Update version info for release v4.6.1 (#2122)
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / oldies / kpp_ros4.f
blob6e62b312585edff8f4c0e5ad3e20c1b285a5629e
1 SUBROUTINE INTEGRATE( TIN, TOUT )
3 IMPLICIT KPP_REAL (A-H,O-Z)
4 INCLUDE 'KPP_ROOT_params.h'
5 INCLUDE 'KPP_ROOT_global.h'
7 C TIN - Start Time
8 KPP_REAL TIN
9 C TOUT - End Time
10 KPP_REAL TOUT
11 INTEGER i
13 PARAMETER (LWORK=2*NVAR*NVAR+14*NVAR+20,LIWORK=NVAR+20)
14 KPP_REAL WORK(LWORK)
15 INTEGER IWORK(LIWORK)
16 EXTERNAL FUNC_CHEM,JAC_CHEM,SOLOUT
18 ITOL=1 ! --- VECTOR TOLERANCES
19 IJAC=1 ! --- COMPUTE THE JACOBIAN ANALYTICALLY
20 MLJAC=NVAR ! --- JACOBIAN IS A FULL MATRIX
21 MUJAC=NVAR ! --- JACOBIAN IS A FULL MATRIX
22 IMAS=0 ! --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
23 IOUT=0 ! --- OUTPUT ROUTINE IS NOT USED DURING INTEGRATION
24 IDFX=0 ! --- INTERNAL TIME DERIVATIVE
26 DO i=1,20
27 IWORK(i) = 0
28 WORK(i) = 0.D0
29 ENDDO
30 IWORK(2) = 6
32 CALL KPP_ROS4(NVAR,FUNC_CHEM,Autonomous,TIN,VAR,TOUT,
33 & STEPMIN,RTOL,ATOL,ITOL,
34 & JAC_CHEM,IJAC,MLJAC,MUJAC,FUNC_CHEM,IDFX,
35 & FUNC_CHEM,IMAS,MLJAC,MUJAC,
36 & SOLOUT,IOUT,
37 & WORK,LWORK,IWORK,LIWORK,IDID)
39 IF (IDID.LT.0) THEN
40 print *,'KPP_ROS4: Unsucessful step at T=',
41 & TIN,' (IDID=',IDID,')'
42 ENDIF
44 RETURN
45 END
48 SUBROUTINE KPP_ROS4(N,FCN,IFCN,X,Y,XEND,H,
49 & RelTol,AbsTol,ITOL,
50 & JAC ,IJAC,MLJAC,MUJAC,DFX,IDFX,
51 & MAS ,IMAS,MLMAS,MUMAS,
52 & SOLOUT,IOUT,
53 & WORK,LWORK,IWORK,LIWORK,IDID)
