Update version info for release v4.6.1 (#2122)
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / kpp_seulex.f
blob98b286ccf5d7be1483bdd6615758843bb7f00b4a
1 SUBROUTINE INTEGRATE( TIN, TOUT )
3 IMPLICIT KPP_REAL (A-H,O-Z)
4 INCLUDE 'KPP_ROOT_Parameters.h'
5 INCLUDE 'KPP_ROOT_Global.h'
7 C TIN - Start Time
8 KPP_REAL TIN
9 C TOUT - End Time
10 KPP_REAL TOUT
11 INTEGER i
13 PARAMETER (KM=12,KM2=2+KM*(KM+3)/2,NRDENS=NVAR)
14 PARAMETER (LWORK=2*NVAR*NVAR+(KM+8)*NVAR+4*KM+20+KM2*NRDENS)
15 PARAMETER (LIWORK=2*NVAR+KM+20+NRDENS)
17 KPP_REAL WORK(LWORK)
18 INTEGER IWORK(LIWORK)
19 EXTERNAL FUNC_CHEM,JAC_CHEM
21 ITOL=1 ! --- VECTOR TOLERANCES
22 IJAC=1 ! --- COMPUTE THE JACOBIAN ANALYTICALLY
23 MLJAC=NVAR ! --- JACOBIAN IS A FULL MATRIX
24 MUJAC=NVAR ! --- JACOBIAN IS A FULL MATRIX
25 IMAS=0 ! --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
26 IOUT=0 ! --- OUTPUT ROUTINE IS NOT USED DURING INTEGRATION
27 IDFX=0 ! --- INTERNAL TIME DERIVATIVE
29 DO i=1,20
30 IWORK(i) = 0
31 WORK(i) = 0.D0
32 ENDDO
34 CALL ATMSEULEX(NVAR,FUNC_CHEM,Autonomous,TIN,VAR,TOUT,
35 & STEPMIN,RTOL,ATOL,ITOL,
36 & JAC_CHEM,IJAC,MLJAC,MUJAC,
37 & FUNC_CHEM,IMAS,MLJAC,MUJAC,
38 & WORK,LWORK,IWORK,LIWORK,IDID)
40 IF (IDID.LT.0) THEN
41 print *,'ATMSEULEX: Unsucessfull exit at T=',
42 & TIN,' (IDID=',IDID,')'
43 ENDIF
45 RETURN
46 END
49 SUBROUTINE ATMSEULEX(N,FCN,IFCN,X,Y,XEND,H,
50 & RelTol,AbsTol,ITOL,
51 & JAC ,IJAC,MLJAC,MUJAC,
52 & MAS,IMAS,MLMAS,MUMAS,
53 & WORK,LWORK,IWORK,LIWORK,IDID)
