE EVERY STEP.
2734 C MXNCF = MAXIMUM NUMBER OF CONVERGENCE FAILURES ALLOWED.
2735 C METH/MITER = THE METHOD FLAGS. SEE DESCRIPTION IN DRIVER.
2736 C N = THE NUMBER OF FIRST-ORDER MODEL DIFFERENTIAL EQUATIONS.
2737 C-----------------------------------------------------------------------
2738 KFLAG = 0
2739 KFLAGS = 0
2740 TOLD = TN
2741 NCF = 0
2742 IERPJ = 0
2743 IERSL = 0
2744 JCUR = 0
2745 ICF = 0
2746 IF (JSTART .GT. 0) GO TO 200
2747 IF (JSTART .EQ. -1) GO TO 100
2748 IF (JSTART .EQ. -2) GO TO 160
2749 C-----------------------------------------------------------------------
2750 C ON THE FIRST CALL, THE ORDER IS SET TO 1, AND OTHER VARIABLES ARE
2751 C INITIALIZED. RMAX IS THE MAXIMUM RATIO BY WHICH H CAN BE INCREASED
2752 C IN A SINGLE STEP. IT IS INITIALLY 1.E4 TO COMPENSATE FOR THE SMALL
2753 C INITIAL H, BUT THEN IS NORMALLY EQUAL TO 10. IF A FAILURE
2754 C OCCURS (IN CORRECTOR CONVERGENCE OR ERROR TEST), RMAX IS SET AT 2
2755 C FOR THE NEXT INCREASE.
2756 C THESE COMPUTATIONS CONSIDER ONLY THE ORIGINAL SOLUTION VECTOR.
2757 C THE SENSITIVITY SOLUTION VECTORS ARE CONSIDERED IN STESA (ISOPT = 1).
2758 C-----------------------------------------------------------------------
2759 LMAX = MAXORD + 1
2760 NQ = 1
2761 L = 2
2762 IALTH = 2
2763 RMAX = 10000.0D0
2764 RC = ZERO
2765 EL0 = ONE
2766 CRATE = 0.7D0
2767 DELP = ZERO
2768 HOLD = H
2769 MEO = METH
2770 NSLP = 0
2771 IPUP = MITER
2772 IRET = 3
2773 GO TO 140
2774 C-----------------------------------------------------------------------
2775 C THE FOLLOWING BLOCK HANDLES PRELIMINARIES NEEDED WHEN JSTART = -1.
2776 C IPUP IS SET TO MITER TO FORCE A MATRIX UPDATE.
2777 C IF AN ORDER INCREASE IS ABOUT TO BE CONSIDERED (IALTH = 1),
2778 C IALTH IS RESET TO 2 TO POSTPONE CONSIDERATION ONE MORE STEP.
2779 C IF THE CALLER HAS CHANGED METH, CFODE IS CALLED TO RESET
2780 C THE COEFFICIENTS OF THE METHOD.
2781 C IF THE CALLER HAS CHANGED MAXORD TO A VALUE LESS THAN THE CURRENT
2782 C ORDER NQ, NQ IS REDUCED TO MAXORD, AND A NEW H CHOSEN ACCORDINGLY.
2783 C IF H IS TO BE CHANGED, YH MUST BE RESCALED.
2784 C IF H OR METH IS BEING CHANGED, IALTH IS RESET TO L = NQ + 1
2785 C TO PREVENT FURTHER CHANGES IN H FOR THAT MANY STEPS.
2786 C-----------------------------------------------------------------------
2787 100 IPUP = MITER
2788 LMAX = MAXORD + 1
2789 IF (IALTH .EQ. 1) IALTH = 2
2790 IF (METH .EQ. MEO) GO TO 110
2791 CALL CFODE (METH, ELCO, TESCO)
2792 MEO = METH
2793 IF (NQ .GT. MAXORD) GO TO 120
2794 IALTH = L
2795 IRET = 1
2796 GO TO 150
2797 110 IF (NQ .LE. MAXORD) GO TO 160
2798 120 NQ = MAXORD
2799 L = LMAX
2800 DO 125 I = 1,L
2801 125 EL(I) = ELCO(I,NQ)
2802 NQNYH = NQ*NYH
2803 RC = RC*EL(1)/EL0
2804 EL0 = EL(1)
2805 CONIT = 0.5D0/REAL(NQ+2)
2806 DDN = VNORM (N, SAVF, EWT)/TESCO(1,L)
2807 EXDN = ONE/REAL(L)
2808 RHDN = ONE/(1.3D0*DDN**EXDN + 0.0000013D0)
2809 RH = MIN(RHDN,ONE)
2810 IREDO = 3
2811 IF (H .EQ. HOLD) GO TO 170
2812 RH = MIN(RH,ABS(H/HOLD))
2813 H = HOLD
2814 GO TO 175
2815 C-----------------------------------------------------------------------
2816 C CFODE IS CALLED TO GET ALL THE INTEGRATION COEFFICIENTS FOR THE
2817 C CURRENT METH. THEN THE EL VECTOR AND RELATED CONSTANTS ARE RESET
2818 C WHENEVER THE ORDER NQ IS CHANGED, OR AT THE START OF THE PROBLEM.
2819 C-----------------------------------------------------------------------
2820 140 CALL CFODE (METH, ELCO, TESCO)
2821 150 DO 155 I = 1,L
2822 155 EL(I) = ELCO(I,NQ)
2823 NQNYH = NQ*NYH
2824 RC = RC*EL(1)/EL0
2825 EL0 = EL(1)
2826 CONIT = 0.5D0/REAL(NQ+2)
2827 GO TO (160, 170, 200), IRET
2828 C-----------------------------------------------------------------------
2829 C IF H IS BEING CHANGED, THE H RATIO RH IS CHECKED AGAINST
2830 C RMAX, HMIN, AND HMXI, AND THE YH ARRAY RESCALED. IALTH IS SET TO
2831 C L = NQ + 1 TO PREVENT A CHANGE OF H FOR THAT MANY STEPS, UNLESS
2832 C FORCED BY A CONVERGENCE OR ERROR TEST FAILURE.
2833 C-----------------------------------------------------------------------
2834 160 IF (H .EQ. HOLD) GO TO 200
2835 RH = H/HOLD
2836 H = HOLD
2837 IREDO = 3
2838 GO TO 175
2839 170 RH = MAX(RH,HMIN/ABS(H))
2840 175 RH = MIN(RH,RMAX)
2841 RH = RH/MAX(ONE,ABS(H)*HMXI*RH)
2842 R = ONE
2843 DO 180 J = 2,L
2844 R = R*RH
2845 DO 180 I = 1,NYH
2846 180 YH(I,J) = YH(I,J)*R
2847 H = H*RH
2848 RC = RC*RH
2849 IALTH = L
2850 IF (IREDO .EQ. 0) GO TO 690
2851 C-----------------------------------------------------------------------
2852 C THIS SECTION COMPUTES THE PREDICTED VALUES BY EFFECTIVELY
2853 C MULTIPLYING THE YH ARRAY BY THE PASCAL TRIANGLE MATRIX.
2854 C RC IS THE RATIO OF NEW TO OLD VALUES OF THE COEFFICIENT H*EL(1).
2855 C WHEN RC DIFFERS FROM 1 BY MORE THAN CCMAX, IPUP IS SET TO MITER
2856 C TO FORCE PJAC TO BE CALLED, IF A JACOBIAN IS INVOLVED.
2857 C IN ANY CASE, PJAC IS CALLED AT LEAST EVERY MSBP STEPS FOR ISOPT = 0,
2858 C AND AT LEAST ONCE EVERY STEP FOR ISOPT = 1.
2859 C-----------------------------------------------------------------------
2860 200 IF (ABS(RC-ONE) .GT. CCMAX) IPUP = MITER
2861 IF (NST .GE. NSLP+MSBP) IPUP = MITER
2862 TN = TN + H
2863 I1 = NQNYH + 1
2864 DO 215 JB = 1,NQ
2865 I1 = I1 - NYH
2866 DO 210 I = I1,NQNYH
2867 210 YH1(I) = YH1(I) + YH1(I+NYH)
2868 215 CONTINUE
2869 C-----------------------------------------------------------------------
2870 C UP TO MAXCOR CORRECTOR ITERATIONS ARE TAKEN. (= 3, FOR ISOPT = 0;
2871 C = 4, FOR ISOPT = 1). A CONVERGENCE TEST IS MADE ON THE R.M.S. NORM
2872 C OF EACH CORRECTION, WEIGHTED BY THE ERROR WEIGHT VECTOR EWT. THE SUM
2873 C OF THE CORRECTIONS IS ACCUMULATED IN THE VECTOR ACOR(I), I = 1,N.
2874 C (ACOR(I), I = N+1,NYH IS LOADED IN SUBROUTINE STESA (ISOPT = 1).)
2875 C THE YH ARRAY IS NOT ALTERED IN THE CORRECTOR LOOP.
2876 C-----------------------------------------------------------------------
2877 220 M = 0
2878 DO 230 I = 1,N
2879 230 Y(I) = YH(I,1)
2880 CALL F (NEQ, TN, Y, PAR, SAVF)
2881 NFE = NFE + 1
2882 IF (IPUP .LE. 0) GO TO 250
2883 C-----------------------------------------------------------------------
2884 C IF INDICATED, THE MATRIX P = I - H*EL(1)*J IS REEVALUATED AND
2885 C PREPROCESSED BEFORE STARTING THE CORRECTOR ITERATION. IPUP IS SET
2886 C TO 0 AS AN INDICATOR THAT THIS HAS BEEN DONE.
2887 C-----------------------------------------------------------------------
2888 IPUP = 0
2889 RC = ONE
2890 NSLP = NST
2891 CRATE = 0.7D0
2892 CALL PJAC (NEQ, Y, YH, NYH, WM, IWM, EWT, SAVF, ACOR, PAR,
2893 1 F, JAC, JOPT)