54 C ----------------------------------------------------------
55 C NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
56 C SYSTEM OF FIRST 0RDER ORDINARY DIFFERENTIAL EQUATIONS MY'=F(X,Y).
57 C THIS IS AN EMBEDDED ROSENBROCK METHOD OF ORDER (3)4
58 C (WITH STEP SIZE CONTROL).
59 C C.F. SECTION IV.7
61 C AUTHORS: E. HAIRER AND G. WANNER
62 C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
63 C CH-1211 GENEVE 24, SWITZERLAND
64 C E-MAIL: HAIRER@CGEUGE51.BITNET, WANNER@CGEUGE51.BITNET
66 C THIS CODE IS PART OF THE BOOK:
67 C E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
68 C EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
69 C SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS,
70 C SPRINGER-VERLAG (1990)
72 C VERSION OF NOVEMBER 17, 1992
74 C INPUT PARAMETERS
75 C ----------------
76 C N DIMENSION OF THE SYSTEM
78 C FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
79 C VALUE OF F(X,Y):
80 C SUBROUTINE FCN(N,X,Y,F)
81 C KPP_REAL X,Y(N),F(N)
82 C F(1)=... ETC.
84 C IFCN GIVES INFORMATION ON FCN:
85 C IFCN=0: F(X,Y) INDEPENDENT OF X (AUTONOMOUS)
86 C IFCN=1: F(X,Y) MAY DEPEND ON X (NON-AUTONOMOUS)
88 C X INITIAL X-VALUE
90 C Y(N) INITIAL VALUES FOR Y
92 C XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)
94 C H INITIAL STEP SIZE GUESS;
95 C FOR STIFF EQUATIONS WITH INITIAL TRANSIENT,
96 C H=1.D0/(NORM OF F'), USUALLY 1.D-2 OR 1.D-3, IS GOOD.
97 C THIS CHOICE IS NOT VERY IMPORTANT, THE CODE QUICKLY
98 C ADAPTS ITS STEP SIZE. STUDY THE CHOSEN VALUES FOR A FEW
99 C STEPS IN SUBROUTINE "SOLOUT", WHEN YOU ARE NOT SURE.
100 C (IF H=0.D0, THE CODE PUTS H=1.D-6).
102 C RelTol,AbsTol RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY
103 C CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.
105 C ITOL SWITCH FOR RelTol AND AbsTol:
106 C ITOL=0: BOTH RelTol AND AbsTol ARE SCALARS.
107 C THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
108 C Y(I) BELOW RelTol*ABS(Y(I))+AbsTol
109 C ITOL=1: BOTH RelTol AND AbsTol ARE VECTORS.
110 C THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW
111 C RelTol(I)*ABS(Y(I))+AbsTol(I).
113 C JAC NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
114 C THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO Y
115 C (THIS ROUTINE IS ONLY CALLED IF IJAC=1; SUPPLY
116 C A DUMMY SUBROUTINE IN THE CASE IJAC=0).
117 C FOR IJAC=1, THIS SUBROUTINE MUST HAVE THE FORM
118 C SUBROUTINE JAC(N,X,Y,DFY,LDFY)
119 C KPP_REAL X,Y(N),DFY(LDFY,N)
120 C DFY(1,1)= ...
121 C LDFY, THE COLOMN-LENGTH OF THE ARRAY, IS
122 C FURNISHED BY THE CALLING PROGRAM.
123 C IF (MLJAC.EQ.N) THE JACOBIAN IS SUPPOSED TO
124 C BE FULL AND THE PARTIAL DERIVATIVES ARE
125 C STORED IN DFY AS
126 C DFY(I,J) = PARTIAL F(I) / PARTIAL Y(J)
127 C ELSE, THE JACOBIAN IS TAKEN AS BANDED AND
128 C THE PARTIAL DERIVATIVES ARE STORED
129 C DIAGONAL-WISE AS
130 C DFY(I-J+MUJAC+1,J) = PARTIAL F(I) / PARTIAL Y(J).
132 C IJAC SWITCH FOR THE COMPUTATION OF THE JACOBIAN:
133 C IJAC=0: JACOBIAN IS COMPUTED INTERNALLY BY FINITE
134 C DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED.
135 C IJAC=1: JACOBIAN IS SUPPLIED BY SUBROUTINE JAC.
137 C MLJAC SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
138 C MLJAC=N: JACOBIAN IS A FULL MATRIX. THE LINEAR
139 C ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
140 C 0<=MLJAC<N: MLJAC IS THE LOWER BANDWITH OF JACOBIAN
141 C MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
142 C THE MAIN DIAGONAL).
144 C MUJAC UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON-
145 C ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
146 C NEED NOT BE DEFINED IF MLJAC=N.
148 C DFX NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
149 C THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO X
150 C (THIS ROUTINE IS ONLY CALLED IF IDFX=1 AND IFCN=1;
151 C SUPPLY A DUMMY SUBROUTINE IN THE CASE IDFX=0 OR IFCN=0).
152 C OTHERWISE, THIS SUBROUTINE MUST HAVE THE FORM
153 C SUBROUTINE DFX(N,X,Y,FX)
154 C KPP_REAL X,Y(N),FX(N)
155 C FX(1)= ...
157 C IDFX SWITCH FOR THE COMPUTATION OF THE DF/DX:
158 C IDFX=0: DF/DX IS COMPUTED INTERNALLY BY FINITE
159 C DIFFERENCES, SUBROUTINE "DFX" IS NEVER CALLED.
160 C IDFX=1: DF/DX IS SUPPLIED BY SUBROUTINE DFX.
162 C ---- MAS,IMAS,MLMAS, AND MUMAS HAVE ANALOG MEANINGS -----
163 C ---- FOR THE "MASS MATRIX" (THE MATRIX "M" OF SECTION IV.8): -
165 C MAS NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE MASS-
166 C MATRIX M.
167 C IF IMAS=0, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
168 C MATRIX AND NEEDS NOT TO BE DEFINED;