54 C ----------------------------------------------------------
55 C NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
56 C SYSTEM OF FIRST 0RDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y).
57 C THIS IS AN EXTRAPOLATION-ALGORITHM, BASED ON THE
58 C LINEARLY IMPLICIT EULER METHOD (WITH STEP SIZE CONTROL
59 C AND ORDER SELECTION).
61 C AUTHORS: E. HAIRER AND G. WANNER
62 C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
63 C CH-1211 GENEVE 24, SWITZERLAND
64 C E-MAIL: HAIRER@DIVSUN.UNIGE.CH, WANNER@DIVSUN.UNIGE.CH
65 C INCLUSION OF DENSE OUTPUT BY E. HAIRER AND A. OSTERMANN
67 C THIS CODE IS PART OF THE BOOK:
68 C E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
69 C EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
70 C SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS 14,
71 C SPRINGER-VERLAG (1991)
73 C VERSION OF SEPTEMBER 30, 1995
75 C INPUT PARAMETERS
76 C ----------------
77 C N DIMENSION OF THE SYSTEM
79 C FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
80 C VALUE OF F(X,Y):
81 C SUBROUTINE FCN(N,X,Y,F)
82 C KPP_REAL X,Y(N),F(N)
83 C F(1)=... ETC.
84 C RPAR, IPAR (SEE BELOW)
86 C IFCN GIVES INFORMATION ON FCN:
87 C IFCN=0: F(X,Y) INDEPENDENT OF X (AUTONOMOUS)
88 C IFCN=1: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS)
90 C X INITIAL X-VALUE
92 C Y(N) INITIAL VALUES FOR Y
94 C XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)
96 C H INITIAL STEP SIZE GUESS;
97 C FOR STIFF EQUATIONS WITH INITIAL TRANSIENT,
98 C H=1.D0/(NORM OF F'), USUALLY 1.D-2 OR 1.D-3, IS GOOD.
99 C THIS CHOICE IS NOT VERY IMPORTANT, THE CODE QUICKLY
100 C ADAPTS ITS STEP SIZE (IF H=0.D0, THE CODE PUTS H=1.D-6).
102 C RelTol,AbsTol RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY
103 C CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.
105 C ITOL SWITCH FOR RelTol AND AbsTol:
106 C ITOL=0: BOTH RelTol AND AbsTol ARE SCALARS.
107 C THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
108 C Y(I) BELOW RelTol*ABS(Y(I))+AbsTol
109 C ITOL=1: BOTH RelTol AND AbsTol ARE VECTORS.
110 C THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW
111 C RelTol(I)*ABS(Y(I))+AbsTol(I).
113 C JAC NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
114 C THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO Y
115 C (THIS ROUTINE IS ONLY CALLED IF IJAC=1; SUPPLY
116 C A DUMMY SUBROUTINE IN THE CASE IJAC=0).
117 C FOR IJAC=1, THIS SUBROUTINE MUST HAVE THE FORM
118 C SUBROUTINE JAC(N,X,Y,DFY,LDFY)
119 C KPP_REAL X,Y(N),DFY(LDFY,N)
120 C DFY(1,1)= ...
121 C LDFY, THE COLOMN-LENGTH OF THE ARRAY, IS
122 C FURNISHED BY THE CALLING PROGRAM.
123 C IF (MLJAC.EQ.N) THE JACOBIAN IS SUPPOSED TO
124 C BE FULL AND THE PARTIAL DERIVATIVES ARE
125 C STORED IN DFY AS
126 C DFY(I,J) = PARTIAL F(I) / PARTIAL Y(J)
127 C ELSE, THE JACOBIAN IS TAKEN AS BANDED AND
128 C THE PARTIAL DERIVATIVES ARE STORED
129 C DIAGONAL-WISE AS
130 C DFY(I-J+MUJAC+1,J) = PARTIAL F(I) / PARTIAL Y(J).
132 C IJAC SWITCH FOR THE COMPUTATION OF THE JACOBIAN:
133 C IJAC=0: JACOBIAN IS COMPUTED INTERNALLY BY FINITE
134 C DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED.
135 C IJAC=1: JACOBIAN IS SUPPLIED BY SUBROUTINE JAC.
137 C MLJAC SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
138 C MLJAC=N: JACOBIAN IS A FULL MATRIX. THE LINEAR
139 C ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
140 C 0<=MLJAC<N: MLJAC IS THE LOWER BANDWITH OF JACOBIAN
141 C MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
142 C THE MAIN DIAGONAL).
144 C MUJAC UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON-
145 C ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
146 C NEED NOT BE DEFINED IF MLJAC=N.
148 C ---- MAS,IMAS,MLMAS, AND MUMAS HAVE ANALOG MEANINGS -----
149 C ---- FOR THE "MASS MATRIX" (THE MATRIX "M" OF SECTION IV.8): -
151 C MAS NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE MASS-
152 C MATRIX M.
153 C IF IMAS=0, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
154 C MATRIX AND NEEDS NOT TO BE DEFINED;
155 C SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
156 C IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
157 C SUBROUTINE MAS(N,AM,LMAS)
158 C KPP_REAL AM(LMAS,N)
159 C AM(1,1)= ....
160 C IF (MLMAS.EQ.N) THE MASS-MATRIX IS STORED
161 C AS FULL MATRIX LIKE
162 C AM(I,J) = M(I,J)
163 C ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
164 C DIAGONAL-WISE AS
165 C AM(I-J+MUMAS+1,J) = M(I,J).
167 C IMAS GIVES INFORMATION ON THE MASS-MATRIX:
168 C IMAS=0: M IS SUPPOSED TO BE THE IDENTITY
169 C MATRIX, MAS IS NEVER CALLED.
170 C IMAS=1: MASS-MATRIX IS SUPPLIED.
172 C MLMAS SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
173 C MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
174 C ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
175 C 0<=MLMAS<N: MLMAS IS THE LOWER BANDWITH OF THE
176 C MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
177 C THE MAIN DIAGONAL).
178 C MLMAS IS SUPPOSED TO BE .LE. MLJAC.
180 C MUMAS UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-
181 C ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
182 C NEED NOT BE DEFINED IF MLMAS=N.
183 C MUMAS IS SUPPOSED TO BE .LE. MUJAC.
185 C SOLOUT NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
186 C NUMERICAL SOLUTION DURING INTEGRATION.
187 C IF IOUT>=1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
188 C SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
189 C IT MUST HAVE THE FORM
190 C SUBROUTINE SOLOUT (NR,XOLD,X,Y,RC,LRC,IC,LIC,N,
191 C RPAR,IPAR,IRTRN)
192 C KPP_REAL X,Y(N),RC(LRC),IC(LIC)
193 C ....
194 C SOLOUT FURNISHES THE SOLUTION "Y" AT THE NR-TH
195 C GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
196 C THE FIRST GRID-POINT).
197 C "XOLD" IS THE PRECEEDING GRID-POINT.
198 C "IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
199 C IS SET <0, SEULEX RETURNS TO THE CALLING PROGRAM.
200 C DO NOT CHANGE THE ENTRIES OF RC(LRC),IC(LIC)!
202 C ----- CONTINUOUS OUTPUT (IF IOUT=2): -----
203 C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
204 C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
205 C THE KPP_REAL FUNCTION
206 C >>> CONTEX(I,S,RC,LRC,IC,LIC) <<<
207 C WHICH PROVIDES AN APPROXIMATION TO THE I-TH