2894 IF (IERPJ .NE. 0) GO TO 430
2895 250 DO 260 I = 1,N
2896 260 ACOR(I) = ZERO
2897 270 IF (MITER .NE. 0) GO TO 350
2898 C-----------------------------------------------------------------------
2899 C IN THE CASE OF FUNCTIONAL ITERATION, UPDATE Y DIRECTLY FROM
2900 C THE RESULT OF THE LAST FUNCTION EVALUATION.
2901 C (IF ISOPT = 1, FUNCTIONAL ITERATION IS NOT ALLOWED.)
2902 C-----------------------------------------------------------------------
2903 DO 290 I = 1,N
2904 SAVF(I) = H*SAVF(I) - YH(I,2)
2905 290 Y(I) = SAVF(I) - ACOR(I)
2906 DEL = VNORM (N, Y, EWT)
2907 DO 300 I = 1,N
2908 Y(I) = YH(I,1) + EL(1)*SAVF(I)
2909 300 ACOR(I) = SAVF(I)
2910 GO TO 400
2911 C-----------------------------------------------------------------------
2912 C IN THE CASE OF THE CHORD METHOD, COMPUTE THE CORRECTOR ERROR,
2913 C AND KppSolve THE LINEAR SYSTEM WITH THAT AS RIGHT-HAND SIDE AND
2914 C P AS COEFFICIENT MATRIX.
2915 C-----------------------------------------------------------------------
2916 350 DO 360 I = 1,N
2917 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
2918 CALL SLVS (WM, IWM, Y, SAVF)
2919 IF (IERSL .LT. 0) GO TO 430
2920 IF (IERSL .GT. 0) GO TO 410
2921 DEL = VNORM (N, Y, EWT)
2922 DO 380 I = 1,N
2923 ACOR(I) = ACOR(I) + Y(I)
2924 380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
2925 C-----------------------------------------------------------------------
2926 C TEST FOR CONVERGENCE. IF M.GT.0, AN ESTIMATE OF THE CONVERGENCE
2927 C RATE CONSTANT IS STORED IN CRATE, AND THIS IS USED IN THE TEST.
2928 C-----------------------------------------------------------------------
2929 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP)
2930 DCON = DEL*MIN(ONE,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT)
2931 IF (DCON .LE. ONE) GO TO 450
2932 M = M + 1
2933 IF (M .EQ. MAXCOR) GO TO 410
2934 IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410
2935 DELP = DEL
2936 CALL F (NEQ, TN, Y, PAR, SAVF)
2937 NFE = NFE + 1
2938 GO TO 270
2939 C-----------------------------------------------------------------------
2940 C THE CORRECTOR ITERATION FAILED TO CONVERGE IN MAXCOR TRIES.
2941 C IF MITER .NE. 0 AND THE JACOBIAN IS OUT OF DATE, PJAC IS CALLED FOR
2942 C THE NEXT TRY. OTHERWISE THE YH ARRAY IS RETRACTED TO ITS VALUES
2943 C BEFORE PREDICTION, AND H IS REDUCED, IF POSSIBLE. IF H CANNOT BE
2944 C REDUCED OR MXNCF FAILURES HAVE OCCURRED, EXIT WITH KFLAG = -2.
2945 C-----------------------------------------------------------------------
2946 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
2947 ICF = 1
2948 IPUP = MITER
2949 GO TO 220
2950 430 ICF = 2
2951 NCF = NCF + 1
2952 RMAX = 2.0D0
2953 TN = TOLD
2954 I1 = NQNYH + 1
2955 DO 445 JB = 1,NQ
2956 I1 = I1 - NYH
2957 DO 440 I = I1,NQNYH
2958 440 YH1(I) = YH1(I) - YH1(I+NYH)
2959 445 CONTINUE
2960 IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680
2961 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670
2962 IF (NCF .EQ. MXNCF) GO TO 670
2963 RH = 0.25D0
2964 IPUP = MITER
2965 IREDO = 1
2966 GO TO 170
2967 C-----------------------------------------------------------------------
2968 C THE CORRECTOR HAS CONVERGED.
2969 C THE LOCAL ERROR TEST IS MADE AND CONTROL PASSES TO STATEMENT 500
2970 C IF IT FAILS. OTHERWISE, STESA IS CALLED (ISOPT = 1) TO PERFORM
2971 C SENSITIVITY CALCULATIONS AT CURRENT STEP SIZE AND ORDER.
2972 C-----------------------------------------------------------------------
2973 450 CONTINUE
2974 IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
2975 IF (M .GT. 0) DSM = VNORM (N, ACOR, EWT)/TESCO(2,NQ)
2976 IF (DSM .GT. ONE) GO TO 500
2978 IF (ISOPT .EQ. 0) GO TO 460
2979 C-----------------------------------------------------------------------
2980 C CALL STESA TO PERFORM EXPLICIT SENSITIVITY ANALYSIS.
2981 C IF THE LOCAL ERROR TEST FAILS (WITHIN STESA) FOR ANY SOLUTION VECTOR,
2982 C KFLAGS IS SET .LT. 0 AND CONTROL PASSES TO STATEMENT 500 UPON RETURN.
2983 C IN EITHER CASE, JCUR IS SET TO ZERO TO SIGNAL THAT THE JACOBIAN MAY
2984 C NEED UPDATING LATER.
2985 C-----------------------------------------------------------------------
2986 CALL STESA (NEQ, Y, N, NSV, YH, WM, IWM, EWT, SAVF, ACOR,
2987 1 PAR, NRS, F, JAC, DF, PJAC, PDF, SLVS)
2988 IF (IERPJ .NE. 0 .OR. IERSL .NE. 0) GO TO 680
2989 IF (KFLAGS .LT. 0) GO TO 500
2990 C-----------------------------------------------------------------------
2991 C AFTER A SUCCESSFUL STEP, UPDATE THE YH ARRAY.
2992 C CONSIDER CHANGING H IF IALTH = 1. OTHERWISE DECREASE IALTH BY 1.
2993 C IF IALTH IS THEN 1 AND NQ .LT. MAXORD, THEN ACOR IS SAVED FOR
2994 C USE IN A POSSIBLE ORDER INCREASE ON THE NEXT STEP.
2995 C IF A CHANGE IN H IS CONSIDERED, AN INCREASE OR DECREASE IN ORDER
2996 C BY ONE IS CONSIDERED ALSO. A CHANGE IN H IS MADE ONLY IF IT IS BY A
2997 C FACTOR OF AT LEAST 1.1. IF NOT, IALTH IS SET TO 3 TO PREVENT
2998 C TESTING FOR THAT MANY STEPS.
2999 C-----------------------------------------------------------------------
3000 460 JCUR = 0
3001 KFLAG = 0
3002 IREDO = 0
3003 NST = NST + 1
3004 HU = H
3005 NQU = NQ
3006 DO 470 J = 1,L
3007 DO 470 I = 1,NYH
3008 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
3009 IALTH = IALTH - 1
3010 IF (IALTH .EQ. 0) GO TO 520
3011 IF (IALTH .GT. 1) GO TO 700
3012 IF (L .EQ. LMAX) GO TO 700
3013 DO 490 I = 1,NYH
3014 490 YH(I,LMAX) = ACOR(I)
3015 GO TO 700
3016 C-----------------------------------------------------------------------
3017 C THE ERROR TEST FAILED IN EITHER STODE OR STESA.
3018 C KFLAG KEEPS TRACK OF MULTIPLE FAILURES.
3019 C RESTORE TN AND THE YH ARRAY TO THEIR PREVIOUS VALUES, AND PREPARE
3020 C TO TRY THE STEP AGAIN. COMPUTE THE OPTIMUM STEP SIZE FOR THIS OR
3021 C ONE LOWER ORDER. AFTER 2 OR MORE FAILURES, H IS FORCED TO DECREASE
3022 C BY A FACTOR OF 0.2 OR LESS.
3023 C-----------------------------------------------------------------------
3024 500 KFLAG = KFLAG - 1
3025 JCUR = 0
3026 TN = TOLD
3027 I1 = NQNYH + 1
3028 DO 515 JB = 1,NQ
3029 I1 = I1 - NYH
3030 DO 510 I = I1,NQNYH
3031 510 YH1(I) = YH1(I) - YH1(I+NYH)
3032 515 CONTINUE
3033 RMAX = 2.0D0
3034 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660
3035 IF (KFLAG .LE. -3) GO TO 640
3036 IREDO = 2
3037 RHUP = ZERO
3038 GO TO 540
3039 C-----------------------------------------------------------------------
3041 C REGARDLESS OF THE SUCCESS OR FAILURE OF THE STEP, FACTORS
3042 C RHDN, RHSM, AND RHUP ARE COMPUTED, BY WHICH H COULD BE MULTIPLIED
3043 C AT ORDER NQ - 1, ORDER NQ, OR ORDER NQ + 1, RESPECTIVELY.
3044 C IN THE CASE OF FAILURE, RHUP = 0.0 TO AVOID AN ORDER INCREASE.
3045 C THE LARGEST OF THESE IS DETERMINED AND THE NEW ORDER CHOSEN
3046 C ACCORDINGLY. IF THE ORDER IS TO BE INCREASED, WE COMPUTE ONE
3047 C ADDITIONAL SCALED DERIVATIVE.
3048 C FOR ISOPT = 1, DUPS AND DSMS ARE LOADED WITH THE LARGEST RMS-NORMS
3049 C OBTAINED BY CONSIDERING SEPARATELY THE SENSITIVITY SOLUTION VECTORS.
3050 C-----------------------------------------------------------------------
3051 520 RHUP = ZERO
3052 IF (L .EQ. LMAX) GO TO 540
3053 DO 530 I = 1,N
3054 530 SAVF(I) = ACOR(I) - YH(I,LMAX)
3055 DUP = VNORM (N, SAVF, EWT)/TESCO(3,NQ)
3056 DUP = MAX(DUP,DUPS)
3057 EXUP = ONE/REAL(L+1)
3058 RHUP = ONE/(1.4D0*DUP**EXUP + 0.0000014D0)
3059 540 EXSM = ONE/REAL(L)
3060 DSM = MAX(DSM,DSMS)
3061 RHSM = ONE/(1.2D0*DSM**EXSM + 0.0000012D0)
3062 RHDN = ZERO
3063 IF (NQ .EQ. 1) GO TO 560
3064 JPOINT = 1
3065 DO 550 J = 1,NSV
3066 DDN = VNORM (N, YH(JPOINT,L), EWT(JPOINT))/TESCO(1,NQ)
3067 DDNS = MAX(DDNS,DDN)
3068 JPOINT = JPOINT + N
3069 550 CONTINUE
3070 DDN = DDNS
3071 DDNS = ZERO
3072 EXDN = ONE/REAL(NQ)
3073 RHDN = ONE/(1.3D0*DDN**EXDN + 0.0000013D0)
3074 560 IF (RHSM .GE. RHUP) GO TO 570
3075 IF (RHUP .GT. RHDN) GO TO 590
3076 GO TO 580
3077 570 IF (RHSM .LT. RHDN) GO TO 580
3078 NEWQ = NQ
3079 RH = RHSM
3080 GO TO 620
3081 580 NEWQ = NQ - 1
3082 RH = RHDN
3083 IF (KFLAG .LT. 0 .AND. RH .GT. ONE) RH = ONE
3084 GO TO 620
3085 590 NEWQ = L
3086 RH = RHUP
3087 IF (RH .LT. 1.1D0) GO TO 610
3088 R = EL(L)/REAL(L)
3089 DO 600 I = 1,NYH
3090 600 YH(I,NEWQ+1) = ACOR(I)*R
3091 GO TO 630
3092 610 IALTH = 3
3093 GO TO 700
3094 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610
3095 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0)