169 C SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
170 C IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
171 C SUBROUTINE MAS(N,AM,LMAS)
172 C KPP_REAL AM(LMAS,N)
173 C AM(1,1)= ....
174 C IF (MLMAS.EQ.N) THE MASS-MATRIX IS STORED
175 C AS FULL MATRIX LIKE
176 C AM(I,J) = M(I,J)
177 C ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
178 C DIAGONAL-WISE AS
179 C AM(I-J+MUMAS+1,J) = M(I,J).
181 C IMAS GIVES INFORMATION ON THE MASS-MATRIX:
182 C IMAS=0: M IS SUPPOSED TO BE THE IDENTITY
183 C MATRIX, MAS IS NEVER CALLED.
184 C IMAS=1: MASS-MATRIX IS SUPPLIED.
186 C MLMAS SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
187 C MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
188 C ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
189 C 0<=MLMAS<N: MLMAS IS THE LOWER BANDWITH OF THE
190 C MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
191 C THE MAIN DIAGONAL).
192 C MLMAS IS SUPPOSED TO BE .LE. MLJAC.
194 C MUMAS UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-
195 C ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
196 C NEED NOT BE DEFINED IF MLMAS=N.
197 C MUMAS IS SUPPOSED TO BE .LE. MUJAC.
199 C SOLOUT NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
200 C NUMERICAL SOLUTION DURING INTEGRATION.
201 C IF IOUT=1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
202 C SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
203 C IT MUST HAVE THE FORM
204 C SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN)
205 C KPP_REAL X,Y(N)
206 C ....
207 C SOLOUT FURNISHES THE SOLUTION "Y" AT THE NR-TH
208 C GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
209 C THE FIRST GRID-POINT).
210 C "IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
211 C IS SET <0, ROS4 RETURNS TO THE CALLING PROGRAM.
213 C IOUT GIVES INFORMATION ON THE SUBROUTINE SOLOUT:
214 C IOUT=0: SUBROUTINE IS NEVER CALLED
215 C IOUT=1: SUBROUTINE IS USED FOR OUTPUT
217 C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
218 C SERVES AS WORKING SPACE FOR ALL VECTORS AND MATRICES.
219 C "LWORK" MUST BE AT LEAST
220 C N*(LJAC+LMAS+LE1+8)+5
221 C WHERE
222 C LJAC=N IF MLJAC=N (FULL JACOBIAN)
223 C LJAC=MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.)
224 C AND
225 C LMAS=0 IF IMAS=0
226 C LMAS=N IF IMAS=1 AND MLMAS=N (FULL)
227 C LMAS=MLMAS+MUMAS+1 IF MLMAS<N (BANDED MASS-M.)
228 C AND
229 C LE1=N IF MLJAC=N (FULL JACOBIAN)
230 C LE1=2*MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.).
232 C IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
233 C MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
234 C STORAGE REQUIREMENT IS
235 C LWORK = 2*N*N+8*N+5.
237 C LWORK DECLARED LENGHT OF ARRAY "WORK".
239 C IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK".
240 C "LIWORK" MUST BE AT LEAST N+2.
242 C LIWORK DECLARED LENGHT OF ARRAY "IWORK".
244 C ----------------------------------------------------------------------
246 C SOPHISTICATED SETTING OF PARAMETERS
247 C -----------------------------------
248 C SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK
249 C WELL. THEY MAY BE DEFINED BY SETTING WORK(1),..,WORK(5)
250 C AS WELL AS IWORK(1),IWORK(2) DIFFERENT FROM ZERO.
251 C FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
253 C IWORK(1) THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS.
254 C THE DEFAULT VALUE (FOR IWORK(1)=0) IS 100000.
256 C IWORK(2) SWITCH FOR THE CHOICE OF THE COEFFICIENTS
257 C IF IWORK(2).EQ.1 METHOD OF SHAMPINE
258 C IF IWORK(2).EQ.2 METHOD GRK4T OF KAPS-RENTROP
259 C IF IWORK(2).EQ.3 METHOD GRK4A OF KAPS-RENTROP
260 C IF IWORK(2).EQ.4 METHOD OF VAN VELDHUIZEN (GAMMA=1/2)
261 C IF IWORK(2).EQ.5 METHOD OF VAN VELDHUIZEN ("D-STABLE")
262 C IF IWORK(2).EQ.6 AN L-STABLE METHOD
263 C THE DEFAULT VALUE (FOR IWORK(2)=0) IS IWORK(2)=2.
265 C WORK(1) UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
267 C WORK(2) MAXIMAL STEP SIZE, DEFAULT XEND-X.
269 C WORK(3), WORK(4) PARAMETERS FOR STEP SIZE SELECTION
270 C THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
271 C WORK(3) <= HNEW/HOLD <= WORK(4)
272 C DEFAULT VALUES: WORK(3)=0.2D0, WORK(4)=6.D0
274 C WORK(5) AVOID THE HUMP: AFTER TWO CONSECUTIVE STEP REJECTIONS
275 C THE STEP SIZE IS MULTIPLIED BY WORK(5)
276 C DEFAULT VALUES: WORK(5)=0.1D0
278 C-----------------------------------------------------------------------
280 C OUTPUT PARAMETERS
281 C -----------------
282 C X X-VALUE WHERE THE SOLUTION IS COMPUTED
283 C (AFTER SUCCESSFUL RETURN X=XEND)
285 C Y(N) SOLUTION AT X
287 C H PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP
289 C IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
290 C IDID=1 COMPUTATION SUCCESSFUL,
291 C IDID=-1 COMPUTATION UNSUCCESSFUL.
293 C ---------------------------------------------------------
294 C *** *** *** *** *** *** *** *** *** *** *** *** ***
295 C DECLARATIONS
296 C *** *** *** *** *** *** *** *** *** *** *** *** ***
297 IMPLICIT KPP_REAL (A-H,O-Z)
298 DIMENSION Y(N),AbsTol(1),RelTol(1),WORK(LWORK),IWORK(LIWORK)
299 LOGICAL AUTNMS,IMPLCT,JBAND,ARRET
300 EXTERNAL FCN,JAC,DFX,MAS,SOLOUT
301 COMMON/STAT/NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL
302 C -----------------------------------------------------
303 C --- COMMON STAT CAN BE USED FOR STATISTICS
304 C --- NFCN NUMBER OF FUNC_CHEMCTION EVALUATIONS (THOSE FOR NUMERICAL
305 C EVALUATION OF THE JACOBIAN ARE NOT COUNTED)
306 C --- NJAC NUMBER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY
307 C OR NUMERICALLY)
308 C --- NSTEP NUMBER OF COMPUTED STEPS
309 C --- NACCPT NUMBER OF ACCEPTED STEPS
310 C --- NREJCT NUMBER OF REJECTED STEPS (AFTER AT LEAST ONE STEP
311 C HAS BEEN ACCEPTED)
312 C --- NDEC NUMBER OF LU-DECOMPOSITIONS (N-DIMENSIONAL MATRIX)
313 C --- NSOL NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS
314 C -----------------------------------------------------
315 C *** *** *** *** *** *** ***
316 C SETTING THE PARAMETERS
317 C *** *** *** *** *** *** ***
318 NFCN=0
319 NJAC=0
320 NSTEP=0
321 NACCPT=0
322 NREJCT=0
323 NDEC=0
324 NSOL=0
325 ARRET=.FALSE.
326 C -------- NMAX , THE MAXIMAL NUMBER OF STEPS -----
327 IF(IWORK(1).EQ.0)THEN
328 NMAX=100000
329 ELSE
330 NMAX=IWORK(1)
331 IF(NMAX.LE.0)THEN
332 WRITE(6,*)' WRONG INPUT IWORK(1)=',IWORK(1)
333 ARRET=.TRUE.
334 END IF
335 END IF
336 C -------- METH COEFFICIENTS OF THE METHOD
337 IF(IWORK(2).EQ.0)THEN
338 METH=2
339 ELSE
340 METH=IWORK(2)
341 IF(METH.LE.0.OR.METH.GE.7)THEN
342 WRITE(6,*)' CURIOUS INPUT IWORK(2)=',IWORK(2)
343 ARRET=.TRUE.
344 END IF
345 END IF
346 C -------- UROUND SMALLEST NUMBER SATISFYING 1.D0+UROUND>1.D0
347 IF(WORK(1).EQ.0.D0)THEN
348 UROUND=1.D-16
349 ELSE
350 UROUND=WORK(1)
351 IF(UROUND.LE.1.D-14.OR.UROUND.GE.1.D0)THEN
352 WRITE(6,*)' COEFFICIENTS HAVE 16 DIGITS, UROUND=',WORK(1)
353 ARRET=.TRUE.
354 END IF
355 END IF
356 C -------- MAXIMAL STEP SIZE
357 IF(WORK(2).EQ.0.D0)THEN
358 HMAX=XEND-X
359 ELSE
360 HMAX=WORK(2)
361 END IF
362 C ------- FAC1,FAC2 PARAMETERS FOR STEP SIZE SELECTION
363 IF(WORK(3).EQ.0.D0)THEN
364 FAC1=5.D0
365 ELSE
366 FAC1=1.D0/WORK(3)
367 END IF
368 IF(WORK(4).EQ.0.D0)THEN
369 FAC2=1.D0/6.0D0
370 ELSE
371 FAC2=1.D0/WORK(4)
372 END IF
373 C ------- FACREJ FOR THE HUMP
374 IF(WORK(5).EQ.0.D0)THEN
375 FACREJ=0.1D0
376 ELSE
377 FACREJ=WORK(5)
378 END IF
379 C --------- CHECK IF TOLERANCES ARE O.K.
380 IF (ITOL.EQ.0) THEN
381 IF (AbsTol(1).LE.0.D0.OR.RelTol(1).LE.10.D0*UROUND) THEN
382 WRITE (6,*) ' TOLERANCES ARE TOO SMALL'
383 ARRET=.TRUE.
384 END IF
385 ELSE
386 DO 15 I=1,N
387 IF (AbsTol(I).LE.0.D0.OR.RelTol(I).LE.10.D0*UROUND) THEN
388 WRITE (6,*) ' TOLERANCES(',I,') ARE TOO SMALL'
389 ARRET=.TRUE.
390 END IF
391 15 CONTINUE
392 END IF
393 C *** *** *** *** *** *** *** *** *** *** *** *** ***
394 C COMPUTATION OF ARRAY ENTRIES
395 C *** *** *** *** *** *** *** *** *** *** *** *** ***
396 C ---- AUTONOMOUS, IMPLICIT, BANDED OR NOT ?
397 AUTNMS=IFCN.EQ.0
398 IMPLCT=IMAS.NE.0
399 JBAND=MLJAC.NE.N
400 ARRET=.FALSE.
401 C -------- COMPUTATION OF THE ROW-DIMENSIONS OF THE 2-ARRAYS ---
402 C -- JACOBIAN
403 IF(JBAND)THEN
404 LDJAC=MLJAC+MUJAC+1
405 ELSE
406 LDJAC=N
407 END IF
408 C -- MATRIX E FOR LINEAR ALGEBRA
409 IF(JBAND)THEN
410 LDE=2*MLJAC+MUJAC+1
411 ELSE
412 LDE=N
413 END IF
414 C -- MASS MATRIX
415 IF (IMPLCT) THEN
416 IF (MLMAS.NE.N) THEN
417 LDMAS=MLMAS+MUMAS+1
418 ELSE
419 LDMAS=N
420 END IF
421 C ------ BANDWITH OF "MAS" NOT LARGER THAN BANDWITH OF "JAC"
422 IF (MLMAS.GT.MLJAC.OR.MUMAS.GT.MUJAC) THEN
423 WRITE (6,*) 'BANDWITH OF "MAS" NOT LARGER THAN BANDWITH OF
424 & "JAC"'
425 ARRET=.TRUE.
426 END IF
427 ELSE
428 LDMAS=0
429 END IF
430 LDMAS2=MAX(1,LDMAS)
431 C ------- PREPARE THE ENTRY-POINTS FOR THE ARRAYS IN WORK -----
432 IEYNEW=6
433 IEDY1=IEYNEW+N
434 IEDY=IEDY1+N
435 IEAK1=IEDY+N
436 IEAK2=IEAK1+N
437 IEAK3=IEAK2+N
438 IEAK4=IEAK3+N
439 IEFX =IEAK4+N
440 IEJAC=IEFX +N
441 IEMAS=IEJAC+N*LDJAC
442 IEE =IEMAS+N*LDMAS
443 C ------ TOTAL STORAGE REQUIREMENT -----------
444 ISTORE=IEE+N*LDE-1
445 IF(ISTORE.GT.LWORK)THEN
446 WRITE(6,*)' INSUFFICIENT STORAGE FOR WORK, MIN. LWORK=',ISTORE
447 ARRET=.TRUE.
448 END IF
