Update version info for release v4.6.1 (#2122)
[WRF.git] / chem / KPP / kpp / kpp-2.1 / int / oldies / ros3_ddm.f
blobdb8b34311723182ce5aff53eaafbeb491e73f776
1 SUBROUTINE INTEGRATE( NSENSIT, Y, TIN, TOUT )
3 INCLUDE 'KPP_ROOT_params.h'
4 INCLUDE 'KPP_ROOT_global.h'
6 C TIN - Start Time
7 KPP_REAL TIN
8 C TOUT - End Time
9 KPP_REAL TOUT
10 C Y - Concentrations and Sensitivities
11 KPP_REAL Y(NVAR*(NSENSIT+1))
12 C --- Note: Y contains: (1:NVAR) concentrations, followed by
13 C --- (1:NVAR) sensitivities w.r.t. first parameter, followed by
14 C --- etc., followed by
15 C --- (1:NVAR) sensitivities w.r.t. NSENSIT's parameter
17 INTEGER INFO(5)
19 EXTERNAL FUNC_CHEM, JAC_CHEM
21 INFO(1) = Autonomous
23 CALL ROS3_DDM(NVAR,NSENSIT,TIN,TOUT,STEPMIN,STEPMAX,
24 + STEPMIN,Y,ATOL,RTOL,
25 + Info,FUNC_CHEM,JAC_CHEM)
27 RETURN
28 END
31 SUBROUTINE ROS3_DDM(N,NSENSIT,T,Tnext,Hmin,Hmax,Hstart,
32 + y,AbsTol,RelTol,
33 + Info,FUNC_CHEM,JAC_CHEM)