3096 C-----------------------------------------------------------------------
3097 C IF THERE IS A CHANGE OF ORDER, RESET NQ, L, AND THE COEFFICIENTS.
3098 C IN ANY CASE H IS RESET ACCORDING TO RH AND THE YH ARRAY IS RESCALED.
3099 C THEN EXIT FROM 690 IF THE STEP WAS OK, OR REDO THE STEP OTHERWISE.
3100 C-----------------------------------------------------------------------
3101 IF (NEWQ .EQ. NQ) GO TO 170
3102 630 NQ = NEWQ
3103 L = NQ + 1
3104 IRET = 2
3105 GO TO 150
3106 C-----------------------------------------------------------------------
3107 C CONTROL REACHES THIS SECTION IF 3 OR MORE FAILURES HAVE OCCURED.
3108 C IF 10 FAILURES HAVE OCCURRED, EXIT WITH KFLAG = -1.
3109 C IT IS ASSUMED THAT THE DERIVATIVES THAT HAVE ACCUMULATED IN THE
3110 C YH ARRAY HAVE ERRORS OF THE WRONG ORDER. HENCE THE FIRST
3111 C DERIVATIVE IS RECOMPUTED, AND THE ORDER IS SET TO 1. THEN
3112 C H IS REDUCED BY A FACTOR OF 10, AND THE STEP IS RETRIED,
3113 C UNTIL IT SUCCEEDS OR H REACHES HMIN.
3114 C-----------------------------------------------------------------------
3115 640 IF (KFLAG .EQ. -10) GO TO 660
3116 RH = 0.1D0
3117 RH = MAX(HMIN/ABS(H),RH)
3118 H = H*RH
3119 DO 645 I = 1,NYH
3120 645 Y(I) = YH(I,1)
3121 CALL F (NEQ, TN, Y, PAR, SAVF)
3122 NFE = NFE + 1
3123 IF (ISOPT .EQ. 0) GO TO 649
3124 CALL SPRIME (NEQ, Y, YH, NYH, N, NSV, WM, IWM, EWT, SAVF, ACOR,
3125 1 ACOR(N+1), PAR, F, JAC, DF, PJAC, PDF)
3126 IF (IERSP .LT. 0) GO TO 680
3127 DO 646 I = N+1,NYH
3128 646 YH(I,2) = H*YH(I,2)
3129 649 DO 650 I = 1,N
3130 650 YH(I,2) = H*SAVF(I)
3131 IPUP = MITER
3132 IALTH = 5
3133 IF (NQ .EQ. 1) GO TO 200
3134 NQ = 1
3135 L = 2
3136 IRET = 3
3137 GO TO 150
3138 C-----------------------------------------------------------------------
3139 C ALL RETURNS ARE MADE THROUGH THIS SECTION. H IS SAVED IN HOLD
3140 C TO ALLOW THE CALLER TO CHANGE H ON THE NEXT STEP.
3141 C-----------------------------------------------------------------------
3142 660 KFLAG = -1
3143 GO TO 720
3144 670 KFLAG = -2
3145 GO TO 720
3146 680 KFLAG = -3
3147 GO TO 720
3148 690 RMAX = 10.0D0
3149 700 R = ONE/TESCO(2,NQU)
3150 DO 710 I = 1,NYH
3151 710 ACOR(I) = ACOR(I)*R
3152 720 HOLD = H
3153 JSTART = 1
3154 RETURN
3155 C----------------------- END OF SUBROUTINE STODE -----------------------
3157 SUBROUTINE CFODE (METH, ELCO, TESCO)
3158 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3159 DIMENSION ELCO(13,12), TESCO(3,12)
3160 C-----------------------------------------------------------------------
3161 C CFODE IS CALLED BY THE INTEGRATOR ROUTINE TO SET COEFFICIENTS
3162 C NEEDED THERE. THE COEFFICIENTS FOR THE CURRENT METHOD, AS
3163 C GIVEN BY THE VALUE OF METH, ARE SET FOR ALL ORDERS AND SAVED.
3164 C THE MAXIMUM ORDER ASSUMED HERE IS 12 IF METH = 1 AND 5 IF METH = 2.
3165 C (A SMALLER VALUE OF THE MAXIMUM ORDER IS ALSO ALLOWED.)
3166 C CFODE IS CALLED ONCE AT THE BEGINNING OF THE PROBLEM,
3167 C AND IS NOT CALLED AGAIN UNLESS AND UNTIL METH IS CHANGED.
3169 C THE ELCO ARRAY CONTAINS THE BASIC METHOD COEFFICIENTS.
3170 C THE COEFFICIENTS EL(I), 1 .LE. I .LE. NQ+1, FOR THE METHOD OF
3171 C ORDER NQ ARE STORED IN ELCO(I,NQ). THEY ARE GIVEN BY A GENETRATING
3172 C POLYNOMIAL, I.E.,
3173 C L(X) = EL(1) + EL(2)*X + ... + EL(NQ+1)*X**NQ.
3174 C FOR THE IMPLICIT ADAMS METHODS, L(X) IS GIVEN BY
3175 C DL/DX = (X+1)*(X+2)*...*(X+NQ-1)/FACTORIAL(NQ-1), L(-1) = 0.
3176 C FOR THE BDF METHODS, L(X) IS GIVEN BY
3177 C L(X) = (X+1)*(X+2)* ... *(X+NQ)/K,
3178 C WHERE K = FACTORIAL(NQ)*(1 + 1/2 + ... + 1/NQ).
3180 C THE TESCO ARRAY CONTAINS TEST CONSTANTS USED FOR THE
3181 C LOCAL ERROR TEST AND THE SELECTION OF STEP SIZE AND/OR ORDER.
3182 C AT ORDER NQ, TESCO(K,NQ) IS USED FOR THE SELECTION OF STEP
3183 C SIZE AT ORDER NQ - 1 IF K = 1, AT ORDER NQ IF K = 2, AND AT ORDER
3184 C NQ + 1 IF K = 3.
3185 C-----------------------------------------------------------------------
3186 DIMENSION PC(12)
3187 PARAMETER (ONE=1.0D0,ZERO=0.0D0)
3189 GO TO (100, 200), METH
3191 100 ELCO(1,1) = ONE
3192 ELCO(2,1) = ONE
3193 TESCO(1,1) = ZERO
3194 TESCO(2,1) = 2.0D0
3195 TESCO(1,2) = ONE
3196 TESCO(3,12) = ZERO
3197 PC(1) = ONE
3198 RQFAC = ONE
3199 DO 140 NQ = 2,12
3200 C-----------------------------------------------------------------------
3201 C THE PC ARRAY WILL CONTAIN THE COEFFICIENTS OF THE POLYNOMIAL
3202 C P(X) = (X+1)*(X+2)*...*(X+NQ-1).
3203 C INITIALLY, P(X) = 1.
3204 C-----------------------------------------------------------------------
3205 RQ1FAC = RQFAC
3206 RQFAC = RQFAC/REAL(NQ)
3207 NQM1 = NQ - 1
3208 FNQM1 = REAL(NQM1)
3209 NQP1 = NQ + 1
3210 C FORM COEFFICIENTS OF P(X)*(X+NQ-1). ----------------------------------
3211 PC(NQ) = ZERO
3212 DO 110 IB = 1,NQM1
3213 I = NQP1 - IB
3214 110 PC(I) = PC(I-1) + FNQM1*PC(I)
3215 PC(1) = FNQM1*PC(1)
3216 C COMPUTE INTEGRAL, -1 TO 0, OF P(X) AND X*P(X). -----------------------
3217 PINT = PC(1)
3218 XPIN = PC(1)/2.0D0
3219 TSIGN = ONE
3220 DO 120 I = 2,NQ
3221 TSIGN = -TSIGN
3222 PINT = PINT + TSIGN*PC(I)/REAL(I)
3223 120 XPIN = XPIN + TSIGN*PC(I)/REAL(I+1)
3224 C STORE COEFFICIENTS IN ELCO AND TESCO. --------------------------------
3225 ELCO(1,NQ) = PINT*RQ1FAC
3226 ELCO(2,NQ) = ONE
3227 DO 130 I = 2,NQ
3228 130 ELCO(I+1,NQ) = RQ1FAC*PC(I)/REAL(I)