449 C ------- ENTRY POINTS FOR INTEGER WORKSPACE -----
450 IEIP=3
451 C --------- TOTAL REQUIREMENT ---------------
452 ISTORE=IEIP+N-1
453 IF(ISTORE.GT.LIWORK)THEN
454 WRITE(6,*)' INSUFF. STORAGE FOR IWORK, MIN. LIWORK=',ISTORE
455 ARRET=.TRUE.
456 END IF
457 C ------ WHEN A FAIL HAS OCCURED, WE RETURN WITH IDID=-1
458 IF (ARRET) THEN
459 IDID=-1
460 RETURN
461 END IF
462 C -------- CALL TO CORE INTEGRATOR ------------
463 CALL RO4COR(N,FCN,X,Y,XEND,HMAX,H,RelTol,AbsTol,ITOL,JAC,IJAC,
464 & MLJAC,MUJAC,DFX,IDFX,MAS,MLMAS,MUMAS,SOLOUT,IOUT,IDID,
465 & NMAX,UROUND,METH,FAC1,FAC2,FACREJ,AUTNMS,IMPLCT,JBAND,
466 & LDJAC,LDE,LDMAS2,WORK(IEYNEW),WORK(IEDY1),WORK(IEDY),
467 & WORK(IEAK1),WORK(IEAK2),WORK(IEAK3),WORK(IEAK4),
468 & WORK(IEFX),WORK(IEJAC),WORK(IEE),WORK(IEMAS),IWORK(IEIP))
469 C ----------- RETURN -----------
470 RETURN
475 C ----- ... AND HERE IS THE CORE INTEGRATOR ----------
477 SUBROUTINE RO4COR(N,FCN,X,Y,XEND,HMAX,H,RelTol,AbsTol,ITOL,JAC,
478 & IJAC,MLJAC,MUJAC,DFX,IDFX,MAS,MLMAS,MUMAS,SOLOUT,IOUT,IDID,
479 & NMAX,UROUND,METH,FAC1,FAC2,FACREJ,AUTNMS,IMPLCT,BANDED,
480 & LFJAC,LE,LDMAS,YNEW,DY1,DY,AK1,AK2,AK3,AK4,FX,FJAC,E,FMAS,IP)
481 C ----------------------------------------------------------
482 C CORE INTEGRATOR FOR ROS4
483 C PARAMETERS SAME AS IN ROS4 WITH WORKSPACE ADDED
484 C ----------------------------------------------------------
485 C DECLARATIONS
486 C ----------------------------------------------------------
487 IMPLICIT KPP_REAL (A-H,O-Z)
488 INCLUDE 'KPP_ROOT_params.h'
489 INCLUDE 'KPP_ROOT_sparse.h'
490 KPP_REAL Y(N),YNEW(N),DY1(N),DY(N),AK1(N),
491 * AK2(N),AK3(N),AK4(N),FX(N),
492 * FJAC(LU_NONZERO),E(LU_NONZERO),
493 * FMAS(LDMAS,N),AbsTol(1),RelTol(1)
494 INTEGER IP(N)
495 LOGICAL REJECT,RJECT2,AUTNMS,IMPLCT,BANDED
496 COMMON/STAT/NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL
497 EXTERNAL FCN,JAC,MAS,SOLOUT,DFX
500 C ------- COMPUTE MASS MATRIX FOR IMPLICIT CASE ----------
501 IF (IMPLCT) CALL MAS(N,FMAS,LDMAS)
502 C ---- PREPARE BANDWIDTHS -----
503 IF (BANDED) THEN
504 MLE=MLJAC
505 MUE=MUJAC
506 MBJAC=MLJAC+MUJAC+1
507 MBB=MLMAS+MUMAS+1
508 MDIAG=MLE+MUE+1
509 MBDIAG=MUMAS+1
510 MDIFF=MLE+MUE-MUMAS
511 END IF
512 C *** *** *** *** *** *** ***
513 C INITIALISATIONS
514 C *** *** *** *** *** *** ***
515 IF (METH.EQ.1) CALL SHAMP (A21,A31,A32,C21,C31,C32,C41,C42,C43,
516 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
517 IF (METH.EQ.2) CALL GRK4T (A21,A31,A32,C21,C31,C32,C41,C42,C43,
518 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
519 IF (METH.EQ.3) CALL GRK4A (A21,A31,A32,C21,C31,C32,C41,C42,C43,
520 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
521 IF (METH.EQ.4) CALL VELDS (A21,A31,A32,C21,C31,C32,C41,C42,C43,
522 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
523 IF (METH.EQ.5) CALL VELDD (A21,A31,A32,C21,C31,C32,C41,C42,C43,
524 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
525 IF (METH.EQ.6) CALL LSTAB (A21,A31,A32,C21,C31,C32,C41,C42,C43,
526 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
527 C --- INITIAL PREPARATIONS
528 POSNEG=SIGN(1.D0,XEND-X)
529 HMAXN=MIN(ABS(HMAX),ABS(XEND-X))
530 IF (ABS(H).LE.10.D0*UROUND) H=1.0D-6
531 H=MIN(ABS(H),HMAXN)
532 H=SIGN(H,POSNEG)
533 REJECT=.FALSE.
534 NSING=0
535 IRTRN=1
536 XXOLD=X
537 IF (IRTRN.LT.0) GOTO 79
538 C --- BASIC INTEGRATION STEP
539 1 IF (NSTEP.GT.NMAX.OR.X+.1D0*H.EQ.X.OR.ABS(H).LE.UROUND) GOTO 79
540 IF ((X-XEND)*POSNEG+UROUND.GT.0.D0) THEN
541 H=HOPT
542 IDID=1
543 RETURN
544 END IF
545 HOPT=H
546 IF ((X+H-XEND)*POSNEG.GT.0.D0) H=XEND-X
547 CALL FCN(N,X,Y,DY1)
548 NFCN=NFCN+1
550 C *** *** *** *** *** *** ***
551 C COMPUTATION OF THE JACOBIAN
552 C *** *** *** *** *** *** ***
553 NJAC=NJAC+1
554 CALL JAC(N,X,Y,FJAC)
556 IF (.NOT.AUTNMS) THEN
557 IF (IDFX.EQ.0) THEN
558 C --- COMPUTE NUMERICALLY THE DERIVATIVE WITH RESPECT TO X
559 DELT=DSQRT(UROUND*MAX(1.D-5,ABS(X)))
560 XDELT=X+DELT
561 CALL FCN(N,XDELT,Y,AK1)
562 DO 19 J=1,N
563 19 FX(J)=(AK1(J)-DY1(J))/DELT
564 ELSE
565 C --- COMPUTE ANALYTICALLY THE DERIVATIVE WITH RESPECT TO X
566 CALL DFX(N,X,Y,FX)
567 END IF
568 END IF
569 2 CONTINUE
571 C *** *** *** *** *** *** ***
572 C COMPUTE THE STAGES
573 C *** *** *** *** *** *** ***
574 NDEC=NDEC+1
575 HC21=C21/H
576 HC31=C31/H
577 HC32=C32/H
578 HC41=C41/H
579 HC42=C42/H
580 HC43=C43/H
581 FAC=1.D0/(H*GAMMA)
582 C --- THE MATRIX E (B=IDENTITY, JACOBIAN A FULL MATRIX)
583 DO 800 I=1,LU_NONZERO
584 800 E(I)=-FJAC(I)
585 DO 801 J=1,N
586 801 E(LU_DIAG(J))=E(LU_DIAG(J))+FAC
587 CALL KppDecomp (E,IER)
588 IF (IER.NE.0) GOTO 80