208 C COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
209 C S SHOULD LIE IN THE INTERVAL [XOLD,X].
211 C IOUT GIVES INFORMATION ON THE SUBROUTINE SOLOUT:
212 C IOUT=0: SUBROUTINE IS NEVER CALLED
213 C IOUT=1: SUBROUTINE IS USED FOR OUTPUT
214 C IOUT=2: DENSE OUTPUT IS PERFORMED IN SOLOUT
216 C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
217 C SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES.
218 C "LWORK" MUST BE AT LEAST
219 C N*(LJAC+LMAS+LE1+KM+8)+4*KM+20+KM2*NRDENS
220 C WHERE
221 C KM2=2+KM*(KM+3)/2 AND NRDENS=IWORK(6) (SEE BELOW)
222 C AND
223 C LJAC=N IF MLJAC=N (FULL JACOBIAN)
224 C LJAC=MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.)
225 C AND
226 C LMAS=0 IF IMAS=0
227 C LMAS=N IF IMAS=1 AND MLMAS=N (FULL)
228 C LMAS=MLMAS+MUMAS+1 IF MLMAS<N (BANDED MASS-M.)
229 C AND
230 C LE1=N IF MLJAC=N (FULL JACOBIAN)
231 C LE1=2*MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.).
232 C AND
233 C KM=12 IF IWORK(3)=0
234 C KM=IWORK(3) IF IWORK(3).GT.0
236 C IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
237 C MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
238 C STORAGE REQUIREMENT IS
239 C LWORK = 2*N*N+(KM+8)*N+4*KM+13+KM2*NRDENS.
240 C IF IWORK(9)=M1>0 THEN "LWORK" MUST BE AT LEAST
241 C N*(LJAC+KM+8)+(N-M1)*(LMAS+LE1)+4*KM+20+KM2*NRDENS
242 C WHERE IN THE DEFINITIONS OF LJAC, LMAS AND LE1 THE
243 C NUMBER N CAN BE REPLACED BY N-M1.
245 C LWORK DECLARED LENGTH OF ARRAY "WORK".
247 C IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK".
248 C "LIWORK" MUST BE AT LEAST 2*N+KM+20+NRDENS.
250 C LIWORK DECLARED LENGTH OF ARRAY "IWORK".
252 C RPAR, IPAR REAL AND INTEGER PARAMETERS (OR PARAMETER ARRAYS) WHICH
253 C CAN BE USED FOR COMMUNICATION BETWEEN YOUR CALLING
254 C PROGRAM AND THE FCN, JAC, MAS, SOLOUT SUBROUTINES.
256 C ----------------------------------------------------------------------
258 C SOPHISTICATED SETTING OF PARAMETERS
259 C -----------------------------------
260 C SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK
261 C WELL. THEY MAY BE DEFINED BY SETTING WORK(1),..,WORK(13)
262 C AS WELL AS IWORK(1),..,IWORK(4) DIFFERENT FROM ZERO.
263 C FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
265 C IWORK(1) IF IWORK(1).NE.0, THE CODE TRANSFORMS THE JACOBIAN
266 C MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY
267 C ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN.
268 C IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC<N)
269 C AND NOT FOR IMPLICIT SYSTEMS (IMAS=1).
271 C IWORK(2) THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS.
272 C THE DEFAULT VALUE (FOR IWORK(2)=0) IS 100000.
274 C IWORK(3) THE MAXIMUM NUMBER OF COLUMNS IN THE EXTRAPOLATION
275 C TABLE. THE DEFAULT VALUE (FOR IWORK(3)=0) IS 12.
276 C IF IWORK(3).NE.0 THEN IWORK(3) SHOULD BE .GE.3.
278 C IWORK(4) SWITCH FOR THE STEP SIZE SEQUENCE
279 C IF IWORK(4).EQ.1 THEN 1,2,3,4,6,8,12,16,24,32,48,...
280 C IF IWORK(4).EQ.2 THEN 2,3,4,6,8,12,16,24,32,48,64,...
281 C IF IWORK(4).EQ.3 THEN 1,2,3,4,5,6,7,8,9,10,...
282 C IF IWORK(4).EQ.4 THEN 2,3,4,5,6,7,8,9,10,11,...
283 C THE DEFAULT VALUE (FOR IWORK(4)=0) IS IWORK(4)=2.
285 C IWORK(5) PARAMETER "LAMBDA" OF DENSE OUTPUT; POSSIBLE VALUES
286 C ARE 0 AND 1; DEFAULT IWORK(5)=0.
288 C IWORK(6) = NRDENS = NUMBER OF COMPONENTS, FOR WHICH DENSE OUTPUT
289 C IS REQUIRED
291 C IWORK(21),...,IWORK(NRDENS+20) INDICATE THE COMPONENTS, FOR WHICH
292 C DENSE OUTPUT IS REQUIRED
294 C IF THE DIFFERENTIAL SYSTEM HAS THE SPECIAL STRUCTURE THAT
295 C Y(I)' = Y(I+M2) FOR I=1,...,M1,
296 C WITH M1 A MULTIPLE OF M2, A SUBSTANTIAL GAIN IN COMPUTERTIME
297 C CAN BE ACHIEVED BY SETTING THE FOLLOWING TWO PARAMETERS. E.G.,
298 C FOR SECOND ORDER SYSTEMS P'=V, V'=G(P,V), WHERE P AND V ARE
299 C VECTORS OF DIMENSION N/2, ONE HAS TO PUT M1=M2=N/2.
300 C FOR M1>0 SOME OF THE INPUT PARAMETERS HAVE DIFFERENT MEANINGS:
301 C - JAC: ONLY THE ELEMENTS OF THE NON-TRIVIAL PART OF THE
302 C JACOBIAN HAVE TO BE STORED
303 C IF (MLJAC.EQ.N-M1) THE JACOBIAN IS SUPPOSED TO BE FULL
304 C DFY(I,J) = PARTIAL F(I+M1) / PARTIAL Y(J)
305 C FOR I=1,N-M1 AND J=1,N.
306 C ELSE, THE JACOBIAN IS BANDED ( M1 = M2 * MM )
307 C DFY(I-J+MUJAC+1,J+K*M2) = PARTIAL F(I+M1) / PARTIAL Y(J+K*M2)
308 C FOR I=1,MLJAC+MUJAC+1 AND J=1,M2 AND K=0,MM.
309 C - MLJAC: MLJAC=N-M1: IF THE NON-TRIVIAL PART OF THE JACOBIAN IS FULL
310 C 0<=MLJAC<N-M1: IF THE (MM+1) SUBMATRICES (FOR K=0,MM)
311 C PARTIAL F(I+M1) / PARTIAL Y(J+K*M2), I,J=1,M2
312 C ARE BANDED, MLJAC IS THE MAXIMAL LOWER BANDWIDTH
313 C OF THESE MM+1 SUBMATRICES
314 C - MUJAC: MAXIMAL UPPER BANDWIDTH OF THESE MM+1 SUBMATRICES
315 C NEED NOT BE DEFINED IF MLJAC=N-M1
316 C - MAS: IF IMAS=0 THIS MATRIX IS ASSUMED TO BE THE IDENTITY AND
317 C NEED NOT BE DEFINED. SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
318 C IT IS ASSUMED THAT ONLY THE ELEMENTS OF RIGHT LOWER BLOCK OF
319 C DIMENSION N-M1 DIFFER FROM THAT OF THE IDENTITY MATRIX.
320 C IF (MLMAS.EQ.N-M1) THIS SUBMATRIX IS SUPPOSED TO BE FULL
321 C AM(I,J) = M(I+M1,J+M1) FOR I=1,N-M1 AND J=1,N-M1.
322 C ELSE, THE MASS MATRIX IS BANDED
323 C AM(I-J+MUMAS+1,J) = M(I+M1,J+M1)
324 C - MLMAS: MLMAS=N-M1: IF THE NON-TRIVIAL PART OF M IS FULL
325 C 0<=MLMAS<N-M1: LOWER BANDWIDTH OF THE MASS MATRIX
326 C - MUMAS: UPPER BANDWIDTH OF THE MASS MATRIX
327 C NEED NOT BE DEFINED IF MLMAS=N-M1
329 C IWORK(9) THE VALUE OF M1. DEFAULT M1=0.
331 C IWORK(10) THE VALUE OF M2. DEFAULT M2=M1.
333 C WORK(1) UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
335 C WORK(2) MAXIMAL STEP SIZE, DEFAULT XEND-X.
337 C WORK(3) DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
338 C INCREASE WORK(3), TO 0.01 SAY, WHEN JACOBIAN EVALUATIONS
339 C ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER.
340 C DEFAULT MIN(1.0D-4,RelTol(1))
342 C WORK(4), WORK(5) PARAMETERS FOR STEP SIZE SELECTION
343 C THE NEW STEP SIZE FOR THE J-TH DIAGONAL ENTRY IS
344 C CHOSEN SUBJECT TO THE RESTRICTION
345 C FACMIN/WORK(5) <= HNEW(J)/HOLD <= 1/FACMIN
346 C WHERE FACMIN=WORK(4)**(1/(J-1))
347 C DEFAULT VALUES: WORK(4)=0.1D0, WORK(5)=4.D0
349 C WORK(6), WORK(7) PARAMETERS FOR THE ORDER SELECTION
350 C ORDER IS DECREASED IF W(K-1) <= W(K)*WORK(6)
351 C ORDER IS INCREASED IF W(K) <= W(K-1)*WORK(7)
352 C DEFAULT VALUES: WORK(6)=0.7D0, WORK(7)=0.9D0