34 IMPLICIT NONE
35 INCLUDE 'KPP_ROOT_params.h'
36 INCLUDE 'KPP_ROOT_global.h'
37 INCLUDE 'KPP_ROOT_sparse.h'
39 C L-stable Rosenbrock 3(2), with
40 C strongly A-stable embedded formula for error control.
42 C Direct decoupled computation of sensitivities.
43 C The global variable DDMTYPE distinguishes between:
44 C DDMTYPE = 0 : sensitivities w.r.t. initial values
45 C DDMTYPE = 1 : sensitivities w.r.t. parameters
47 C All the arguments aggree with the KPP syntax.
49 C INPUT ARGUMENTS:
50 C y = Vector of: (1:NVAR) concentrations, followed by
51 C (1:NVAR) sensitivities w.r.t. first parameter, followed by
52 C etc., followed by
53 C (1:NVAR) sensitivities w.r.t. NSENSIT's parameter
54 C (y contains initial values at input, final values at output)
55 C [T, Tnext] = the integration interval
56 C Hmin, Hmax = lower and upper bounds for the selected step-size.
57 C Note that for Step = Hmin the current computed
58 C solution is unconditionally accepted by the error
59 C control mechanism.
60 C AbsTol, RelTol = (NVAR) dimensional vectors of
61 C componentwise absolute and relative tolerances.
62 C FUNC_CHEM = name of routine of derivatives. KPP syntax.
63 C See the header below.
64 C JAC_CHEM = name of routine that computes the Jacobian, in
65 C sparse format. KPP syntax. See the header below.
66 C Info(1) = 1 for Autonomous system
67 C = 0 for nonAutonomous system
69 C OUTPUT ARGUMENTS:
70 C y = the values of concentrations at TEND.
71 C T = equals TEND on output.
72 C Info(2) = # of FUNC_CHEM calls.
73 C Info(3) = # of JAC_CHEM calls.
74 C Info(4) = # of accepted steps.
75 C Info(5) = # of rejected steps.
77 C Adrian Sandu, April 1996
78 C The Center for Global and Regional Environmental Research
79 INTEGER NSENSIT
80 KPP_REAL y(NVAR*(NSENSIT+1)), ynew(NVAR*(NSENSIT+1))
81 KPP_REAL K1(NVAR*(NSENSIT+1))
82 KPP_REAL K2(NVAR*(NSENSIT+1))
83 KPP_REAL K3(NVAR*(NSENSIT+1))
84 KPP_REAL DFDT(NVAR*(NSENSIT+1))
85 KPP_REAL DFDP(NVAR*NSENSIT), DFDPDT(NVAR*NSENSIT)
86 KPP_REAL DJDP(NVAR*NSENSIT)
87 KPP_REAL JAC(LU_NONZERO), AJAC(LU_NONZERO)
88 KPP_REAL DJDT(LU_NONZERO)
89 KPP_REAL Fv(NVAR), Hv(NVAR)
90 KPP_REAL HESS(NHESS)
91 KPP_REAL Hmin,Hmax,Hstart,ghinv,uround
92 KPP_REAL AbsTol(NVAR), RelTol(NVAR)
93 KPP_REAL T, Tnext, Tplus, H, Hnew, elo
94 KPP_REAL ERR, factor, facmax
95 INTEGER n,nfcn,njac,Naccept,Nreject,i,j,ier
96 INTEGER Info(5)
97 LOGICAL IsReject,Autonomous
98 EXTERNAL FUNC_CHEM, JAC_CHEM, HESS_CHEM
100 KPP_REAL gamma, c21, c31,c32,b1,b2,b3,d1,d2,d3,a21,a31,a32
101 KPP_REAL alpha2, alpha3, g1, g2, g3, x1, x2, x3, ytol
102 KPP_REAL dround, tau
104 gamma= .43586652150845899941601945119356d+00
105 c21= -.10156171083877702091975600115545d+01
106 c31= .40759956452537699824805835358067d+01
107 c32= .92076794298330791242156818474003d+01
108 b1= .10000000000000000000000000000000d+01
109 b2= .61697947043828245592553615689730d+01
110 b3= -.42772256543218573326238373806514d+00
111 d1= .50000000000000000000000000000000d+00
112 d2= -.29079558716805469821718236208017d+01
113 d3= .22354069897811569627360909276199d+00
114 a21 = 1.d0
115 a31 = 1.d0
116 a32 = 0.d0
117 alpha2 = gamma
118 g1= .43586652150845899941601945119356d+00
119 g2= .24291996454816804366592249683314d+00
120 g3= .21851380027664058511513169485832d+01
123 c Initialization of counters, etc.
124 Autonomous = Info(1) .EQ. 1
125 uround = 1.d-15
126 dround = DSQRT(uround)
127 IF (Hmax.le.0.D0) THEN
128 Hmax = DABS(Tnext-T)
129 END IF
130 H = DMAX1(1.d-8, Hstart)
131 Tplus = T
132 IsReject = .false.
133 Naccept = 0
134 Nreject = 0
135 Nfcn = 0
136 Njac = 0
139 C === Starting the time loop ===
140 10 CONTINUE
142 C ====== Initial Function, Jacobian, and Hessian values ===============
143 CALL FUNC_CHEM(NVAR, T, y, Fv)
144 Nfcn = Nfcn + 1
145 CALL JAC_CHEM(NVAR, T, y, JAC)
146 Njac = Njac + 1
147 CALL HESS_CHEM( NVAR, T, y, HESS )
148 IF (DDMTYPE .EQ. 1) THEN
149 CALL DFUNDPAR(NVAR, NSENSIT, T, y, DFDP)
150 END IF
152 C ====== Time derivatives for NONAutonomousous CASE ===============
153 IF (.not. Autonomous) THEN
154 tau = DSIGN(dround*DMAX1( 1.0d-6, DABS(T) ), T)
155 CALL FUNC_CHEM(NVAR, T+tau, y, K2)
156 nfcn=nfcn+1
157 DO 20 j = 1,NVAR
158 DFDT(j) = ( K2(j)-Fv(j) )/tau
159 20 CONTINUE
160 CALL JAC_CHEM(NVAR, T+tau, y, AJAC)
161 DO 30 j = 1,LU_NONZERO
162 DJDT(j) = ( AJAC(j)-JAC(j) )/tau
163 30 CONTINUE
164 DO 40 i=1,NSENSIT
165 CALL Jac_SP_Vec (DJDT,y(i*NVAR+1),DFDT(i*NVAR+1))
166 40 CONTINUE
167 END IF
170 Tplus = T + H
171 IF ( Tplus .gt. Tnext ) then
172 H = Tnext - T
173 Tplus = Tnext
174 END IF
176 gHinv = 1.0d0/(gamma*H)