589 IF (AUTNMS) THEN
590 C --- THIS PART COMPUTES THE STAGES IN THE CASE WHERE
591 C --- 1) THE DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
592 C --- 2) THE JACOBIAN OF THE PROBLEM IS A FULL MATRIX
593 C --- 3) THE DIFFERENTIAL EQUATION IS AUTONOMOUS
594 DO 803 I=1,N
595 803 AK1(I)=DY1(I)
596 CALL KppSolve(E,AK1)
597 DO 810 I=1,N
598 810 YNEW(I)=Y(I)+A21*AK1(I)
599 CALL FCN(N,X,YNEW,DY)
600 DO 811 I=1,N
601 811 AK2(I)=DY(I)+HC21*AK1(I)
602 CALL KppSolve(E,AK2)
603 DO 820 I=1,N
604 820 YNEW(I)=Y(I)+A31*AK1(I)+A32*AK2(I)
605 CALL FCN(N,X,YNEW,DY)
606 DO 821 I=1,N
607 821 AK3(I)=DY(I)+HC31*AK1(I)+HC32*AK2(I)
608 CALL KppSolve(E,AK3)
609 DO 831 I=1,N
610 831 AK4(I)=DY(I)+HC41*AK1(I)+HC42*AK2(I)+HC43*AK3(I)
611 CALL KppSolve(E,AK4)
612 ELSE
613 C --- THIS PART COMPUTES THE STAGES IN THE CASE WHERE
614 C --- 1) THE DIFFERENTIAL EQUATION IS IN EXPLICIT FORM
615 C --- 2) THE JACOBIAN OF THE PROBLEM IS A FULL MATRIX
616 C --- 3) THE DIFFERENTIAL EQUATION IS NON-AUTONOMOUS
617 HD1=H*D1
618 HD2=H*D2
619 HD3=H*D3
620 HD4=H*D4
621 DO 903 I=1,N
622 903 AK1(I)=DY1(I)+HD1*FX(I)
623 CALL KppSolve(E,AK1)
624 DO 910 I=1,N
625 910 YNEW(I)=Y(I)+A21*AK1(I)
626 CALL FCN(N,X+C2*H,YNEW,DY)
627 DO 911 I=1,N
628 911 AK2(I)=DY(I)+HD2*FX(I)+HC21*AK1(I)
629 CALL KppSolve(E,AK2)
630 DO 920 I=1,N
631 920 YNEW(I)=Y(I)+A31*AK1(I)+A32*AK2(I)
632 CALL FCN(N,X+C3*H,YNEW,DY)
633 DO 921 I=1,N
634 921 AK3(I)=DY(I)+HD3*FX(I)+HC31*AK1(I)+HC32*AK2(I)
635 CALL KppSolve(E,AK3)
636 DO 931 I=1,N
637 931 AK4(I)=DY(I)+HD4*FX(I)+HC41*AK1(I)+HC42*AK2(I)
638 & +HC43*AK3(I)
639 CALL KppSolve(E,AK4)
640 END IF
641 NSOL=NSOL+4
642 NFCN=NFCN+2
643 C *** *** *** *** *** *** ***
644 C ERROR ESTIMATION
645 C *** *** *** *** *** *** ***
646 NSTEP=NSTEP+1
647 C ------------ NEW SOLUTION ---------------
648 DO 240 I=1,N
649 240 YNEW(I)=Y(I)+B1*AK1(I)+B2*AK2(I)+B3*AK3(I)+B4*AK4(I)
650 C ------------ COMPUTE ERROR ESTIMATION ----------------
651 ERR=0.D0
652 DO 300 I=1,N
653 S=E1*AK1(I)+E2*AK2(I)+E3*AK3(I)+E4*AK4(I)
654 IF (ITOL.EQ.0) THEN
655 SK=AbsTol(1)+RelTol(1)*DMAX1(DABS(Y(I)),DABS(YNEW(I)))
656 ELSE
657 SK=AbsTol(I)+RelTol(I)*DMAX1(DABS(Y(I)),DABS(YNEW(I)))
658 END IF
659 300 ERR=ERR+(S/SK)**2
660 ERR=DSQRT(ERR/N)
661 C --- COMPUTATION OF HNEW
662 C --- WE REQUIRE .2<=HNEW/H<=6.
663 FAC=DMAX1(FAC2,DMIN1(FAC1,(ERR)**.25D0/.9D0))
664 HNEW=H/FAC
665 C *** *** *** *** *** *** ***
666 C IS THE ERROR SMALL ENOUGH ?
667 C *** *** *** *** *** *** ***
668 IF (ERR.LE.1.D0) THEN
669 C --- STEP IS ACCEPTED
670 NACCPT=NACCPT+1
671 DO 44 I=1,N
672 44 Y(I)=YNEW(I)
673 XXOLD=X
674 X=X+H
675 IF (IRTRN.LT.0) GOTO 79
676 IF (DABS(HNEW).GT.HMAXN) HNEW=POSNEG*HMAXN
677 IF (REJECT) HNEW=POSNEG*DMIN1(DABS(HNEW),DABS(H))
678 REJECT=.FALSE.
679 RJECT2=.FALSE.
680 H=HNEW
681 GOTO 1
682 ELSE
683 C --- STEP IS REJECTED
684 IF (RJECT2) HNEW=H*FACREJ
685 IF (REJECT) RJECT2=.TRUE.
686 REJECT=.TRUE.
687 H=HNEW
688 IF (NACCPT.GE.1) NREJCT=NREJCT+1
689 GOTO 2
690 END IF
691 C --- EXIT
692 80 WRITE (6,*) ' MATRIX E IS SINGULAR, INFO = ',INFO
693 NSING=NSING+1
694 IF (NSING.GE.5) GOTO 79
695 H=H*0.5D0
696 GOTO 2
697 79 WRITE(6,979)X,H
698 979 FORMAT(' EXIT OF ROS4 AT X=',D16.7,' H=',D16.7)
699 IDID=-1
700 RETURN
703 SUBROUTINE SHAMP (A21,A31,A32,C21,C31,C32,C41,C42,C43,
704 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
705 IMPLICIT KPP_REAL (A-H,O-Z)
706 A21=2.D0
707 A31=48.D0/25.D0
708 A32=6.D0/25.D0
709 C21=-8.D0
710 C31=372.D0/25.D0
711 C32=12.D0/5.D0
712 C41=-112.D0/125.D0
713 C42=-54.D0/125.D0
714 C43=-2.D0/5.D0
715 B1=19.D0/9.D0
716 B2=1.D0/2.D0
717 B3=25.D0/108.D0
718 B4=125.D0/108.D0
719 E1=17.D0/54.D0
720 E2=7.D0/36.D0
721 E3=0.D0
722 E4=125.D0/108.D0
723 GAMMA=.5D0
724 C2= 0.1000000000000000D+01
725 C3= 0.6000000000000000D+00
726 D1= 0.5000000000000000D+00
727 D2=-0.1500000000000000D+01
728 D3= 0.2420000000000000D+01
729 D4= 0.1160000000000000D+00
730 RETURN
733 SUBROUTINE GRK4A (A21,A31,A32,C21,C31,C32,C41,C42,C43,
734 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
735 IMPLICIT KPP_REAL (A-H,O-Z)
736 A21= 0.1108860759493671D+01
737 A31= 0.2377085261983360D+01
738 A32= 0.1850114988899692D+00
739 C21=-0.4920188402397641D+01
740 C31= 0.1055588686048583D+01
741 C32= 0.3351817267668938D+01
742 C41= 0.3846869007049313D+01
743 C42= 0.3427109241268180D+01
744 C43=-0.2162408848753263D+01
745 B1= 0.1845683240405840D+01
746 B2= 0.1369796894360503D+00
747 B3= 0.7129097783291559D+00
748 B4= 0.6329113924050632D+00
749 E1= 0.4831870177201765D-01
750 E2=-0.6471108651049505D+00
751 E3= 0.2186876660500240D+00
752 E4=-0.6329113924050632D+00