354 C WORK(8), WORK(9) SAFETY FACTORS FOR STEP CONTROL ALGORITHM
355 C HNEW=H*WORK(9)*(WORK(8)*TOL/ERR)**(1/(J-1))
356 C DEFAULT VALUES: WORK(8)=0.8D0, WORK(9)=0.93D0
358 C WORK(10), WORK(11), WORK(12), WORK(13) ESTIMATED WORKS FOR
359 C A CALL TO FCN, JAC, DEC, SOL, RESPECTIVELY.
360 C DEFAULT VALUES ARE: WORK(10)=1.D0, WORK(11)=5.D0,
361 C WORK(12)=1.D0, WORK(13)=1.D0.
363 C-----------------------------------------------------------------------
365 C OUTPUT PARAMETERS
366 C -----------------
367 C X X-VALUE WHERE THE SOLUTION IS COMPUTED
368 C (AFTER SUCCESSFUL RETURN X=XEND)
370 C Y(N) SOLUTION AT X
372 C H PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP
374 C IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
375 C IDID=1 COMPUTATION SUCCESSFUL,
376 C IDID=-1 COMPUTATION UNSUCCESSFUL.
378 C IWORK(14) NFCN NUMBER OF FUNCTION EVALUATIONS (THOSE FOR NUMERICAL
379 C EVALUATION OF THE JACOBIAN ARE NOT COUNTED)
380 C IWORK(15) NJAC NUMBER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY
381 C OR NUMERICALLY)
382 C IWORK(16) NSTEP NUMBER OF COMPUTED STEPS
383 C IWORK(17) NACCPT NUMBER OF ACCEPTED STEPS
384 C IWORK(18) NREJCT NUMBER OF REJECTED STEPS (AFTER AT LEAST ONE STEP
385 C HAS BEEN ACCEPTED)
386 C IWORK(19) NDEC NUMBER OF LU-DECOMPOSITIONS (N-DIMENSIONAL MATRIX)
387 C IWORK(20) NSOL NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS
388 C-----------------------------------------------------------------------
389 C *** *** *** *** *** *** *** *** *** *** *** *** ***
390 C DECLARATIONS
391 C *** *** *** *** *** *** *** *** *** *** *** *** ***
392 IMPLICIT KPP_REAL (A-H,O-Z)
393 DIMENSION Y(N),AbsTol(*),RelTol(*),WORK(LWORK),IWORK(LIWORK)
394 LOGICAL AUTNMS,IMPLCT,ARRET,JBAND
395 EXTERNAL FCN,JAC,MAS
396 C *** *** *** *** *** *** ***
397 C SETTING THE PARAMETERS
398 C *** *** *** *** *** *** ***
399 IOUT = 0
400 NFCN=0
401 NJAC=0
402 NSTEP=0
403 NACCPT=0
404 NREJCT=0
405 NDEC=0
406 NSOL=0
407 ARRET=.FALSE.
408 C -------- NMAX , THE MAXIMAL NUMBER OF STEPS -----
409 IF(IWORK(2).EQ.0)THEN
410 NMAX=100000
411 ELSE
412 NMAX=IWORK(2)
413 IF(NMAX.LE.0)THEN
414 WRITE(6,*)' WRONG INPUT IWORK(2)=',IWORK(2)
415 ARRET=.TRUE.
416 END IF
417 END IF
418 C -------- KM MAXIMUM NUMBER OF COLUMNS IN THE EXTRAPOLATION
419 IF(IWORK(3).EQ.0)THEN
420 KM=12
421 ELSE
422 KM=IWORK(3)
423 IF(KM.LE.2)THEN
424 WRITE(6,*)' CURIOUS INPUT IWORK(3)=',IWORK(3)
425 ARRET=.TRUE.
426 END IF
427 END IF
428 C -------- NSEQU CHOICE OF STEP SIZE SEQUENCE
429 NSEQU=IWORK(4)
430 IF(IWORK(4).EQ.0) NSEQU=2
431 IF(NSEQU.LE.0.OR.NSEQU.GE.5)THEN
432 WRITE(6,*)' CURIOUS INPUT IWORK(4)=',IWORK(4)
433 ARRET=.TRUE.
434 END IF
435 C -------- LAMBDA PARAMETER FOR DENSE OUTPUT
436 LAMBDA=IWORK(5)
437 IF(LAMBDA.LT.0.OR.LAMBDA.GE.2)THEN
438 WRITE(6,*)' CURIOUS INPUT IWORK(5)=',IWORK(5)
439 ARRET=.TRUE.
440 END IF
441 C -------- NRDENS NUMBER OF DENSE OUTPUT COMPONENTS
442 NRDENS=IWORK(6)
443 IF(NRDENS.LT.0.OR.NRDENS.GT.N)THEN
444 WRITE(6,*)' CURIOUS INPUT IWORK(6)=',IWORK(6)
445 ARRET=.TRUE.
446 END IF
447 C -------- PARAMETER FOR SECOND ORDER EQUATIONS
448 M1=IWORK(9)
449 M2=IWORK(10)
450 NM1=N-M1
451 IF (M1.EQ.0) M2=N
452 IF (M2.EQ.0) M2=M1
453 IF (M1.LT.0.OR.M2.LT.0.OR.M1+M2.GT.N) THEN
454 WRITE(6,*)' CURIOUS INPUT FOR IWORK(9,10)=',M1,M2
455 ARRET=.TRUE.
456 END IF
457 C -------- UROUND SMALLEST NUMBER SATISFYING 1.D0+UROUND>1.D0
458 IF(WORK(1).EQ.0.D0)THEN
459 UROUND=1.D-16
460 ELSE
461 UROUND=WORK(1)
462 IF(UROUND.LE.0.D0.OR.UROUND.GE.1.D0)THEN
463 WRITE(6,*)' UROUND=',WORK(1)
464 ARRET=.TRUE.
465 END IF
466 END IF
467 C -------- MAXIMAL STEP SIZE
468 IF(WORK(2).EQ.0.D0)THEN
469 HMAX=XEND-X
470 ELSE
471 HMAX=WORK(2)
472 END IF
473 C ------ THET DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
474 IF(WORK(3).EQ.0.D0)THEN
475 THET=MIN(1.0D-4,RelTol(1))
476 ELSE
477 THET=WORK(3)
478 END IF
479 C ------- FAC1,FAC2 PARAMETERS FOR STEP SIZE SELECTION
480 IF(WORK(4).EQ.0.D0)THEN
481 FAC1=0.1D0
482 ELSE
483 FAC1=WORK(4)
484 END IF
485 IF(WORK(5).EQ.0.D0)THEN
486 FAC2=4.0D0
487 ELSE
488 FAC2=WORK(5)
489 END IF
490 C ------- FAC3, FAC4 PARAMETERS FOR THE ORDER SELECTION
491 IF(WORK(6).EQ.0.D0)THEN
492 FAC3=0.7D0
493 ELSE
494 FAC3=WORK(6)
495 END IF
496 IF(WORK(7).EQ.0.D0)THEN
497 FAC4=0.9D0
498 ELSE
499 FAC4=WORK(7)
500 END IF
501 C ------- SAFE1, SAFE2 SAFETY FACTORS FOR STEP SIZE PREDICTION
502 IF(WORK(8).EQ.0.D0)THEN
503 SAFE1=0.6D0
504 ELSE
505 SAFE1=WORK(8)
506 END IF
507 IF(WORK(9).EQ.0.D0)THEN
508 SAFE2=0.93D0
509 ELSE
510 SAFE2=WORK(9)
511 END IF
512 C ------- WKFCN,WKJAC,WKDEC,WKSOL ESTIMATED WORK FOR FCN,JAC,DEC,SOL
513 IF(WORK(10).EQ.0.D0)THEN
514 WKFCN=1.D0
515 ELSE
516 WKFCN=WORK(10)
517 END IF
518 IF(WORK(11).EQ.0.D0)THEN
519 WKJAC=5.D0
520 ELSE
521 WKJAC=WORK(11)
522 END IF
523 IF(WORK(12).EQ.0.D0)THEN
524 WKDEC=1.D0
525 ELSE
526 WKDEC=WORK(12)
527 END IF
528 IF(WORK(13).EQ.0.D0)THEN
529 WKSOL=1.D0
530 ELSE
531 WKSOL=WORK(13)
532 END IF
533 WKROW=WKFCN+WKSOL
534 C --------- CHECK IF TOLERANCES ARE O.K.
535 IF (ITOL.EQ.0) THEN
536 IF (AbsTol(1).LE.0.D0.OR.RelTol(1).LE.10.D0*UROUND) THEN
537 WRITE (6,*) ' TOLERANCES ARE TOO SMALL'
538 ARRET=.TRUE.
539 END IF
540 ELSE
541 DO I=1,N
542 IF (AbsTol(I).LE.0.D0.OR.RelTol(I).LE.10.D0*UROUND) THEN
543 WRITE (6,*) ' TOLERANCES(',I,') ARE TOO SMALL'
544 ARRET=.TRUE.
545 END IF
546 END DO
547 END IF
548 C *** *** *** *** *** *** *** *** *** *** *** *** ***
549 C COMPUTATION OF ARRAY ENTRIES
550 C *** *** *** *** *** *** *** *** *** *** *** *** ***
551 C ---- AUTONOMOUS, IMPLICIT, BANDED OR NOT ?
552 AUTNMS=IFCN.EQ.0
553 IMPLCT=IMAS.NE.0
554 JBAND=MLJAC.LT.NM1
555 C -------- COMPUTATION OF THE ROW-DIMENSIONS OF THE 2-ARRAYS ---
556 C -- JACOBIAN AND MATRIX E
557 IF(JBAND)THEN
558 LDJAC=MLJAC+MUJAC+1
559 LDE=MLJAC+LDJAC
560 ELSE
561 MLJAC=NM1
562 MUJAC=NM1
563 LDJAC=NM1
564 LDE=NM1
565 END IF
566 C -- MASS MATRIX
567 IF (IMPLCT) THEN
568 IF (MLMAS.NE.NM1) THEN
569 LDMAS=MLMAS+MUMAS+1
570 IF (JBAND) THEN
571 IJOB=4
572 ELSE
573 IJOB=3
574 END IF
575 ELSE
576 LDMAS=NM1
577 IJOB=5
578 END IF
579 C ------ BANDWITH OF "MAS" NOT LARGER THAN BANDWITH OF "JAC"
580 IF (MLMAS.GT.MLJAC.OR.MUMAS.GT.MUJAC) THEN
581 WRITE (6,*) 'BANDWITH OF "MAS" NOT LARGER THAN BANDWITH OF
582 & "JAC"'