3229 AGAMQ = RQFAC*XPIN
3230 RAGQ = ONE/AGAMQ
3231 TESCO(2,NQ) = RAGQ
3232 IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/REAL(NQP1)
3233 TESCO(3,NQM1) = RAGQ
3234 140 CONTINUE
3235 RETURN
3237 200 PC(1) = ONE
3238 RQ1FAC = ONE
3239 DO 230 NQ = 1,5
3240 C-----------------------------------------------------------------------
3241 C THE PC ARRAY WILL CONTAIN THE COEFFICIENTS OF THE POLYNOMIAL
3242 C P(X) = (X+1)*(X+2)*...*(X+NQ).
3243 C INITIALLY, P(X) = 1.
3244 C-----------------------------------------------------------------------
3245 FNQ = REAL(NQ)
3246 NQP1 = NQ + 1
3247 C FORM COEFFICIENTS OF P(X)*(X+NQ). ------------------------------------
3248 PC(NQP1) = ZERO
3249 DO 210 IB = 1,NQ
3250 I = NQ + 2 - IB
3251 210 PC(I) = PC(I-1) + FNQ*PC(I)
3252 PC(1) = FNQ*PC(1)
3253 C STORE COEFFICIENTS IN ELCO AND TESCO. --------------------------------
3254 DO 220 I = 1,NQP1
3255 220 ELCO(I,NQ) = PC(I)/PC(2)
3256 ELCO(2,NQ) = ONE
3257 TESCO(1,NQ) = RQ1FAC
3258 TESCO(2,NQ) = REAL(NQP1)/ELCO(1,NQ)
3259 TESCO(3,NQ) = REAL(NQ+2)/ELCO(1,NQ)
3260 RQ1FAC = RQ1FAC/FNQ
3261 230 CONTINUE
3262 RETURN
3263 C----------------------- END OF SUBROUTINE CFODE -----------------------
3265 SUBROUTINE SOLSY (WM, IWM, X, TEM)
3266 C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3267 INCLUDE 'KPP_ROOT_Parameters.h'
3268 INCLUDE 'KPP_ROOT_Sparse.h'
3269 DIMENSION WM(*), IWM(*), X(*), TEM(*)
3270 PARAMETER (ZERO=0.0D0,ONE=1.0D0)
3271 COMMON /ODE001/ ROWND, ROWNS(173),
3272 2 RDUM1(37), EL0, H, RDUM2(6),
3273 3 IOWND(14), IOWNS(4),
3274 4 IDUM1(4), IERSL, IDUM2(5),
3275 5 MITER, IDUM3(4), N, IDUM4(5)
3276 C-----------------------------------------------------------------------
3277 C THIS ROUTINE MANAGES THE SOLUTION OF THE LINEAR SYSTEM ARISING FROM
3278 C A CHORD ITERATION. IT IS CALLED IF MITER .NE. 0.
3279 C IF MITER IS 1 OR 2, IT CALLS DGESL TO ACCOMPLISH THIS.
3280 C IF MITER = 3 IT UPDATES THE COEFFICIENT H*EL0 IN THE DIAGONAL
3281 C MATRIX, AND THEN COMPUTES THE SOLUTION.
3282 C IF MITER IS 4 OR 5, IT CALLS DGBSL.
3283 C COMMUNICATION WITH SOLSY USES THE FOLLOWING VARIABLES..
3284 C WM = REAL WORK SPACE CONTAINING THE INVERSE DIAGONAL MATRIX IF
3285 C MITER = 3 AND THE LU DECOMPOSITION OF THE MATRIX OTHERWISE.
3286 C STORAGE OF MATRIX ELEMENTS STARTS AT WM(3).
3287 C WM ALSO CONTAINS THE FOLLOWING MATRIX-RELATED DATA..
3288 C WM(1) = SQRT(UROUND) (NOT USED HERE),
3289 C WM(2) = HL0, THE PREVIOUS VALUE OF H*EL0, USED IF MITER = 3.
3290 C IWM = INTEGER WORK SPACE CONTAINING PIVOT INFORMATION, STARTING AT
3291 C IWM(21), IF MITER IS 1, 2, 4, OR 5. IWM ALSO CONTAINS BAND
3292 C PARAMETERS ML = IWM(1) AND MU = IWM(2) IF MITER IS 4 OR 5.
3293 C X = THE RIGHT-HAND SIDE VECTOR ON INPUT, AND THE SOLUTION VECTOR
3294 C ON OUTPUT, OF LENGTH N.
3295 C TEM = VECTOR OF WORK SPACE OF LENGTH N, NOT USED IN THIS VERSION.
3296 C IERSL = OUTPUT FLAG (IN COMMON). IERSL = 0 IF NO TROUBLE OCCURRED.
3297 C IERSL = 1 IF A SINGULAR MATRIX AROSE WITH MITER = 3.
3298 C THIS ROUTINE ALSO USES THE COMMON VARIABLES EL0, H, MITER, AND N.
3299 C-----------------------------------------------------------------------
3300 IERSL = 0
3301 GO TO (100, 100, 300, 400, 400), MITER
3302 C 100 CALL DGESL (WM(3), N, N, IWM(21), X, 0)
3303 100 CALL KppSolve (WM(3), X)
3304 RETURN
3306 300 PHL0 = WM(2)
3307 HL0 = H*EL0
3308 WM(2) = HL0
3309 IF (HL0 .EQ. PHL0) GO TO 330
3310 R = HL0/PHL0
3311 DO 320 I = 1,N
3312 DI = ONE - R*(ONE - ONE/WM(I+2))
3313 IF (ABS(DI) .EQ. ZERO) GO TO 390
3314 320 WM(I+2) = ONE/DI
3315 330 DO 340 I = 1,N
3316 340 X(I) = WM(I+2)*X(I)
3317 RETURN
3318 390 IERSL = 1
3319 RETURN
3321 400 ML = IWM(1)
3322 MU = IWM(2)
3323 MEBAND = 2*ML + MU + 1
3324 CALL DGBSL (WM(3), MEBAND, N, ML, MU, IWM(21), X, 0)
3325 RETURN
3326 C----------------------- END OF SUBROUTINE SOLSY -----------------------
3328 SUBROUTINE EWSET (N, ITOL, RTOL, ATOL, YCUR, EWT)
3329 C-----------------------------------------------------------------------
3330 C THIS SUBROUTINE SETS THE ERROR WEIGHT VECTOR EWT ACCORDING TO
3331 C EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I), I = 1,...,N,
3332 C WITH THE SUBSCRIPT ON RTOL AND/OR ATOL POSSIBLY REPLACED BY 1 ABOVE,
3333 C DEPENDING ON THE VALUE OF ITOL.
3334 C-----------------------------------------------------------------------
3335 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3336 DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N)
3337 RTOLI = RTOL(1)
3338 ATOLI = ATOL(1)
3339 DO 10 I = 1,N
3340 IF (ITOL .GE. 3) RTOLI = RTOL(I)
3341 IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
3342 EWT(I) = RTOLI*ABS(YCUR(I)) + ATOLI
3343 10 CONTINUE
3344 RETURN
3345 C----------------------- END OF SUBROUTINE EWSET -----------------------
3347 DOUBLE PRECISION FUNCTION VNORM (N, V, W)
3348 C-----------------------------------------------------------------------
3349 C THIS FUNCTION ROUTINE COMPUTES THE WEIGHTED ROOT-MEAN-SQUARE NORM
3350 C OF THE VECTOR OF LENGTH N CONTAINED IN THE ARRAY V, WITH WEIGHTS
3351 C CONTAINED IN THE ARRAY W OF LENGTH N..
3352 C VNORM = SQRT( (1/N) * SUM( V(I)*W(I) )**2 )
3353 C PROTECTION FOR UNDERFLOW/OVERFLOW IS ACCOMPLISHED USING TWO
3354 C CONSTANTS WHICH ARE HOPEFULLY APPLICABLE FOR ALL MACHINES.
3355 C THESE ARE:
3356 C CUTLO = maximum of SQRT(U/EPS) over all known machines
3357 C CUTHI = minimum of SQRT(Z) over all known machines
3358 C WHERE
3359 C EPS = smallest number s.t. EPS + 1 .GT. 1
3360 C U = smallest positive number (underflow limit)
3361 C Z = largest number (overflow limit)
3363 C DETAILS OF THE ALGORITHM AND OF VALUES OF CUTLO AND CUTHI ARE
3364 C FOUND IN THE BLAS ROUTINE SNRM2 (SEE ALSO ALGORITHM 539, TRANS.
3365 C MATH. SOFTWARE, VOL. 5 NO. 3, 1979, 308-323.
3366 C FOR SINGLE PRECISION, THE FOLLOWING VALUES SHOULD BE UNIVERSAL:
3367 C DATA CUTLO,CUTHI /4.441E-16,1.304E19/
3368 C FOR DOUBLE PRECISION, USE
3369 C DATA CUTLO,CUTHI /8.232D-11,1.304D19/
3371 C-----------------------------------------------------------------------
3372 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3373 INTEGER NEXT,I,J,N
3374 DIMENSION V(N),W(N)
3375 DATA CUTLO,CUTHI /8.232D-11,1.304D19/
3376 DATA ZERO,ONE/0.0D0,1.0D0/
3377 C BLAS ALGORITHM
3378 NEXT = 1
3379 SUM = ZERO
3380 I = 1
3381 20 SX = V(I)*W(I)
3382 GO TO (30,40,70,80),NEXT
3383 30 IF (ABS(SX).GT.CUTLO) GO TO 110
3384 NEXT = 2
3385 XMAX = ZERO
3386 40 IF (SX.EQ.ZERO) GO TO 130
3387 IF (ABS(SX).GT.CUTLO) GO TO 110
3388 NEXT = 3
3389 GO TO 60
3390 50 I=J
3391 NEXT = 4
3392 SUM = (SUM/SX)/SX
3393 60 XMAX = ABS(SX)
3394 GO TO 90
3395 70 IF(ABS(SX).GT.CUTLO) GO TO 100
3396 80 IF(ABS(SX).LE.XMAX) GO TO 90
3397 SUM = ONE + SUM * (XMAX/SX)**2
3398 XMAX = ABS(SX)
3399 GO TO 130
3400 90 SUM = SUM + (SX/XMAX)**2
3401 GO TO 130
3402 100 SUM = (SUM*XMAX)*XMAX
3403 110 HITEST = CUTHI/REAL(N)