177 DO 50 j=1,LU_NONZERO
178 AJAC(j) = -JAC(j)
179 50 CONTINUE
180 DO 60 j=1,NVAR
181 AJAC(LU_DIAG(j)) = AJAC(LU_DIAG(j)) + gHinv
182 60 CONTINUE
183 CALL KppDecomp (AJAC, ier)
185 IF (ier.NE.0) THEN
186 IF ( H.GT.Hmin) THEN
187 H = 5.0d-1*H
188 GO TO 10
189 ELSE
190 PRINT *,'IER <> 0, H=',H
191 STOP
192 END IF
193 END IF
195 Autonomous = .true.
197 C ------------------------------- STAGE 1 --------------------------------------
198 DO 70 j = 1,NVAR
199 K1(j) = Fv(j)
200 70 CONTINUE
201 IF (.NOT.Autonomous) THEN
202 x1 = gamma*H
203 DO 80 j = 1,NVAR
204 K1(j) = K1(j) + x1*DFDT(j)
205 80 CONTINUE
206 END IF
207 CALL KppSolve (AJAC, K1)
208 C --- If derivative w.r.t. parameters
209 IF (DDMTYPE .EQ. 1) THEN
210 CALL DJACDPAR(NVAR, NSENSIT, T, y, K1(1), DJDP)
211 END IF
212 C --- End of derivative w.r.t. parameters
214 DO 110 i=1,NSENSIT
215 CALL Jac_SP_Vec (JAC,y(i*NVAR+1),K1(i*NVAR+1))
216 CALL Hess_Vec ( HESS, y(i*NVAR+1), K1(1), Hv )
217 DO 90 j=1,NVAR
218 K1(i*NVAR+j) = K1(i*NVAR+j) + Hv(j)
219 90 CONTINUE
220 IF (.NOT. Autonomous) THEN
221 DO 100 j=1,NVAR
222 K1(i*NVAR+j) = K1(i*NVAR+j) + x1*DFDT(i*NVAR+j)
223 100 CONTINUE
224 END IF
225 C --- If derivative w.r.t. parameters
226 IF (DDMTYPE .EQ. 1) THEN
227 DO 44 j = 1,NVAR
228 K1(i*NVAR+j) = K1(i*NVAR+j) + DFDP((i-1)*NVAR+j)
229 & + DJDP((i-1)*NVAR+j)
230 44 CONTINUE
231 END IF
232 C --- End of derivative w.r.t. parameters
233 CALL KppSolve (AJAC, K1(i*NVAR+1))
234 110 CONTINUE
236 C ------------------------------- STAGE 2 --------------------------------------
237 DO 120 j = 1,NVAR*(NSENSIT+1)
238 ynew(j) = y(j) + a21*K1(j)
239 120 CONTINUE
240 CALL FUNC_CHEM(NVAR, T + alpha2*H, ynew, Fv)
241 IF (DDMTYPE .EQ. 1) THEN
242 CALL DFUNDPAR(NVAR, NSENSIT, T+alpha3*H, ynew, DFDP)
243 END IF
244 nfcn=nfcn+1
245 x1 = c21/H
246 DO 130 j = 1,NVAR
247 K2(j) = Fv(j) + x1*K1(j)
248 130 CONTINUE
249 IF (.NOT.Autonomous) THEN
250 x2 = g2*H
251 DO 140 j = 1,NVAR
252 K2(j) = K2(j) + x2*DFDT(j)
253 140 CONTINUE
254 END IF
255 CALL KppSolve (AJAC, K2)
256 C --- If derivative w.r.t. parameters
257 IF (DDMTYPE .EQ. 1) THEN
258 CALL DJACDPAR(NVAR, NSENSIT, T, y, K2(1), DJDP)
259 END IF
260 C --- End of derivative w.r.t. parameters
262 CALL JAC_CHEM(NVAR, T+alpha2*H, ynew, JAC)
263 njac=njac+1
264 DO 170 i=1,NSENSIT
265 CALL Jac_SP_Vec (JAC,ynew(i*NVAR+1),K2(i*NVAR+1))
266 CALL Hess_Vec ( HESS, y(i*NVAR+1), K2(1), Hv )
267 DO 150 j = 1,NVAR
268 K2(i*NVAR+j) = K2(i*NVAR+j) + x1*K1(i*NVAR+j)
269 & + Hv(j)
270 150 CONTINUE