583 ARRET=.TRUE.
584 END IF
585 ELSE
586 LDMAS=0
587 IF (JBAND) THEN
588 IJOB=2
589 ELSE
590 IJOB=1
591 IF (N.GT.2.AND.IWORK(1).NE.0) IJOB=7
592 END IF
593 END IF
594 LDMAS2=MAX(1,LDMAS)
595 C ------ HESSENBERG OPTION ONLY FOR EXPLICIT EQU. WITH FULL JACOBIAN
596 IF ((IMPLCT.OR.JBAND).AND.IJOB.EQ.7) THEN
597 WRITE(6,*)' HESSENBERG OPTION ONLY FOR EXPLICIT EQUATIONS WITH
598 &FULL JACOBIAN'
599 ARRET=.TRUE.
600 END IF
601 C ------- PREPARE THE ENTRY-POINTS FOR THE ARRAYS IN WORK -----
602 KM2=(KM*(KM+1))/2
603 IEYH=21
604 IEDY=IEYH+N
605 IEFX=IEDY+N
606 IEYHH=IEFX+N
607 IEDYH=IEYHH+N
608 IEDEL=IEDYH+N
609 IEWH =IEDEL+N
610 IESCAL=IEWH+N
611 IEHH =IESCAL+N
612 IEW =IEHH+KM
613 IEA =IEW+KM
614 IEJAC =IEA+KM
615 IEE =IEJAC+N*LDJAC
616 IEMAS=IEE+NM1*LDE
617 IET=IEMAS+NM1*LDMAS
618 IFAC=IET+N*KM
619 IEDE=IFAC+KM
620 IFSAFE=IEDE+(KM+2)*NRDENS
621 C ------ TOTAL STORAGE REQUIREMENT -----------
622 ISTORE=IFSAFE+KM2*NRDENS-1
623 IF(ISTORE.GT.LWORK)THEN
624 WRITE(6,*)' INSUFFICIENT STORAGE FOR WORK, MIN. LWORK=',ISTORE
625 ARRET=.TRUE.
626 END IF
627 C ------- ENTRY POINTS FOR INTEGER WORKSPACE -----
628 IECO=21
629 IEIP=21+NRDENS
630 IENJ=IEIP+N
631 IEIPH=IENJ+KM
632 C --------- TOTAL REQUIREMENT ---------------
633 ISTORE=IECO+KM-1
634 IF(ISTORE.GT.LIWORK)THEN
635 WRITE(6,*)' INSUFF. STORAGE FOR IWORK, MIN. LIWORK=',ISTORE
636 ARRET=.TRUE.
637 END IF
638 C ------ WHEN A FAIL HAS OCCURED, WE RETURN WITH IDID=-1
639 IF (ARRET) THEN
640 IDID=-1
641 RETURN
642 END IF
643 NRD=MAX(1,NRDENS)
644 C -------- CALL TO CORE INTEGRATOR ------------
645 CALL SEUCOR(N,FCN,X,Y,XEND,HMAX,H,KM,RelTol,AbsTol,ITOL,JAC,IJAC,
646 & MLJAC,MUJAC,MLMAS,MUMAS,IOUT,IDID,IJOB,M1,M2,NM1,
647 & NMAX,UROUND,NSEQU,AUTNMS,IMPLCT,JBAND,LDJAC,LDE,LDMAS2,
648 & WORK(IEYH),WORK(IEDY),WORK(IEFX),WORK(IEYHH),WORK(IEDYH),
649 & WORK(IEDEL),WORK(IEWH),WORK(IESCAL),WORK(IEHH),
650 & WORK(IEW),WORK(IEA),WORK(IEJAC),WORK(IEE),WORK(IEMAS),
651 & WORK(IET),IWORK(IEIP),IWORK(IENJ),IWORK(IEIPH),FAC1,FAC2,FAC3,
652 & FAC4,THET,SAFE1,SAFE2,WKJAC,WKDEC,WKROW,KM2,NRD,WORK(IFAC),
653 & WORK(IFSAFE),LAMBDA,NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL,
654 & WORK(IEDE),IWORK(IECO))
655 IWORK(14)=NFCN
656 IWORK(15)=NJAC
657 IWORK(16)=NSTEP
658 IWORK(17)=NACCPT
659 IWORK(18)=NREJCT
660 IWORK(19)=NDEC
661 IWORK(20)=NSOL
662 C ----------- RETURN -----------
663 RETURN
667 C ----- ... AND HERE IS THE CORE INTEGRATOR ----------
669 SUBROUTINE SEUCOR(N,FCN,X,Y,XEND,HMAX,H,KM,RelTol,AbsTol,ITOL,
670 & JAC,IJAC,MLJAC,MUJAC,MLB,MUB,IOUT,IDID,IJOB,M1,M2,
671 & NM1,NMAX,UROUND,NSEQU,AUTNMS,IMPLCT,BANDED,LFJAC,LE,
672 & LDMAS,YH,DY,FX,YHH,DYH,DEL,WH,SCAL,HH,W,A,FJAC,E,FMAS,T,IP,
673 & NJ,IPHES,FAC1,FAC2,FAC3,FAC4,THET,SAFE1,SAFE2,WKJAC,WKDEC,WKROW,
674 & KM2,NRD,FACUL,FSAFE,LAMBDA,NFCN,NJAC,NSTEP,NACCPT,NREJCT,
675 & NDEC,NSOL,DENS,ICOMP)
676 C ----------------------------------------------------------
677 C CORE INTEGRATOR FOR SEULEX
678 C PARAMETERS SAME AS IN SEULEX WITH WORKSPACE ADDED
679 C ----------------------------------------------------------
680 C DECLARATIONS
681 C ----------------------------------------------------------
682 IMPLICIT KPP_REAL (A-H,O-Z)
683 INCLUDE 'KPP_ROOT_Parameters.h'
684 INCLUDE 'KPP_ROOT_Sparse.h'
685 INTEGER KM, KM2, K, KC, KRIGHT, KLR, KK, KRN, KOPT
686 DIMENSION Y(N),YH(N),DY(N),FX(N),YHH(N),DYH(N),DEL(N)
687 DIMENSION WH(N),SCAL(N),HH(KM),W(KM),A(KM),FJAC(LU_NONZERO)
688 DIMENSION FMAS(LDMAS,NM1),T(KM,N),IP(NM1),NJ(KM)
689 DIMENSION RelTol(*),AbsTol(*)
690 DIMENSION IPHES(N),FSAFE(KM2,NRD),FACUL(KM),E(LE,NM1)
691 DIMENSION DENS((KM+2)*NRD),ICOMP(NRD)
692 LOGICAL REJECT,LAST,ATOV,CALJAC,CALHES,AUTNMS,IMPLCT,BANDED
693 EXTERNAL FCN, JAC
694 COMMON /COSEU/XOLDD,HHH,NNRD,KRIGHT
695 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
696 C --- COMPUTE COEFFICIENTS FOR DENSE OUTPUT
697 IF (IOUT.EQ.2) THEN
698 NNRD=NRD
699 C --- COMPUTE THE FACTORIALS --------