3404 DO 120 J = I,N
3405 SX = V(J)*W(J)
3406 IF(ABS(SX).GE.HITEST) GO TO 50
3407 SUM = SUM + SX**2
3408 120 CONTINUE
3409 VNORM = SQRT(SUM)
3410 GO TO 140
3411 130 CONTINUE
3412 I = I + 1
3413 IF (I.LE.N) GO TO 20
3414 VNORM = XMAX * SQRT(SUM)
3415 140 CONTINUE
3416 RETURN
3417 C----------------------- END OF FUNCTION VNORM -------------------------
3419 SUBROUTINE SVCOM (RSAV, ISAV)
3420 C-----------------------------------------------------------------------
3421 C THIS ROUTINE STORES IN RSAV AND ISAV THE CONTENTS OF COMMON BLOCKS
3422 C ODE001, ODE002 AND EH0001, WHICH ARE USED INTERNALLY IN THE ODESSA
3423 C PACKAGE.
3424 C RSAV = REAL ARRAY OF LENGTH 222 OR MORE.
3425 C ISAV = INTEGER ARRAY OF LENGTH 52 OR MORE.
3426 C-----------------------------------------------------------------------
3427 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3428 DIMENSION RSAV(*), ISAV(*)
3429 COMMON /ODE001/ RODE1(219), IODE1(39)
3430 COMMON /ODE002/ RODE2(3), IODE2(11)
3431 COMMON /EH0001/ IEH(2)
3432 DATA LRODE1/219/, LIODE1/39/, LRODE2/3/, LIODE2/11/
3434 DO 10 I = 1,LRODE1
3435 10 RSAV(I) = RODE1(I)
3436 DO 20 I = 1,LRODE2
3437 J = LRODE1 + I
3438 20 RSAV(J) = RODE2(I)
3439 DO 30 I = 1,LIODE1
3440 30 ISAV(I) = IODE1(I)
3441 DO 40 I = 1,LIODE2
3442 J = LIODE1 + I
3443 40 ISAV(J) = IODE2(I)
3444 ISAV(LIODE1+LIODE2+1) = IEH(1)
3445 ISAV(LIODE1+LIODE2+2) = IEH(2)
3446 RETURN
3447 C----------------------- END OF SUBROUTINE SVCOM -----------------------
3449 SUBROUTINE RSCOM (RSAV, ISAV)
3450 C-----------------------------------------------------------------------
3451 C THIS ROUTINE RESTORES FROM RSAV AND ISAV THE CONTENTS OF COMMON BLOCKS
3452 C ODE001, ODE002 AND EH0001, WHICH ARE USED INTERNALLY IN THE ODESSSA
3453 C PACKAGE. THIS PRESUMES THAT RSAV AND ISAV WERE LOADED BY MEANS
3454 C OF SUBROUTINE SVCOM OR THE EQUIVALENT.
3455 C-----------------------------------------------------------------------
3456 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3457 DIMENSION RSAV(*), ISAV(*)
3458 COMMON /ODE001/ RODE1(219), IODE1(39)
3459 COMMON /ODE002/ RODE2(3), IODE2(11)
3460 COMMON /EH0001/ IEH(2)
3461 DATA LRODE1/219/, LIODE1/39/, LRODE2/3/, LIODE2/11/
3463 DO 10 I = 1,LRODE1
3464 10 RODE1(I) = RSAV(I)
3465 DO 20 I = 1,LRODE2
3466 J = LRODE1 + I
3467 20 RODE2(I) = RSAV(J)
3468 DO 30 I = 1,LIODE1
3469 30 IODE1(I) = ISAV(I)
3470 DO 40 I = 1,LODE2
3471 J = LIODE1 + I
3472 40 IODE2(I) = ISAV(J)