271 IF (.NOT. Autonomous) THEN
272 DO 160 j=1,NVAR
273 K2(i*NVAR+j) = K2(i*NVAR+j) + x2*DFDT(i*NVAR+j)
274 160 CONTINUE
275 END IF
276 C --- If derivative w.r.t. parameters
277 IF (DDMTYPE .EQ. 1) THEN
278 DO 165 j = 1,NVAR
279 K2(i*NVAR+j) = K2(i*NVAR+j) + DFDP((i-1)*NVAR+j)
280 & + DJDP((i-1)*NVAR+j)
281 165 CONTINUE
282 END IF
283 C --- End of derivative w.r.t. parameters
284 CALL KppSolve (AJAC, K2(i*NVAR+1))
285 170 CONTINUE
287 C ------------------------------- STAGE 3 --------------------------------------
288 x1 = c31/H
289 x2 = c32/H
290 DO 180 j = 1,NVAR
291 K3(j) = Fv(j) + x1*K1(j) + x2*K2(j)
292 180 CONTINUE
293 IF (.NOT.Autonomous) THEN
294 x3 = g3*H
295 DO 190 j = 1,NVAR
296 K3(j) = K3(j) + x3*DFDT(j)
297 190 CONTINUE
298 END IF
299 CALL KppSolve (AJAC, K3)
300 C --- If derivative w.r.t. parameters
301 IF (DDMTYPE .EQ. 1) THEN
302 CALL DJACDPAR(NVAR, NSENSIT, T, y, K3(1), DJDP)
303 END IF
304 C --- End of derivative w.r.t. parameters
306 DO 220 i=1,NSENSIT
307 CALL Jac_SP_Vec (JAC,ynew(i*NVAR+1),K3(i*NVAR+1))
308 CALL Hess_Vec ( HESS, y(i*NVAR+1), K3(1), Hv )
309 DO 200 j = 1,NVAR
310 K3(i*NVAR+j) = K3(i*NVAR+j) +x1*K1(i*NVAR+j)
311 & + x2*K2(i*NVAR+j) + Hv(j)
312 200 CONTINUE
313 IF (.NOT. Autonomous) THEN
314 DO 210 j=1,NVAR
315 K3(i*NVAR+j) = K3(i*NVAR+j) + x3*DFDT(i*NVAR+j)
316 210 CONTINUE
317 END IF
318 C --- If derivative w.r.t. parameters
319 IF (DDMTYPE .EQ. 1) THEN
320 DO 215 j = 1,NVAR
321 K3(i*NVAR+j) = K3(i*NVAR+j) + DFDP((i-1)*NVAR+j)
322 & + DJDP((i-1)*NVAR+j)
323 215 CONTINUE
324 END IF
325 C --- End of derivative w.r.t. parameters
326 CALL KppSolve (AJAC, K3(i*NVAR+1))
327 220 CONTINUE
329 C ------------------------------ The Solution ---
331 DO 230 j = 1,NVAR*(NSENSIT+1)
332 ynew(j) = y(j) + b1*K1(j) + b2*K2(j) + b3*K3(j)
333 230 CONTINUE
336 C ====== Error estimation ========
338 ERR=0.d0
339 DO 240 i=1,NVAR
340 ytol = AbsTol(i) + RelTol(i)*DABS(ynew(i))
341 ERR=ERR+((d1*K1(i)+d2*K2(i)+d3*K3(i))/ytol)**2
342 240 CONTINUE
343 ERR = DMAX1( uround, DSQRT( ERR/NVAR ) )
345 C ======= Choose the stepsize ===============================
347 elo = 3.0D0 ! estimator local order
348 factor = DMAX1(2.0D-1,DMIN1(6.0D0,ERR**(1.0D0/elo)/.9D0))
349 Hnew = DMIN1(Hmax,DMAX1(Hmin, H/factor))
351 C ======= Rejected/Accepted Step ============================
353 IF ( (ERR.gt.1).and.(H.gt.Hmin) ) THEN
354 IsReject = .true.
355 H = DMIN1(H/10,Hnew)
356 Nreject = Nreject+1
357 GO TO 10
358 ELSE
359 DO 250 j=1,NVAR*(NSENSIT+1)
360 y(j) = ynew(j)