753 GAMMA= 0.3950000000000000D+00
754 C2= 0.4380000000000000D+00
755 C3= 0.8700000000000000D+00
756 D1= 0.3950000000000000D+00
757 D2=-0.3726723954840920D+00
758 D3= 0.6629196544571492D-01
759 D4= 0.4340946962568634D+00
760 RETURN
763 SUBROUTINE GRK4T (A21,A31,A32,C21,C31,C32,C41,C42,C43,
764 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
765 IMPLICIT KPP_REAL (A-H,O-Z)
766 A21= 0.2000000000000000D+01
767 A31= 0.4524708207373116D+01
768 A32= 0.4163528788597648D+01
769 C21=-0.5071675338776316D+01
770 C31= 0.6020152728650786D+01
771 C32= 0.1597506846727117D+00
772 C41=-0.1856343618686113D+01
773 C42=-0.8505380858179826D+01
774 C43=-0.2084075136023187D+01
775 B1= 0.3957503746640777D+01
776 B2= 0.4624892388363313D+01
777 B3= 0.6174772638750108D+00
778 B4= 0.1282612945269037D+01
779 E1= 0.2302155402932996D+01
780 E2= 0.3073634485392623D+01
781 E3=-0.8732808018045032D+00
782 E4=-0.1282612945269037D+01
783 GAMMA= 0.2310000000000000D+00
784 C2= 0.4620000000000000D+00
785 C3= 0.8802083333333334D+00
786 D1= 0.2310000000000000D+00
787 D2=-0.3962966775244303D-01
788 D3= 0.5507789395789127D+00
789 D4=-0.5535098457052764D-01
790 RETURN
793 SUBROUTINE VELDS (A21,A31,A32,C21,C31,C32,C41,C42,C43,
794 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
795 C --- METHOD GIVEN BY VAN VELDHUIZEN
796 IMPLICIT KPP_REAL (A-H,O-Z)
797 A21= 0.2000000000000000D+01
798 A31= 0.1750000000000000D+01
799 A32= 0.2500000000000000D+00
800 C21=-0.8000000000000000D+01
801 C31=-0.8000000000000000D+01
802 C32=-0.1000000000000000D+01
803 C41= 0.5000000000000000D+00
804 C42=-0.5000000000000000D+00
805 C43= 0.2000000000000000D+01
806 B1= 0.1333333333333333D+01
807 B2= 0.6666666666666667D+00
808 B3=-0.1333333333333333D+01
809 B4= 0.1333333333333333D+01
810 E1=-0.3333333333333333D+00
811 E2=-0.3333333333333333D+00
812 E3=-0.0000000000000000D+00
813 E4=-0.1333333333333333D+01
814 GAMMA= 0.5000000000000000D+00
815 C2= 0.1000000000000000D+01
816 C3= 0.5000000000000000D+00
817 D1= 0.5000000000000000D+00
818 D2=-0.1500000000000000D+01
819 D3=-0.7500000000000000D+00
820 D4= 0.2500000000000000D+00
821 RETURN
824 SUBROUTINE VELDD (A21,A31,A32,C21,C31,C32,C41,C42,C43,
825 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
826 C --- METHOD GIVEN BY VAN VELDHUIZEN
827 IMPLICIT KPP_REAL (A-H,O-Z)
828 A21= 0.2000000000000000D+01
829 A31= 0.4812234362695436D+01
830 A32= 0.4578146956747842D+01
831 C21=-0.5333333333333331D+01
832 C31= 0.6100529678848254D+01
833 C32= 0.1804736797378427D+01
834 C41=-0.2540515456634749D+01
835 C42=-0.9443746328915205D+01
836 C43=-0.1988471753215993D+01
837 B1= 0.4289339254654537D+01
838 B2= 0.5036098482851414D+01
839 B3= 0.6085736420673917D+00
840 B4= 0.1355958941201148D+01
841 E1= 0.2175672787531755D+01
842 E2= 0.2950911222575741D+01
843 E3=-0.7859744544887430D+00
844 E4=-0.1355958941201148D+01
845 GAMMA= 0.2257081148225682D+00
846 C2= 0.4514162296451364D+00
847 C3= 0.8755928946018455D+00
848 D1= 0.2257081148225682D+00
849 D2=-0.4599403502680582D-01
850 D3= 0.5177590504944076D+00
851 D4=-0.3805623938054428D-01
852 RETURN
853 END
855 SUBROUTINE LSTAB (A21,A31,A32,C21,C31,C32,C41,C42,C43,
856 & B1,B2,B3,B4,E1,E2,E3,E4,GAMMA,C2,C3,D1,D2,D3,D4)
857 C --- AN L-STABLE METHOD
858 IMPLICIT KPP_REAL (A-H,O-Z)
859 A21= 0.2000000000000000D+01
860 A31= 0.1867943637803922D+01
861 A32= 0.2344449711399156D+00
862 C21=-0.7137615036412310D+01
863 C31= 0.2580708087951457D+01
864 C32= 0.6515950076447975D+00
865 C41=-0.2137148994382534D+01
866 C42=-0.3214669691237626D+00
867 C43=-0.6949742501781779D+00
868 C B_i = M_i
869 B1= 0.2255570073418735D+01
870 B2= 0.2870493262186792D+00
871 B3= 0.4353179431840180D+00
872 B4= 0.1093502252409163D+01
873 C E_i = error estimator
874 E1=-0.2815431932141155D+00
875 E2=-0.7276199124938920D-01
876 E3=-0.1082196201495311D+00
877 E4=-0.1093502252409163D+01
878 C gamma = gamma
879 GAMMA= 0.5728200000000000D+00
880 C C_i = alpha_i
881 C2= 0.1145640000000000D+01
882 C3= 0.6552168638155900D+00
883 C D_i = gamma_i
884 D1= 0.5728200000000000D+00
885 D2=-0.1769193891319233D+01
886 D3= 0.7592633437920482D+00
887 D4=-0.1049021087100450D+00
888 RETURN
889 END
891 SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN)
892 C --- PRINTS SOLUTION
893 IMPLICIT KPP_REAL (A-H,O-Z)
894 DIMENSION Y(N)
895 COMMON /INTERN/XOUT
896 IF (NR.EQ.1) THEN
897 WRITE (6,99) X,Y(1),Y(2),NR-1
898 XOUT=0.1D0
899 ELSE
900 IF (X.GE.XOUT) THEN
901 WRITE (6,99) X,Y(1),Y(2),NR-1
902 XOUT=DMAX1(XOUT+0.1D0,X)
903 END IF
904 END IF
905 99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10,' NSTEP =',I4)