3473 IEH(1) = ISAV(LIODE1+LIODE2+1)
3474 IEH(2) = ISAV(LIODE1+LIODE2+2)
3475 RETURN
3476 C----------------------- END OF SUBROUTINE RSCOM -----------------------
3478 SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
3479 INTEGER LDA,N,IPVT(*),INFO
3480 DOUBLE PRECISION A(LDA,*)
3482 C DGEFA FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION.
3484 C DGEFA IS USUALLY CALLED BY DGECO, BUT IT CAN BE CALLED
3485 C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
3486 C (TIME FOR DGECO) = (1 + 9/N)*(TIME FOR DGEFA) .
3488 C ON ENTRY
3490 C A DOUBLE PRECISION(LDA, N)
3491 C THE MATRIX TO BE FACTORED.
3493 C LDA INTEGER
3494 C THE LEADING DIMENSION OF THE ARRAY A .
3496 C N INTEGER
3497 C THE ORDER OF THE MATRIX A .
3499 C ON RETURN
3501 C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
3502 C WHICH WERE USED TO OBTAIN IT.
3503 C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
3504 C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
3505 C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
3507 C IPVT INTEGER(N)
3508 C AN INTEGER VECTOR OF PIVOT INDICES.
3510 C INFO INTEGER
3511 C = 0 NORMAL VALUE.
3512 C = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
3513 C CONDITION FOR THIS SUBROUTINE, BUT IT DOES
3514 C INDICATE THAT DGESL OR DGEDI WILL DIVIDE BY ZERO
3515 C IF CALLED. USE RCOND IN DGECO FOR A RELIABLE
3516 C INDICATION OF SINGULARITY.
3518 C LINPACK. THIS VERSION DATED 08/14/78 .
3519 C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
3521 C SUBROUTINES AND FUNCTIONS
3523 C BLAS DAXPY,DSCAL,IDAMAX
3525 C INTERNAL VARIABLES
3527 DOUBLE PRECISION T
3528 INTEGER IDAMAX,J,K,KP1,L,NM1
3531 C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
3533 INFO = 0
3534 NM1 = N - 1
3535 IF (NM1 .LT. 1) GO TO 70
3536 DO 60 K = 1, NM1
3537 KP1 = K + 1
3539 C FIND L = PIVOT INDEX
3541 L = IDAMAX(N-K+1,A(K,K),1) + K - 1
3542 IPVT(K) = L
3544 C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
3546 IF (A(L,K) .EQ. 0.0D0) GO TO 40
3548 C INTERCHANGE IF NECESSARY
3550 IF (L .EQ. K) GO TO 10
3551 T = A(L,K)
3552 A(L,K) = A(K,K)
3553 A(K,K) = T
3554 10 CONTINUE
3556 C COMPUTE MULTIPLIERS
3558 T = -1.0D0/A(K,K)
3559 CALL DSCAL(N-K,T,A(K+1,K),1)
3561 C ROW ELIMINATION WITH COLUMN INDEXING
3563 DO 30 J = KP1, N
3564 T = A(L,J)
3565 IF (L .EQ. K) GO TO 20
3566 A(L,J) = A(K,J)
3567 A(K,J) = T
3568 20 CONTINUE
3569 CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
3570 30 CONTINUE
3571 GO TO 50
3572 40 CONTINUE
3573 INFO = K
3574 50 CONTINUE
3575 60 CONTINUE
3576 70 CONTINUE
3577 IPVT(N) = N
3578 IF (A(N,N) .EQ. 0.0D0) INFO = N
3579 RETURN
3581 SUBROUTINE DGESL(A,LDA,N,IPVT,B,JOB)
3582 INTEGER LDA,N,IPVT(*),JOB
3583 DOUBLE PRECISION A(LDA,*),B(*)
3585 C DGESL KppSolveS THE DOUBLE PRECISION SYSTEM
3586 C A * X = B OR TRANS(A) * X = B
3587 C USING THE FACTORS COMPUTED BY DGECO OR DGEFA.
3589 C ON ENTRY
3591 C A DOUBLE PRECISION(LDA, N)
3592 C THE OUTPUT FROM DGECO OR DGEFA.
3594 C LDA INTEGER
3595 C THE LEADING DIMENSION OF THE ARRAY A .
3597 C N INTEGER
3598 C THE ORDER OF THE MATRIX A .
3600 C IPVT INTEGER(N)
3601 C THE PIVOT VECTOR FROM DGECO OR DGEFA.
3603 C B DOUBLE PRECISION(N)
3604 C THE RIGHT HAND SIDE VECTOR.
3606 C JOB INTEGER
3607 C = 0 TO KppSolve A*X = B ,
3608 C = NONZERO TO KppSolve TRANS(A)*X = B WHERE
3609 C TRANS(A) IS THE TRANSPOSE.
3611 C ON RETURN
3613 C B THE SOLUTION VECTOR X .
3615 C ERROR CONDITION
3617 C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A
3618 C ZERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY
3619 C BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER
3620 C SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE
3621 C CALLED CORRECTLY AND IF DGECO HAS SET RCOND .GT. 0.0
3622 C OR DGEFA HAS SET INFO .EQ. 0 .
3624 C TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX
3625 C WITH P COLUMNS
3626 C CALL DGECO(A,LDA,N,IPVT,RCOND,Z)
3627 C IF (RCOND IS TOO SMALL) GO TO ...
3628 C DO 10 J = 1, P
3629 C CALL DGESL(A,LDA,N,IPVT,C(1,J),0)
3630 C 10 CONTINUE
3632 C LINPACK. THIS VERSION DATED 08/14/78 .
3633 C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
3635 C SUBROUTINES AND FUNCTIONS
3637 C BLAS DAXPY,DDOT
3639 C INTERNAL VARIABLES
3641 DOUBLE PRECISION DDOT,T
3642 INTEGER K,KB,L,NM1
3644 NM1 = N - 1
3645 IF (JOB .NE. 0) GO TO 50
3647 C JOB = 0 , KppSolve A * X = B
3648 C FIRST KppSolve L*Y = B
3650 IF (NM1 .LT. 1) GO TO 30
3651 DO 20 K = 1, NM1
3652 L = IPVT(K)
3653 T = B(L)
3654 IF (L .EQ. K) GO TO 10
3655 B(L) = B(K)
3656 B(K) = T
3657 10 CONTINUE
3658 CALL DAXPY(N-K,T,A(K+1,K),1,B(K+1),1)
3659 20 CONTINUE
3660 30 CONTINUE
3662 C NOW KppSolve U*X = Y
3664 DO 40 KB = 1, N
3665 K = N + 1 - KB
3666 B(K) = B(K)/A(K,K)
3667 T = -B(K)
3668 CALL DAXPY(K-1,T,A(1,K),1,B(1),1)
3669 40 CONTINUE
3670 GO TO 100
3671 50 CONTINUE
3673 C JOB = NONZERO, KppSolve TRANS(A) * X = B
3674 C FIRST KppSolve TRANS(U)*Y = B
3676 DO 60 K = 1, N
3677 T = DDOT(K-1,A(1,K),1,B(1),1)
3678 B(K) = (B(K) - T)/A(K,K)
3679 60 CONTINUE
3681 C NOW KppSolve TRANS(L)*X = Y
3683 IF (NM1 .LT. 1) GO TO 90
3684 DO 80 KB = 1, NM1
3685 K = N - KB
3686 B(K) = B(K) + DDOT(N-K,A(K+1,K),1,B(K+1),1)
3687 L = IPVT(K)
3688 IF (L .EQ. K) GO TO 70
3689 T = B(L)
3690 B(L) = B(K)
3691 B(K) = T
3692 70 CONTINUE
3693 80 CONTINUE
3694 90 CONTINUE
3695 100 CONTINUE
3696 RETURN
3698 SUBROUTINE DGBFA(ABD,LDA,N,ML,MU,IPVT,INFO)
3699 INTEGER LDA,N,ML,MU,IPVT(*),INFO
3700 DOUBLE PRECISION ABD(LDA,*)
3702 C DGBFA FACTORS A DOUBLE PRECISION BAND MATRIX BY ELIMINATION.
3704 C DGBFA IS USUALLY CALLED BY DGBCO, BUT IT CAN BE CALLED
3705 C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
3707 C ON ENTRY
3709 C ABD DOUBLE PRECISION(LDA, N)
3710 C CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS
3711 C OF THE MATRIX ARE STORED IN THE COLUMNS OF ABD AND
3712 C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS
3713 C ML+1 THROUGH 2*ML+MU+1 OF ABD .
3714 C SEE THE COMMENTS BELOW FOR DETAILS.
3716 C LDA INTEGER
3717 C THE LEADING DIMENSION OF THE ARRAY ABD .
3718 C LDA MUST BE .GE. 2*ML + MU + 1 .
3720 C N INTEGER
3721 C THE ORDER OF THE ORIGINAL MATRIX.
3723 C ML INTEGER
3724 C NUMBER OF DIAGONALS BELOW THE MAIN DIAGONAL.
3725 C 0 .LE. ML .LT. N .
3727 C MU INTEGER
3728 C NUMBER OF DIAGONALS ABOVE THE MAIN DIAGONAL.
3729 C 0 .LE. MU .LT. N .
3730 C MORE EFFICIENT IF ML .LE. MU .
3731 C ON RETURN
3733 C ABD AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND
3734 C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT.
3735 C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
3736 C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
3737 C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
3739 C IPVT INTEGER(N)
3740 C AN INTEGER VECTOR OF PIVOT INDICES.
3742 C INFO INTEGER
3743 C = 0 NORMAL VALUE.
3744 C = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
3745 C CONDITION FOR THIS SUBROUTINE, BUT IT DOES
3746 C INDICATE THAT DGBSL WILL DIVIDE BY ZERO IF
3747 C CALLED. USE RCOND IN DGBCO FOR A RELIABLE
3748 C INDICATION OF SINGULARITY.
3750 C BAND STORAGE
3752 C IF A IS A BAND MATRIX, THE FOLLOWING PROGRAM SEGMENT
3753 C WILL SET UP THE INPUT.
3755 C ML = (BAND WIDTH BELOW THE DIAGONAL)
3756 C MU = (BAND WIDTH ABOVE THE DIAGONAL)
3757 C M = ML + MU + 1
3758 C DO 20 J = 1, N
3759 C I1 = MAX0(1, J-MU)
3760 C I2 = MIN0(N, J+ML)
3761 C DO 10 I = I1, I2
3762 C K = I - J + M
3763 C ABD(K,J) = A(I,J)
3764 C 10 CONTINUE
3765 C 20 CONTINUE
3767 C THIS USES ROWS ML+1 THROUGH 2*ML+MU+1 OF ABD .
3768 C IN ADDITION, THE FIRST ML ROWS IN ABD ARE USED FOR
3769 C ELEMENTS GENERATED DURING THE TRIANGULARIZATION.
3770 C THE TOTAL NUMBER OF ROWS NEEDED IN ABD IS 2*ML+MU+1 .
3771 C THE ML+MU BY ML+MU UPPER LEFT TRIANGLE AND THE
3772 C ML BY ML LOWER RIGHT TRIANGLE ARE NOT REFERENCED.
3774 C LINPACK. THIS VERSION DATED 08/14/78 .
3775 C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
3777 C SUBROUTINES AND FUNCTIONS
3779 C BLAS DAXPY,DSCAL,IDAMAX
3780 C FORTRAN MAX0,MIN0
3782 C INTERNAL VARIABLES
3784 DOUBLE PRECISION T
3785 INTEGER I,IDAMAX,I0,J,JU,JZ,J0,J1,K,KP1,L,LM,M,MM,NM1
3788 M = ML + MU + 1
3789 INFO = 0
3791 C ZERO INITIAL FILL-IN COLUMNS
3793 J0 = MU + 2
3794 J1 = MIN0(N,M) - 1
3795 IF (J1 .LT. J0) GO TO 30
3796 DO 20 JZ = J0, J1
3797 I0 = M + 1 - JZ
3798 DO 10 I = I0, ML
3799 ABD(I,JZ) = 0.0D0
3800 10 CONTINUE
3801 20 CONTINUE
3802 30 CONTINUE