361 250 CONTINUE
362 T = Tplus
363 IF (.NOT.IsReject) THEN
364 H = Hnew ! Do not increase stepsize IF previos step was rejected
365 END IF
366 IsReject = .false.
367 Naccept = Naccept+1
368 END IF
371 C ======= End of the time loop ===============================
372 IF ( T .lt. Tnext ) GO TO 10
375 C ======= Output Information =================================
376 Info(2) = Nfcn
377 Info(3) = Njac
378 Info(4) = Naccept
379 Info(5) = Nreject
380 Hstart = H
382 RETURN
383 END
387 SUBROUTINE FUNC_CHEM(N, T, Y, P)
388 INCLUDE 'KPP_ROOT_params.h'
389 INCLUDE 'KPP_ROOT_global.h'
390 INTEGER N
391 KPP_REAL T, Told
392 KPP_REAL Y(NVAR), P(NVAR)
393 Told = TIME
394 TIME = T
395 CALL Update_SUN()
396 CALL Update_RCONST()
397 CALL Fun( Y, FIX, RCONST, P )
398 TIME = Told
399 RETURN
403 SUBROUTINE DFUNDPAR(N, NSENSIT, T, Y, P)
404 C --- Computes the partial derivatives of FUNC_CHEM w.r.t. parameters
405 INCLUDE 'KPP_ROOT_params.h'
406 INCLUDE 'KPP_ROOT_global.h'
407 C --- NCOEFF, JCOEFF useful for derivatives w.r.t. rate coefficients
408 INTEGER N
409 INTEGER NCOEFF, JCOEFF(NREACT)
410 COMMON /DDMRCOEFF/ NCOEFF, JCOEFF
412 KPP_REAL T, Told
413 KPP_REAL Y(NVAR), P(NVAR*NSENSIT)
414 Told = TIME
415 TIME = T
416 CALL Update_SUN()
417 CALL Update_RCONST()
419 IF (DDMTYPE .EQ. 0) THEN
420 C --- Note: the values below are for sensitivities w.r.t. initial values;
421 C --- they may have to be changed for other applications
422 DO j=1,NSENSIT
423 DO i=1,NVAR
424 P(i+NVAR*(j-1)) = 0.0D0
425 END DO
426 END DO
427 ELSE
428 C --- Example: the call below is for sensitivities w.r.t. rate coefficients;
429 C --- JCOEFF(1:NSENSIT) are the indices of the NSENSIT rate coefficients
430 C --- w.r.t. which one differentiates
431 CALL dFun_dRcoeff( Y, FIX, NCOEFF, JCOEFF, P )
432 END IF
433 TIME = Told
434 RETURN
437 SUBROUTINE JAC_CHEM(N, T, Y, J)
438 INCLUDE 'KPP_ROOT_params.h'
439 INCLUDE 'KPP_ROOT_global.h'
440 INTEGER N
441 KPP_REAL Told, T
442 KPP_REAL Y(NVAR), J(LU_NONZERO)
443 Told = TIME
444 TIME = T
445 CALL Update_SUN()
446 CALL Update_RCONST()
447 CALL Jac_SP( Y, FIX, RCONST, J )
448 TIME = Told
449 RETURN
450 END
453 SUBROUTINE DJACDPAR(N, NSENSIT, T, Y, U, P)
454 C --- Computes the partial derivatives of JAC w.r.t. parameters times user vector U
455 INCLUDE 'KPP_ROOT_params.h'
456 INCLUDE 'KPP_ROOT_global.h'
457 C --- NCOEFF, JCOEFF useful for derivatives w.r.t. rate coefficients
458 INTEGER N
459 INTEGER NCOEFF, JCOEFF(NREACT)
460 COMMON /DDMRCOEFF/ NCOEFF, JCOEFF
462 KPP_REAL T, Told
463 KPP_REAL Y(NVAR), U(NVAR)
464 KPP_REAL P(NVAR*NSENSIT)
465 Told = TIME
466 TIME = T
467 CALL Update_SUN()
468 CALL Update_RCONST()
470 IF (DDMTYPE .EQ. 0) THEN
471 C --- Note: the values below are for sensitivities w.r.t. initial values;
472 C --- they may have to be changed for other applications
473 DO j=1,NSENSIT
474 DO i=1,NVAR
475 P(i+NVAR*(j-1)) = 0.0D0
476 END DO
477 END DO
478 ELSE
479 C --- Example: the call below is for sensitivities w.r.t. rate coefficients;
480 C --- JCOEFF(1:NSENSIT) are the indices of the NSENSIT rate coefficients
481 C --- w.r.t. which one differentiates
482 CALL dJac_dRcoeff( Y, FIX, U, NCOEFF, JCOEFF, P )
483 END IF
484 TIME = Told
485 RETURN
489 SUBROUTINE HESS_CHEM(N, T, Y, HESS)
490 INCLUDE 'KPP_ROOT_params.h'
491 INCLUDE 'KPP_ROOT_global.h'
492 INTEGER N
493 KPP_REAL Told, T
494 KPP_REAL Y(NVAR), HESS(NHESS)
495 Told = TIME
496 TIME = T
497 CALL Update_SUN()
498 CALL Update_RCONST()
499 CALL Hessian( Y, FIX, RCONST, HESS )
500 TIME = Told
501 RETURN
502 END