906 RETURN
909 SUBROUTINE DEC (N, NDIM, A, IP, IER)
910 C VERSION REAL KPP_REAL
911 INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
912 KPP_REAL A,T
913 DIMENSION A(NDIM,N), IP(N)
914 C-----------------------------------------------------------------------
915 C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.
916 C INPUT..
917 C N = ORDER OF MATRIX.
918 C NDIM = DECLARED DIMENSION OF ARRAY A .
919 C A = MATRIX TO BE TRIANGULARIZED.
920 C OUTPUT..
921 C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U .
922 C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
923 C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
924 C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
925 C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
926 C SINGULAR AT STAGE K.
927 C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
928 C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N).
929 C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
931 C REFERENCE..
932 C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION KppSolveR,
933 C C.A.C.M. 15 (1972), P. 274.
934 C-----------------------------------------------------------------------
935 IER = 0
936 IP(N) = 1
937 IF (N .EQ. 1) GO TO 70
938 NM1 = N - 1
939 DO 60 K = 1,NM1
940 KP1 = K + 1
941 M = K
942 DO 10 I = KP1,N
943 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
944 10 CONTINUE
945 IP(K) = M
946 T = A(M,K)
947 IF (M .EQ. K) GO TO 20
948 IP(N) = -IP(N)
949 A(M,K) = A(K,K)
950 A(K,K) = T
951 20 CONTINUE
952 IF (T .EQ. 0.D0) GO TO 80
953 T = 1.D0/T
954 DO 30 I = KP1,N
955 30 A(I,K) = -A(I,K)*T
956 DO 50 J = KP1,N
957 T = A(M,J)
958 A(M,J) = A(K,J)
959 A(K,J) = T
960 IF (T .EQ. 0.D0) GO TO 45
961 DO 40 I = KP1,N
962 40 A(I,J) = A(I,J) + A(I,K)*T
963 45 CONTINUE
964 50 CONTINUE
965 60 CONTINUE
966 70 K = N
967 IF (A(N,N) .EQ. 0.D0) GO TO 80
968 RETURN
969 80 IER = K
970 IP(N) = 0
971 RETURN
972 C----------------------- END OF SUBROUTINE DEC -------------------------
976 SUBROUTINE SOL (N, NDIM, A, B, IP)
977 C VERSION REAL KPP_REAL
978 INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
979 KPP_REAL A,B,T
980 DIMENSION A(NDIM,N), B(N), IP(N)
981 C-----------------------------------------------------------------------
982 C SOLUTION OF LINEAR SYSTEM, A*X = B .
983 C INPUT..
984 C N = ORDER OF MATRIX.
985 C NDIM = DECLARED DIMENSION OF ARRAY A .
986 C A = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
987 C B = RIGHT HAND SIDE VECTOR.
988 C IP = PIVOT VECTOR OBTAINED FROM DEC.
989 C DO NOT USE IF DEC HAS SET IER .NE. 0.
990 C OUTPUT..
991 C B = SOLUTION VECTOR, X .
992 C-----------------------------------------------------------------------
993 IF (N .EQ. 1) GO TO 50
994 NM1 = N - 1
995 DO 20 K = 1,NM1
996 KP1 = K + 1
997 M = IP(K)
998 T = B(M)
999 B(M) = B(K)
1000 B(K) = T
1001 DO 10 I = KP1,N
1002 10 B(I) = B(I) + A(I,K)*T
1003 20 CONTINUE
1004 DO 40 KB = 1,NM1
1005 KM1 = N - KB
1006 K = KM1 + 1
1007 B(K) = B(K)/A(K,K)
1008 T = -B(K)
1009 DO 30 I = 1,KM1
1010 30 B(I) = B(I) + A(I,K)*T
1011 40 CONTINUE
1012 50 B(1) = B(1)/A(1,1)
1013 RETURN
1014 C----------------------- END OF SUBROUTINE SOL -------------------------
1020 SUBROUTINE FUNC_CHEM(N, T, Y, P)
1021 INCLUDE 'KPP_ROOT_params.h'
1022 INCLUDE 'KPP_ROOT_global.h'
1023 INTEGER N
1024 KPP_REAL T, Told
1025 KPP_REAL Y(NVAR), P(NVAR)
1026 Told = TIME
1027 TIME = T
1028 CALL Update_SUN()
1029 CALL Update_RCONST()
1030 CALL Fun( Y, FIX, RCONST, P )
1031 TIME = Told
1032 RETURN
1036 SUBROUTINE JAC_CHEM(N, T, Y, J)
1037 INCLUDE 'KPP_ROOT_params.h'
1038 INCLUDE 'KPP_ROOT_global.h'
1039 INTEGER N
1040 KPP_REAL Told, T
1041 KPP_REAL Y(NVAR), J(LU_NONZERO)
1042 Told = TIME
1043 TIME = T
1044 CALL Update_SUN()
1045 CALL Update_RCONST()
1046 CALL Jac_SP( Y, FIX, RCONST, J )
1047 TIME = Told
1048 RETURN
1049 END