700 FACUL(1)=1.D0
701 DO I=1,KM-1
702 FACUL(I+1)=I*FACUL(I)
703 END DO
704 END IF
706 C *** *** *** *** *** *** ***
707 C INITIALISATIONS
708 C *** *** *** *** *** *** ***
709 LRDE=(KM+2)*NRD
710 MLE=MLJAC
711 MUE=MUJAC
712 MBJAC=MLJAC+MUJAC+1
713 MBB=MLB+MUB+1
714 MDIAG=MLE+MUE+1
715 MDIFF=MLE+MUE-MUB
716 MBDIAG=MUB+1
717 IF (M1.GT.0) IJOB=IJOB+10
718 C --- DEFINE THE STEP SIZE SEQUENCE
719 IF (NSEQU.EQ.1) THEN
720 NJ(1)=1
721 NJ(2)=2
722 NJ(3)=3
723 DO I=4,KM
724 NJ(I)=2*NJ(I-2)
725 END DO
726 END IF
727 IF (NSEQU.EQ.2) THEN
728 NJ(1)=2
729 NJ(2)=3
730 DO I=3,KM
731 NJ(I)=2*NJ(I-2)
732 END DO
733 END IF
734 DO I=1,KM
735 IF (NSEQU.EQ.3) NJ(I)=I
736 IF (NSEQU.EQ.4) NJ(I)=I+1
737 END DO
738 A(1)=WKJAC+NJ(1)*WKROW+WKDEC
739 DO I=2,KM
740 A(I)=A(I-1)+(NJ(I)-1)*WKROW+WKDEC
741 END DO
742 K=MAX0(3,MIN0(KM-2,INT(-DLOG10(RelTol(1)+AbsTol(1))*.6D0+1.5D0)))
743 HMAXN=MIN(ABS(HMAX),ABS(XEND-X))
744 IF (ABS(H).LE.10.D0*UROUND) H=1.0D-6
745 H=MIN(ABS(H),HMAXN)
746 THETA=2*ABS(THET)
747 ERR=0.D0
748 W(1)=1.D30
749 DO I=1,N
750 IF (ITOL.EQ.0) THEN
751 SCAL(I)=AbsTol(1)+RelTol(1)*DABS(Y(I))
752 ELSE
753 SCAL(I)=AbsTol(I)+RelTol(I)*DABS(Y(I))
754 END IF
755 END DO
756 CALJAC=.FALSE.
757 REJECT=.FALSE.
758 LAST=.FALSE.
759 10 CONTINUE
760 IF (REJECT) THETA=2*ABS(THET)
761 ATOV=.FALSE.
762 C *** *** *** *** *** *** ***
763 C --- IS XEND REACHED IN THE NEXT STEP?
764 C *** *** *** *** *** *** ***
765 H1=XEND-X
766 IF (H1.LE.UROUND) GO TO 110
767 HOPT=H
768 H=MIN(H,H1,HMAXN)
769 IF (H.GE.H1-UROUND) LAST=.TRUE.
770 IF (AUTNMS) THEN
771 CALL FCN(N,X,Y,DY)
772 NFCN=NFCN+1
773 END IF
774 IF (THETA.GT.THET.AND..NOT.CALJAC) THEN
775 C *** *** *** *** *** *** ***
776 C COMPUTATION OF THE JACOBIAN
777 C *** *** *** *** *** *** ***
778 NJAC=NJAC+1
779 C --- COMPUTE JACOBIAN MATRIX ANALYTICALLY
780 CALL JAC(N,X,Y,FJAC)
781 CALJAC=.TRUE.
782 CALHES=.FALSE.
783 END IF
784 C *** *** *** *** *** *** ***
785 C --- THE FIRST AND LAST STEP
786 C *** *** *** *** *** *** ***
787 IF (NSTEP.EQ.0.OR.LAST) THEN
788 IPT=0
789 NSTEP=NSTEP+1
790 DO J=1,K
791 KC=J
792 CALL SEUL(J,N,FCN,X,Y,DY,FX,FJAC,LFJAC,FMAS,LDMAS,E,LE,IP,H,KM,
793 & HMAXN,T,SCAL,NJ,HH,W,A,YHH,DYH,DEL,WH,ERR,SAFE1,FAC,
794 & FAC1,FAC2,SAFE2,THETA,MLJAC,MUJAC,NFCN,NDEC,NSOL,MLB,
795 & MUB,ERROLD,IPHES,ICOMP,AUTNMS,IMPLCT,BANDED,REJECT,
796 & ATOV,FSAFE,KM2,NRD,IOUT,IPT,M1,M2,NM1,IJOB,CALHES)
797 IF (ATOV) GOTO 10
798 IF (J.GT.1.AND.ERR.LE.1.D0) GO TO 60
799 END DO
800 GO TO 55
801 END IF
802 C --- BASIC INTEGRATION STEP
803 30 CONTINUE
804 IPT=0
805 NSTEP=NSTEP+1
806 IF (NSTEP.GE.NMAX) GO TO 120
807 KC=K-1
808 DO J=1,KC
809 CALL SEUL(J,N,FCN,X,Y,DY,FX,FJAC,LFJAC,FMAS,LDMAS,E,LE,IP,H,KM,
810 & HMAXN,T,SCAL,NJ,HH,W,A,YHH,DYH,DEL,WH,ERR,SAFE1,
811 & FAC,FAC1,FAC2,SAFE2,THETA,MLJAC,MUJAC,NFCN,NDEC,NSOL,
812 & MLB,MUB,ERROLD,IPHES,ICOMP,AUTNMS,IMPLCT,BANDED,REJECT,
813 & ATOV,FSAFE,KM2,NRD,IOUT,IPT,M1,M2,NM1,IJOB,CALHES)
814 IF (ATOV) GOTO 10
815 END DO
816 C *** *** *** *** *** *** ***
817 C --- CONVERGENCE MONITOR
818 C *** *** *** *** *** *** ***
819 IF (K.EQ.2.OR.REJECT) GO TO 50
820 IF (ERR.LE.1.D0) GO TO 60
821 IF (ERR.GT.DBLE(NJ(K+1)*NJ(K))*4.D0) GO TO 100
822 50 CALL SEUL(K,N,FCN,X,Y,DY,FX,FJAC,LFJAC,FMAS,LDMAS,E,LE,IP,H,KM,
823 & HMAXN,T,SCAL,NJ,HH,W,A,YHH,DYH,DEL,WH,ERR,SAFE1,
824 & FAC,FAC1,FAC2,SAFE2,THETA,MLJAC,MUJAC,NFCN,NDEC,NSOL,
825 & MLB,MUB,ERROLD,IPHES,ICOMP,AUTNMS,IMPLCT,BANDED,REJECT,
826 & ATOV,FSAFE,KM2,NRD,IOUT,IPT,M1,M2,NM1,IJOB,CALHES)
827 IF (ATOV) GOTO 10
828 KC=K
829 IF (ERR.LE.1.D0) GO TO 60
830 C --- HOPE FOR CONVERGENCE IN LINE K+1
831 55 IF (ERR.GT.DBLE(NJ(K+1))*2.D0) GO TO 100
832 KC=K+1
833 CALL SEUL(KC,N,FCN,X,Y,DY,FX,FJAC,LFJAC,FMAS,LDMAS,E,LE,IP,H,KM,
834 & HMAXN,T,SCAL,NJ,HH,W,A,YHH,DYH,DEL,WH,ERR,SAFE1,
835 & FAC,FAC1,FAC2,SAFE2,THETA,MLJAC,MUJAC,NFCN,NDEC,NSOL,
836 & MLB,MUB,ERROLD,IPHES,ICOMP,AUTNMS,IMPLCT,BANDED,REJECT,
837 & ATOV,FSAFE,KM2,NRD,IOUT,IPT,M1,M2,NM1,IJOB,CALHES)