3803 JZ = J1
3804 JU = 0
3806 C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
3808 NM1 = N - 1
3809 IF (NM1 .LT. 1) GO TO 130
3810 DO 120 K = 1, NM1
3811 KP1 = K + 1
3813 C ZERO NEXT FILL-IN COLUMN
3815 JZ = JZ + 1
3816 IF (JZ .GT. N) GO TO 50
3817 IF (ML .LT. 1) GO TO 50
3818 DO 40 I = 1, ML
3819 ABD(I,JZ) = 0.0D0
3820 40 CONTINUE
3821 50 CONTINUE
3823 C FIND L = PIVOT INDEX
3825 LM = MIN0(ML,N-K)
3826 L = IDAMAX(LM+1,ABD(M,K),1) + M - 1
3827 IPVT(K) = L + K - M
3829 C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
3831 IF (ABD(L,K) .EQ. 0.0D0) GO TO 100
3833 C INTERCHANGE IF NECESSARY
3835 IF (L .EQ. M) GO TO 60
3836 T = ABD(L,K)
3837 ABD(L,K) = ABD(M,K)
3838 ABD(M,K) = T
3839 60 CONTINUE
3841 C COMPUTE MULTIPLIERS
3843 T = -1.0D0/ABD(M,K)
3844 CALL DSCAL(LM,T,ABD(M+1,K),1)
3846 C ROW ELIMINATION WITH COLUMN INDEXING
3848 JU = MIN0(MAX0(JU,MU+IPVT(K)),N)
3849 MM = M
3850 IF (JU .LT. KP1) GO TO 90
3851 DO 80 J = KP1, JU
3852 L = L - 1
3853 MM = MM - 1
3854 T = ABD(L,J)
3855 IF (L .EQ. MM) GO TO 70
3856 ABD(L,J) = ABD(MM,J)
3857 ABD(MM,J) = T
3858 70 CONTINUE
3859 CALL DAXPY(LM,T,ABD(M+1,K),1,ABD(MM+1,J),1)
3860 80 CONTINUE
3861 90 CONTINUE
3862 GO TO 110
3863 100 CONTINUE
3864 INFO = K
3865 110 CONTINUE
3866 120 CONTINUE
3867 130 CONTINUE
3868 IPVT(N) = N
3869 IF (ABD(M,N) .EQ. 0.0D0) INFO = N
3870 RETURN
3872 SUBROUTINE DGBSL(ABD,LDA,N,ML,MU,IPVT,B,JOB)
3873 INTEGER LDA,N,ML,MU,IPVT(*),JOB
3874 DOUBLE PRECISION ABD(LDA,*),B(*)
3876 C DGBSL KppSolveS THE DOUBLE PRECISION BAND SYSTEM
3877 C A * X = B OR TRANS(A) * X = B
3878 C USING THE FACTORS COMPUTED BY DGBCO OR DGBFA.
3880 C ON ENTRY
3882 C ABD DOUBLE PRECISION(LDA, N)
3883 C THE OUTPUT FROM DGBCO OR DGBFA.
3885 C LDA INTEGER
3886 C THE LEADING DIMENSION OF THE ARRAY ABD .
3888 C N INTEGER
3889 C THE ORDER OF THE ORIGINAL MATRIX.
3891 C ML INTEGER
3892 C NUMBER OF DIAGONALS BELOW THE MAIN DIAGONAL.
3894 C MU INTEGER
3895 C NUMBER OF DIAGONALS ABOVE THE MAIN DIAGONAL.
3897 C IPVT INTEGER(N)
3898 C THE PIVOT VECTOR FROM DGBCO OR DGBFA.
3900 C B DOUBLE PRECISION(N)
3901 C THE RIGHT HAND SIDE VECTOR.
3903 C JOB INTEGER
3904 C = 0 TO KppSolve A*X = B ,
3905 C = NONZERO TO KppSolve TRANS(A)*X = B , WHERE
3906 C TRANS(A) IS THE TRANSPOSE.
3908 C ON RETURN
3910 C B THE SOLUTION VECTOR X .
3912 C ERROR CONDITION
3914 C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A
3915 C ZERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY
3916 C BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER
3917 C SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE
3918 C CALLED CORRECTLY AND IF DGBCO HAS SET RCOND .GT. 0.0
3919 C OR DGBFA HAS SET INFO .EQ. 0 .
3921 C TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX
3922 C WITH P COLUMNS
3923 C CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
3924 C IF (RCOND IS TOO SMALL) GO TO ...
3925 C DO 10 J = 1, P
3926 C CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0)
3927 C 10 CONTINUE
3929 C LINPACK. THIS VERSION DATED 08/14/78 .
3930 C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
3932 C SUBROUTINES AND FUNCTIONS
3934 C BLAS DAXPY,DDOT
3935 C FORTRAN MIN0
3937 C INTERNAL VARIABLES
3939 DOUBLE PRECISION DDOT,T
3940 INTEGER K,KB,L,LA,LB,LM,M,NM1
3942 M = MU + ML + 1
3943 NM1 = N - 1
3944 IF (JOB .NE. 0) GO TO 50
3946 C JOB = 0 , KppSolve A * X = B
3947 C FIRST KppSolve L*Y = B
3949 IF (ML .EQ. 0) GO TO 30
3950 IF (NM1 .LT. 1) GO TO 30
3951 DO 20 K = 1, NM1
3952 LM = MIN0(ML,N-K)
3953 L = IPVT(K)
3954 T = B(L)
3955 IF (L .EQ. K) GO TO 10
3956 B(L) = B(K)
3957 B(K) = T
3958 10 CONTINUE
3959 CALL DAXPY(LM,T,ABD(M+1,K),1,B(K+1),1)
3960 20 CONTINUE
3961 30 CONTINUE
3963 C NOW KppSolve U*X = Y
3965 DO 40 KB = 1, N
3966 K = N + 1 - KB
3967 B(K) = B(K)/ABD(M,K)
3968 LM = MIN0(K,M) - 1
3969 LA = M - LM
3970 LB = K - LM
3971 T = -B(K)
3972 CALL DAXPY(LM,T,ABD(LA,K),1,B(LB),1)
3973 40 CONTINUE
3974 GO TO 100
3975 50 CONTINUE
3977 C JOB = NONZERO, KppSolve TRANS(A) * X = B
3978 C FIRST KppSolve TRANS(U)*Y = B
3980 DO 60 K = 1, N
3981 LM = MIN0(K,M) - 1
3982 LA = M - LM
3983 LB = K - LM
3984 T = DDOT(LM,ABD(LA,K),1,B(LB),1)
3985 B(K) = (B(K) - T)/ABD(M,K)
3986 60 CONTINUE
3988 C NOW KppSolve TRANS(L)*X = Y
3990 IF (ML .EQ. 0) GO TO 90
3991 IF (NM1 .LT. 1) GO TO 90
3992 DO 80 KB = 1, NM1
3993 K = N - KB
3994 LM = MIN0(ML,N-K)
3995 B(K) = B(K) + DDOT(LM,ABD(M+1,K),1,B(K+1),1)
3996 L = IPVT(K)
3997 IF (L .EQ. K) GO TO 70
3998 T = B(L)
3999 B(L) = B(K)
4000 B(K) = T
4001 70 CONTINUE
4002 80 CONTINUE
4003 90 CONTINUE
4004 100 CONTINUE
4005 RETURN
4007 SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
4009 C CONSTANT TIMES A VECTOR PLUS A VECTOR.
4010 C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
4011 C JACK DONGARRA, LINPACK, 3/11/78.
4013 DOUBLE PRECISION DX(*),DY(*),DA
4014 INTEGER I,INCX,INCY,IX,IY,M,MP1,N
4016 IF(N.LE.0)RETURN
4017 IF (DA .EQ. 0.0D0) RETURN
4018 IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
4020 C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
4021 C NOT EQUAL TO 1
4023 IX = 1
4024 IY = 1
4025 IF(INCX.LT.0)IX = (-N+1)*INCX + 1
4026 IF(INCY.LT.0)IY = (-N+1)*INCY + 1
4027 DO 10 I = 1,N
4028 DY(IY) = DY(IY) + DA*DX(IX)
4029 IX = IX + INCX
4030 IY = IY + INCY
4031 10 CONTINUE
4032 RETURN
4034 C CODE FOR BOTH INCREMENTS EQUAL TO 1
4037 C CLEAN-UP LOOP
4039 20 M = MOD(N,4)
4040 IF( M .EQ. 0 ) GO TO 40
4041 DO 30 I = 1,M
4042 DY(I) = DY(I) + DA*DX(I)
4043 30 CONTINUE
4044 IF( N .LT. 4 ) RETURN
4045 40 MP1 = M + 1
4046 DO 50 I = MP1,N,4
4047 DY(I) = DY(I) + DA*DX(I)
4048 DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
4049 DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
4050 DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
4051 50 CONTINUE
4052 RETURN
4054 SUBROUTINE DSCAL(N,DA,DX,INCX)
4056 C SCALES A VECTOR BY A CONSTANT.
4057 C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
4058 C JACK DONGARRA, LINPACK, 3/11/78.
4060 DOUBLE PRECISION DA,DX(*)
4061 INTEGER I,INCX,M,MP1,N,NINCX
4063 IF(N.LE.0)RETURN
4064 IF(INCX.EQ.1)GO TO 20
4066 C CODE FOR INCREMENT NOT EQUAL TO 1
4069 NINCX = N*INCX
4070 DO 10 I = 1,NINCX,INCX
4071 DX(I) = DA*DX(I)
4072 10 CONTINUE
4073 RETURN
4075 C CODE FOR INCREMENT EQUAL TO 1
4078 C CLEAN-UP LOOP
4080 20 M = MOD(N,5)
4081 IF( M .EQ. 0 ) GO TO 40
4082 DO 30 I = 1,M
4083 DX(I) = DA*DX(I)
4084 30 CONTINUE
4085 IF( N .LT. 5 ) RETURN
4086 40 MP1 = M + 1
4087 DO 50 I = MP1,N,5
4088 DX(I) = DA*DX(I)
4089 DX(I + 1) = DA*DX(I + 1)
4090 DX(I + 2) = DA*DX(I + 2)
4091 DX(I + 3) = DA*DX(I + 3)
4092 DX(I + 4) = DA*DX(I + 4)
4093 50 CONTINUE
4094 RETURN
4096 DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
4098 C FORMS THE DOT PRODUCT OF TWO VECTORS.
4099 C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
4100 C JACK DONGARRA, LINPACK, 3/11/78.
4102 DOUBLE PRECISION DX(*),DY(*),DTEMP
4103 INTEGER I,INCX,INCY,IX,IY,M,MP1,N
4105 DDOT = 0.0D0
4106 DTEMP = 0.0D0
4107 IF(N.LE.0)RETURN
4108 IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
4110 C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
4111 C NOT EQUAL TO 1
4113 IX = 1
4114 IY = 1
4115 IF(INCX.LT.0)IX = (-N+1)*INCX + 1
4116 IF(INCY.LT.0)IY = (-N+1)*INCY + 1
4117 DO 10 I = 1,N
4118 DTEMP = DTEMP + DX(IX)*DY(IY)
4119 IX = IX + INCX
4120 IY = IY + INCY
4121 10 CONTINUE
4122 DDOT = DTEMP
4123 RETURN
4125 C CODE FOR BOTH INCREMENTS EQUAL TO 1
4128 C CLEAN-UP LOOP
4130 20 M = MOD(N,5)
4131 IF( M .EQ. 0 ) GO TO 40
4132 DO 30 I = 1,M
4133 DTEMP = DTEMP + DX(I)*DY(I)
4134 30 CONTINUE
4135 IF( N .LT. 5 ) GO TO 60
4136 40 MP1 = M + 1
4137 DO 50 I = MP1,N,5
4138 DTEMP = DTEMP + DX(I)*DY(I) + DX(I + 1)*DY(I + 1) +
4139 * DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)
4140 50 CONTINUE
4141 60 DDOT = DTEMP
4142 RETURN
4144 INTEGER FUNCTION IDAMAX(N,DX,INCX)
4146 C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
4147 C JACK DONGARRA, LINPACK, 3/11/78.
4149 DOUBLE PRECISION DX(*),DMAX
4150 INTEGER I,INCX,IX,N
4152 IDAMAX = 0
4153 IF( N .LT. 1 ) RETURN
4154 IDAMAX = 1
4155 IF(N.EQ.1)RETURN
4156 IF(INCX.EQ.1)GO TO 20
4158 C CODE FOR INCREMENT NOT EQUAL TO 1
4160 IX = 1
4161 DMAX = DABS(DX(1))
4162 IX = IX + INCX
4163 DO 10 I = 2,N
4164 IF(DABS(DX(IX)).LE.DMAX) GO TO 5
4165 IDAMAX = I
4166 DMAX = DABS(DX(IX))
4167 5 IX = IX + INCX
4168 10 CONTINUE
4169 RETURN
4171 C CODE FOR INCREMENT EQUAL TO 1
4173 20 DMAX = DABS(DX(1))