838 IF (ATOV) GOTO 10
839 CAdi IF (ERR.GT.1.D0) GO TO 100
840 IF ((ERR.GT.1.D0).and.(H.gt.STEPMIN)) GO TO 100 ! Adi
841 C *** *** *** *** *** *** ***
842 C --- STEP IS ACCEPTED
843 C *** *** *** *** *** *** ***
844 60 XOLD=X
845 X=X+H
846 IF (IOUT.EQ.2) THEN
847 KRIGHT=KC
848 DO I=1,NRD
849 DENS(I)=Y(ICOMP(I))
850 END DO
851 END IF
852 DO I=1,N
853 T1I=T(1,I)
854 IF (ITOL.EQ.0) THEN
855 SCAL(I)=AbsTol(1)+RelTol(1)*DABS(T1I)
856 ELSE
857 SCAL(I)=AbsTol(I)+RelTol(I)*DABS(T1I)
858 END IF
859 Y(I)=T1I
860 END DO
861 NACCPT=NACCPT+1
862 CALJAC=.FALSE.
863 IF (IOUT.EQ.2) THEN
864 XOLDD=XOLD
865 HHH=H
866 DO I=1,NRD
867 DENS(NRD+I)=Y(ICOMP(I))
868 END DO
869 DO KLR=1,KRIGHT-1
870 C --- COMPUTE DIFFERENCES
871 IF (KLR.GE.2) THEN
872 DO KK=KLR,KC
873 LBEG=((KK+1)*KK)/2
874 LEND=LBEG-KK+2
875 DO L=LBEG,LEND,-1
876 DO I=1,NRD
877 FSAFE(L,I)=FSAFE(L,I)-FSAFE(L-1,I)
878 END DO
879 END DO
880 END DO
881 END IF
882 C --- COMPUTE DERIVATIVES AT RIGHT END ----
883 DO KK=KLR+LAMBDA,KC
884 FACNJ=NJ(KK)
885 FACNJ=FACNJ**KLR/FACUL(KLR+1)
886 IPT=((KK+1)*KK)/2
887 DO I=1,NRD
888 KRN=(KK-LAMBDA+1)*NRD
889 DENS(KRN+I)=FSAFE(IPT,I)*FACNJ
890 END DO
891 END DO
892 DO J=KLR+LAMBDA+1,KC
893 DBLENJ=NJ(J)
894 DO L=J,KLR+LAMBDA+1,-1
895 FACTOR=DBLENJ/NJ(L-1)-1.D0
896 DO I=1,NRD
897 KRN=(L-LAMBDA+1)*NRD+I
898 DENS(KRN-NRD)=DENS(KRN)
899 & +(DENS(KRN)-DENS(KRN-NRD))/FACTOR
900 END DO
901 END DO
902 END DO
903 END DO
904 C --- COMPUTE THE COEFFICIENTS OF THE INTERPOLATION POLYNOMIAL
905 DO IN=1,NRD
906 DO J=1,KRIGHT
907 II=NRD*J+IN
908 DENS(II)=DENS(II)-DENS(II-NRD)
909 END DO
910 END DO
911 END IF
912 C --- COMPUTE OPTIMAL ORDER
913 IF (KC.EQ.2) THEN
914 KOPT=3
915 IF (REJECT) KOPT=2
916 GO TO 80
917 END IF
918 IF (KC.LE.K) THEN
919 KOPT=KC
920 IF (W(KC-1).LT.W(KC)*FAC3) KOPT=KC-1
921 IF (W(KC).LT.W(KC-1)*FAC4) KOPT=MIN0(KC+1,KM-1)
922 ELSE
923 KOPT=KC-1
924 IF (KC.GT.3.AND.W(KC-2).LT.W(KC-1)*FAC3) KOPT=KC-2
925 IF (W(KC).LT.W(KOPT)*FAC4) KOPT=MIN0(KC,KM-1)
926 END IF
927 C --- AFTER A REJECTED STEP
928 80 IF (REJECT) THEN
929 K=MIN0(KOPT,KC)
930 H=DMIN1(H,HH(K))
931 REJECT=.FALSE.
932 GO TO 10
933 END IF
934 C --- COMPUTE STEP SIZE FOR NEXT STEP
935 IF (KOPT.LE.KC) THEN
936 H=HH(KOPT)
937 ELSE
938 IF (KC.LT.K.AND.W(KC).LT.W(KC-1)*FAC4) THEN
939 H=HH(KC)*A(KOPT+1)/A(KC)
940 ELSE
941 H=HH(KC)*A(KOPT)/A(KC)
942 END IF
943 END IF
944 K=KOPT
945 H = DMAX1(H, STEPMIN) ! Adi
946 GO TO 10
947 C *** *** *** *** *** *** ***
948 C --- STEP IS REJECTED
949 C *** *** *** *** *** *** ***
950 100 K=MIN0(K,KC)
951 IF (K.GT.2.AND.W(K-1).LT.W(K)*FAC3) K=K-1
952 NREJCT=NREJCT+1
953 H=HH(K)
954 LAST=.FALSE.
955 REJECT=.TRUE.
956 IF (CALJAC) GOTO 30
957 GO TO 10
958 C --- SOLUTION EXIT
959 110 CONTINUE
960 H=HOPT
961 IDID=1
962 RETURN
963 C --- FAIL EXIT
964 120 WRITE (6,979) X,H
965 979 FORMAT(' EXIT OF SEULEX AT X=',D14.7,' H=',D14.7)
966 IDID=-1
967 RETURN
971 C *** *** *** *** *** *** ***
972 C S U B R O U T I N E S E U L
973 C *** *** *** *** *** *** ***
975 SUBROUTINE SEUL(JJ,N,FCN,X,Y,DY,FX,FJAC,LFJAC,FMAS,LDMAS,E,LE,IP,
976 & H,KM,HMAXN,T,SCAL,NJ,HH,W,A,YH,DYH,DEL,WH,ERR,SAFE1,
977 & FAC,FAC1,FAC2,SAFE2,THETA,MLJAC,MUJAC,NFCN,NDEC,NSOL,
978 & MLB,MUB,ERROLD,IPHES,ICOMP,
979 & AUTNMS,IMPLCT,BANDED,REJECT,ATOV,FSAFE,KM2,NRD,IOUT,
980 & IPT,M1,M2,NM1,IJOB,CALHES)
981 C --- THIS SUBROUTINE COMPUTES THE J-TH LINE OF THE
982 C --- EXTRAPOLATION TABLE AND PROVIDES AN ESTIMATE
983 C --- OF THE OPTIMAL STEP SIZE
984 IMPLICIT KPP_REAL (A-H,O-Z)
985 INCLUDE 'KPP_ROOT_Parameters.h'
986 INCLUDE 'KPP_ROOT_Sparse.h'
987 INTEGER KM, KM2
988 DIMENSION Y(N),YH(N),DY(N),FX(N),DYH(N),DEL(N)
989 DIMENSION WH(N),SCAL(N),HH(KM),W(KM),A(KM)
990 DIMENSION FJAC(LU_NONZERO),E(LU_NONZERO)
991 DIMENSION FMAS(LDMAS,N),T(KM,N),IP(N),NJ(KM),IPHES(N)
992 DIMENSION FSAFE(KM2,NRD),ICOMP(NRD)
993 LOGICAL ATOV,REJECT,AUTNMS,IMPLCT,BANDED,CALHES
994 COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
995 EXTERNAL FCN
996 C *** *** *** *** *** *** ***
997 C COMPUTE THE MATRIX E AND ITS DECOMPOSITION
998 C *** *** *** *** *** *** ***
999 HJ=H/NJ(JJ)
1000 HJI=1.D0/HJ
1001 DO I=1,LU_NONZERO
1002 E(I)=-FJAC(I)
1003 END DO
1004 DO J=1,N
1005 E(LU_DIAG(J))=E(LU_DIAG(J))+HJI
1006 END DO
1007 CALL KppDecomp (E,IER)
1008 IF (IER.NE.0) GOTO 79
1009 NDEC=NDEC+1
1010 C *** *** *** *** *** *** ***
1011 C --- STARTING PROCEDURE
1012 C *** *** *** *** *** *** ***
1013 IF (.NOT.AUTNMS) THEN
1014 CALL FCN(N,X+HJ,Y,DY)
1015 NFCN=NFCN+1
1016 END IF
1017 DO I=1,N
1018 YH(I)=Y(I)
1019 DEL(I)=DY(I)
1020 END DO
1021 CALL KppSolve (E,DEL)
1022 NSOL=NSOL+1
1023 M=NJ(JJ)
1024 IF (IOUT.EQ.2.AND.M.EQ.JJ) THEN
1025 IPT=IPT+1
1026 DO I=1,NRD
1027 FSAFE(IPT,I)=DEL(ICOMP(I))
1028 END DO
1029 END IF
1030 C *** *** *** *** *** *** ***
1031 C --- SEMI-IMPLICIT EULER METHOD
1032 C *** *** *** *** *** *** ***
1033 IF (M.GT.1) THEN
1034 DO MM=1,M-1
1035 DO I=1,N
1036 YH(I)=YH(I)+DEL(I)
1037 END DO
1038 IF (AUTNMS) THEN
1039 CALL FCN(N,X+HJ*MM,YH,DYH)
1040 ELSE
1041 CALL FCN(N,X+HJ*(MM+1),YH,DYH)
1042 END IF
1043 NFCN=NFCN+1
1044 IF (MM.EQ.1.AND.JJ.LE.2) THEN
1045 C --- STABILITY CHECK
1046 DEL1=0.D0
1047 DO I=1,N
1048 DEL1=DEL1+(DEL(I)/SCAL(I))**2
1049 END DO
1050 DEL1=DSQRT(DEL1)
1051 IF (IMPLCT) THEN
1052 DO I=1,NM1
1053 WH(I)=DEL(I+M1)
1054 END DO
1055 IF (MLB.EQ.NM1) THEN
1056 DO I=1,NM1
1057 SUM=0.D0
1058 DO J=1,NM1
1059 SUM=SUM+FMAS(I,J)*WH(J)
1060 END DO
1061 DEL(I+M1)=SUM
1062 END DO
1063 ELSE
1064 DO I=1,NM1
1065 SUM=0.D0
1066 DO J=MAX(1,I-MLB),MIN(NM1,I+MUB)
1067 SUM=SUM+FMAS(I-J+MBDIAG,J)*WH(J)
1068 END DO
1069 DEL(I+M1)=SUM
1070 END DO
1071 END IF
1072 END IF
1073 IF (.NOT.AUTNMS) THEN
1074 CALL FCN(N,X+HJ,YH,WH)
1075 NFCN=NFCN+1
1076 DO I=1,N
1077 DEL(I)=WH(I)-DEL(I)*HJI
1078 END DO
1079 ELSE
1080 DO I=1,N
1081 DEL(I)=DYH(I)-DEL(I)*HJI
1082 END DO
1083 END IF
1084 CALL KppSolve (E,DEL)
1085 NSOL=NSOL+1
1086 DEL2=0.D0
1087 DO I=1,N
1088 DEL2=DEL2+(DEL(I)/SCAL(I))**2
1089 END DO
1090 DEL2=DSQRT(DEL2)
1091 THETA=DEL2/MAX(1.D0,DEL1)
1092 IF (THETA.GT.1.D0) GOTO 79
1093 END IF
1094 CALL KppSolve (E,DYH)
1095 NSOL=NSOL+1
1096 DO I=1,N
1097 DEL(I)=DYH(I)
1098 END DO
1099 IF (IOUT.EQ.2.AND.MM.GE.M-JJ) THEN
1100 IPT=IPT+1
1101 DO I=1,NRD
1102 FSAFE(IPT,I)=DEL(ICOMP(I))
1103 END DO
1104 END IF
1105 END DO
1106 END IF
1107 DO I=1,N
1108 T(JJ,I)=YH(I)+DEL(I)
1109 END DO
1110 C *** *** *** *** *** *** ***
1111 C --- POLYNOMIAL EXTRAPOLATION
1112 C *** *** *** *** *** *** ***
1113 IF (JJ.EQ.1) RETURN
1114 DO L=JJ,2,-1
1115 FAC=(DBLE(NJ(JJ))/DBLE(NJ(L-1)))-1.D0
1116 DO I=1,N
1117 T(L-1,I)=T(L,I)+(T(L,I)-T(L-1,I))/FAC
1118 END DO
1119 END DO
1120 ERR=0.D0
1121 DO I=1,N
1122 ERR=ERR+MIN(ABS((T(1,I)-T(2,I)))/SCAL(I),1.D15)**2
1123 END DO
1124 IF (ERR.GE.1.D30) GOTO 79
1125 ERR=DSQRT(ERR/DBLE(N))
1126 IF (JJ.GT.2.AND.ERR.GE.ERROLD) GOTO 79
1127 ERROLD=DMAX1(4*ERR,1.D0)
1128 C --- COMPUTE OPTIMAL STEP SIZES
1129 EXPO=1.D0/JJ
1130 FACMIN=FAC1**EXPO
1131 FAC=DMIN1(FAC2/FACMIN,DMAX1(FACMIN,(ERR/SAFE1)**EXPO/SAFE2))
1132 FAC=1.D0/FAC
1133 HH(JJ)=DMIN1(H*FAC,HMAXN)
1134 W(JJ)=A(JJ)/HH(JJ)
1135 RETURN
1136 79 ATOV=.TRUE.
1137 H=H*0.5D0
1138 REJECT=.TRUE.
1139 RETURN
1144 SUBROUTINE FUNC_CHEM(N, T, Y, P)
1145 INCLUDE 'KPP_ROOT_Parameters.h'
1146 INCLUDE 'KPP_ROOT_Global.h'
1147 INTEGER N
1148 KPP_REAL T, Told
1149 KPP_REAL Y(NVAR), P(NVAR)
1150 Told = TIME
1151 TIME = T
1152 CALL Update_SUN()
1153 CALL Update_RCONST()
1154 CALL Fun( Y, FIX, RCONST, P )
1155 TIME = Told
1156 RETURN
1160 SUBROUTINE JAC_CHEM(N, T, Y, J)
1161 INCLUDE 'KPP_ROOT_Parameters.h'
1162 INCLUDE 'KPP_ROOT_Global.h'
1163 INTEGER N
1164 KPP_REAL Told, T
1165 KPP_REAL Y(NVAR), J(LU_NONZERO)
1166 Told = TIME
1167 TIME = T
1168 CALL Update_SUN()
1169 CALL Update_RCONST()
1170 CALL Jac_SP( Y, FIX, RCONST, J )
1171 TIME = Told
1172 RETURN