4174 DO 30 I = 2,N
4175 IF(DABS(DX(I)).LE.DMAX) GO TO 30
4176 IDAMAX = I
4177 DMAX = DABS(DX(I))
4178 30 CONTINUE
4179 RETURN
4181 DOUBLE PRECISION FUNCTION D1MACH (IDUM)
4182 INTEGER IDUM
4183 C-----------------------------------------------------------------------
4184 C THIS ROUTINE COMPUTES THE UNIT ROUNDOFF OF THE MACHINE IN DOUBLE
4185 C PRECISION. THIS IS DEFINED AS THE SMALLEST POSITIVE MACHINE NUMBER
4186 C U SUCH THAT 1.0D0 + U .NE. 1.0D0 (IN DOUBLE PRECISION).
4187 C-----------------------------------------------------------------------
4188 DOUBLE PRECISION U, COMP
4189 U = 1.0D0
4190 10 U = U*0.5D0
4191 COMP = 1.0D0 + U
4192 IF (COMP .NE. 1.0D0) GO TO 10
4193 D1MACH = U*2.0D0
4194 RETURN
4195 C----------------------- END OF FUNCTION D1MACH ------------------------
4197 SUBROUTINE XERR (MSG, NERR, IERT, NI, I1, I2, NR, R1, R2)
4198 INTEGER NERR, IERT, NI, I1, I2, NR,
4199 1 LUN, LUNIT, MESFLG
4200 DOUBLE PRECISION R1, R2
4201 CHARACTER*(*) MSG
4202 C-------------------------------------------------------------------
4204 C ALL ARGUMENTS ARE INPUT ARGUMENTS.
4206 C MSG = THE MESSAGE (CHARACTER VARIABLE)
4207 C NERR = THE ERROR NUMBER (NOT USED).
4208 C IERT = THE ERROR TYPE..
4209 C 1 MEANS RECOVERABLE (CONTROL RETURNS TO CALLER).
4210 C 2 MEANS FATAL (RUN IS ABORTED--SEE NOTE BELOW).
4211 C NI = NUMBER OF INTEGERS (0, 1, OR 2) TO BE PRINTED WITH MESSAGE.
4212 C I1,I2 = INTEGERS TO BE PRINTED, DEPENDING ON NI.
4213 C NR = NUMBER OF REALS (0, 1, OR 2) TO BE PRINTED WITH MESSAGE.
4214 C R1,R2 = REALS TO BE PRINTED, DEPENDING ON NR.
4216 C NOTES:
4217 C 1. THE DIMENSION OF MSG IS ASSUMED TO BE AT MOST 60.
4218 C (MULTI-LINE MESSAGES ARE GENERATED BY REPEATED CALLS.)
4219 C 2. IF IERT = 2, CONTROL PASSES TO THE STATEMENT STOP
4220 C TO ABORT THE RUN. THIS STATEMENT MAY BE MACHINE-DEPENDENT.
4221 C 3. R1 AND R2 ARE ASSUMED TO BE IN DOUBLE PRECISION AND ARE PRINTED
4222 C IN D21.13 FORMAT.
4223 C 4. THE COMMON BLOCK /EH0001/ BELOW IS DATA-LOADED (A MACHINE-
4224 C DEPENDENT FEATURE) WITH DEFAULT VALUES.
4225 C THIS BLOCK IS NEEDED FOR PROPER RETENTION OF PARAMETERS USED BY
4226 C THIS ROUTINE WHICH THE USER CAN RESET BY CALLING XSETF OR XSETUN.
4227 C THE VARIABLES IN THIS BLOCK ARE AS FOLLOWS..
4228 C MESFLG = PRINT CONTROL FLAG..
4229 C 1 MEANS PRINT ALL MESSAGES (THE DEFAULT).
4230 C 0 MEANS NO PRINTING.
4231 C LUNIT = LOGICAL UNIT NUMBER FOR MESSAGES.
4232 C THE DEFAULT IS 6 (MACHINE-DEPENDENT).
4233 C 5. TO CHANGE THE DEFAULT OUTPUT UNIT, CHANGE THE DATA STATEMENT
4234 C IN THE BLOCK DATA SUBPROGRAM BELOW.
4236 C FOR A DIFFERENT RUN-ABORT COMMAND, CHANGE THE STATEMENT FOLLOWING
4237 C STATEMENT 100 AT THE END.
4238 C-----------------------------------------------------------------------
4239 COMMON /EH0001/ MESFLG, LUNIT
4240 IF (MESFLG .EQ. 0) GO TO 100
4241 C GET LOGICAL UNIT NUMBER. ---------------------------------------------
4242 LUN = LUNIT
4243 C WRITE THE MESSAGE. ---------------------------------------------------
4244 WRITE (LUN, 10) MSG
4245 10 FORMAT(1X,A)
4246 C-----------------------------------------------------------------------
4247 IF (NI .EQ. 1) WRITE (LUN, 20) I1
4248 20 FORMAT(6X,'IN ABOVE MESSAGE, I1 = ',I10)
4249 IF (NI .EQ. 2) WRITE (LUN, 30) I1,I2
4250 30 FORMAT(6X,'IN ABOVE MESSAGE, I1 = ',I10,3X,'I2 = ',I10)
4251 IF (NR .EQ. 1) WRITE (LUN, 40) R1
4252 40 FORMAT(6X,'IN ABOVE MESSAGE, R1 = ',D21.13)
4253 IF (NR .EQ. 2) WRITE (LUN, 50) R1,R2
4254 50 FORMAT(6X,'IN ABOVE, R1 = ',D21.13,3X,'R2 = ',D21.13)
4255 C ABORT THE RUN IF IERT = 2. -------------------------------------------
4256 100 IF (IERT .NE. 2) RETURN
4257 STOP
4258 C----------------------- END OF SUBROUTINE XERR ----------------------
4260 SUBROUTINE XSETF (MFLAG)
4262 C THIS ROUTINE RESETS THE PRINT CONTROL FLAG MFLAG.
4264 INTEGER MFLAG, MESFLG, LUNIT
4265 COMMON /EH0001/ MESFLG, LUNIT
4267 IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) MESFLG = MFLAG
4268 RETURN
4269 C----------------------- END OF SUBROUTINE XSETF -----------------------
4271 SUBROUTINE XSETUN (LUN)
4273 C THIS ROUTINE RESETS THE LOGICAL UNIT NUMBER FOR MESSAGES.
4275 INTEGER LUN, MESFLG, LUNIT
4276 COMMON /EH0001/ MESFLG, LUNIT
4278 IF (LUN .GT. 0) LUNIT = LUN
4279 RETURN
4280 C----------------------- END OF SUBROUTINE XSETUN ----------------------
4282 BLOCK DATA
4283 C-----------------------------------------------------------------------
4284 C THIS DATA SUBPROGRAM LOADS VARIABLES INTO THE INTERNAL COMMON
4285 C BLOCKS USED BY ODESSA AND ITS VARIANTS. THE VARIABLES ARE
4286 C DEFINED AS FOLLOWS..
4287 C ILLIN = COUNTER FOR THE NUMBER OF CONSECUTIVE TIMES THE PACKAGE
4288 C WAS CALLED WITH ILLEGAL INPUT. THE RUN IS STOPPED WHEN
4289 C ILLIN REACHES 5.
4290 C NTREP = COUNTER FOR THE NUMBER OF CONSECUTIVE TIMES THE PACKAGE
4291 C WAS CALLED WITH ISTATE = 1 AND TOUT = T. THE RUN IS
4292 C STOPPED WHEN NTREP REACHES 5.
4293 C MESFLG = FLAG TO CONTROL PRINTING OF ERROR MESSAGES. 1 MEANS PRINT,
4294 C 0 MEANS NO PRINTING.
4295 C LUNIT = DEFAULT VALUE OF LOGICAL UNIT NUMBER FOR PRINTING OF ERROR
4296 C MESSAGES.
4297 C-----------------------------------------------------------------------
4298 INTEGER ILLIN, IDUMA, NTREP, IDUMB, IOWNS, ICOMM, MESFLG, LUNIT
4299 DOUBLE PRECISION ROWND, ROWNS, RCOMM
4300 COMMON /ODE001/ ROWND, ROWNS(173), RCOMM(45),
4301 1 ILLIN, IDUMA(10), NTREP, IDUMB(2), IOWNS(4), ICOMM(21)
4302 COMMON /EH0001/ MESFLG, LUNIT
4303 DATA ILLIN/0/, NTREP/0/
4304 DATA MESFLG/1/, LUNIT/6/
4306 C------------------------ END OF BLOCK DATA ----------------------------
4308 C-----------------------------------------------------------------------
4309 C INSTRUCTIONS FOR INSTALLING THE ODESSA PACKAGE. (see @ below.)
4311 C ODESSA is an enhanced version of the widely disseminated ODE solver
4312 C LSODE, and as such retains the same properties regarding portability.
4313 C The notes below, adapted from the installation instructions for LSODE,
4314 C are intended to facilitate the installation of the ODESSA package in
4315 C the user's software library.
4317 C 1. Both a single and a double precision version of ODESSA are
4318 C provided in this release. It is expected that most users will
4319 C utilize the double precision version, except in the case of
4320 C extended word-length computers. Most routines used by ODESSA
4321 C are named the same regardless of whether they are single or
4322 C double precision. The exceptions are the LINPAK and BLAS
4323 C routines that follow the LINPAK/BLAS naming conventions, i.e.
4324 C D--- for a double precision routine, and S--- for a single
4325 C precision routine. Thus, care should be taken if both single
4326 C and double precision versions are stored in the same library.
4328 C 2. Several routines in ODESSA have the same names as the LSODE
4329 C routines from which they were derived, although they contain
4330 C different code. These are: INTDY, STODE, PREPJ, SVCOM, and
4331 C RSCOM. If ODESSA is added to a subroutine library of which
4332 C LSODE is already a member, these routine names must be changed
4333 C in one of the two programs. Also see the note regarding BLOCK
4334 C DATA subroutines below.
4336 C 3. In many cases, ODESSA uses unaltered LSODE routines and
4337 C common library routines that may already reside on your system.
4338 C The installation of ODESSA should be done so that identical routines
4339 C are shared rather than kept as duplicate copies.
4340 C a. Normally, the user calls only subroutine ODESSA, but for optional
4341 C capabilities the user may also CALL XSETUN, XSETF, SVCOM, RSCOM,
4342 C or INTDY, as described in Part II of the Full Description in the
4343 C User Documentation (ODESSA.DOC, see below). Except for INTDY,
4344 C none of these are called from within the package.
4345 C b. Two routines, EWSET and VNORM, are optionally replaceable by the
4346 C user if the package version is unsuitable. Hence, the install-
4347 C ation of the package should be done so that the user's version
4348 C for either routine overrides the package version.
4349 C c. The function routine D1MACH is provided to compute the unit
4350 C roundoff of the machine and precision in use, in a manner com-
4351 C patible with machine parameter routines developed at Bell Lab-
4352 C oratories. If such a routine has already been installed on
4353 C your system, the version supplied here may be discarded.
4354 C d. Linear algebraic systems are solved with routines from the
4355 C LINPACK collection, in conjunction with routines from the Basic
4356 C Linear Algebra module collection (BLAS). In double precision,
4357 C the names are DGEFA, DGESL, DGBFA, and DGBSL (from LINPACK), and
4358 C DAXPY, DSCAL, IDAMAX, and DDOT (from BLAS). If these routines
4359 C have already been installed on your system, copies supplied with
4360 C ODESSA may be discarded. The single precision versions of these
4361 C routines are used in the single precision version.
4363 C 4. There are four integer variables, in the two labeled COMMON
4364 C blocks /ODE001/ and /EH0001/, which need to be loaded with DATA
4365 C statements. They can vary during execution, and are in common to
4366 C assure their retention between calls. This is legal in ANSI Fortran
4367 C only if done in a BLOCK DATA subprogram, and this package has a
4368 C BLOCK DATA for this purpose. However, BLOCK DATA subprograms can be
4369 C difficult to install in libraries, and many compilers allow such DATA
4370 C statements in subroutines. If your system allows this, the location
4371 C of the DATA statements are just after the initial type and common
4372 C declarations in subroutines ODESSA and XERR. In ODESSA, ILLIN and
4373 C NTREP are DATA-loaded as 0. In XERR, MESFLG is loaded as 1 and
4374 C LUNIT is loaded as the appropriate default logical unit number.
4376 C 5. The ODESSA package contains subscript expressions which may not
4377 C be accepted by some compilers. Subscripts of the form I + J, I - J,
4378 C etc., occur in various routines. If any of these forms are
4379 C unacceptable to your compiler, an extra line of code setting the
4380 C subscript to a dummy integer value should be added for each subscipt.
4382 C 6. User documentation is provided in a two-level structure
4383 C to accommmodate both the casual and serious user. The novice or
4384 C casual user should need to read only the Summary of Usage and the
4385 C Example Problem located at the beginning of the documentation. More
4386 C experienced users, requiring the full set of available options,
4387 C should read the Full Description which follows the Example Problem.
4389 C 7. The user documentation may need corrections in the following ways:
4390 C a. If subroutine names have been changed to avoid conflicts between
4391 C the LSODE and ODESSA packages, the corresponding name changes
4392 C should be made in the documentation.
4393 C b. In the Summary of Usage, and in the description of XSETUN under
4394 C Part II of the Full Description, the default logical unit number
4395 C should be corrected if it is not 6.
4396 C c. In the Summary of Usage, users should be instructed to execute
4397 C CALL XSETF(1) before the first CALL to ODESSA, if this is neces-
4398 C sary for proper error message handling. (see note 2(e) above.)
4399 C d. In the description of the subroutines DF and JAC in the Summary
4400 C of Usage and in Part I of the Full Description, it is stated
4401 C that dummy names may be passed if these two routines are not user
4402 C supplied. Your system may require the user to supply a dummy
4403 C subroutine instead.
4404 C e. The ODESSA package treats the arguments NEQ, RTOL, and ATOL as
4405 C arrays (possibly of length 1), while the usage documentation
4406 C states that these arguments may be either arrays or scalars.
4407 C If your system does not allow such a mismatch, then the
4408 C documentation should be changed to reflect this.
4409 C 8. A demonstration program is provided with the package for
4410 C verification.
4413 C Jorge R. Leis and Mark A. Kramer
4414 C Department of Chemical Engineering
4415 C Massachusetts Institute of Technology
4416 C Cambridge, Massachusetts 02139
4417 C U.S.A.
4419 C Current address of J.R. Leis (Jan. 1988):
4421 C Shell Development Company
4422 C Westhollow Research Center
4423 C Houston, TX
4425 C @ Adapted from 'Instructions for Installing LSODE', written by
4426 C Alan C. Hindmarsh, Mathematics & Statistics Division, L-316,
4427 C Lawrence Livermore National Laboratory, Livermore, CA. 94550