1 \subsection{ïÐÒÅÄÅÌÅÎÉÑ
}
4 \subsubsection{CÉÓÔÅÍÙ ÐÅÒÅÈÏÄÏ× É ÄÅÔÅÒÍÉÎÉÒÏ×ÁÎÎÙÅ Á×ÔÏÍÁÔÙ
}
23 ÎÁ ÏÔÄÅÌØÎÙÈ ÍÏÄÅÌÑÈ-<<ÓÌÏ×ÁÈ>>
26 ëÁË Ó×ÑÚÁÎÙ ÁÌÇÏÒÉÔÍÙ ÐÒÏ×ÅÒËÉ $
\au A =
\au B$ ÄÌÑ ÄÅÔÅÒÍ./ÏÄÎÏÚÎ. É
27 $
\au A =
0$ ÄÌÑ ËÒÁÔÎ.? ëÏÇÄÁ ÍÏÖÎÏ ÒÅÛÉÔØ ÐÒÏÂÌÅÍÕ $
\au A =
0$ Ó
28 ËÒÁÔÎ. ÎÁ ÏÓÎÏ×Å ÁÌÇÏÒÉÔÍÁ ÄÌÑ $
\au A =
\au B$?
32 ðÕÓÔØ $s
\in \AExp_\Sigma.$
33 $
\detA(s)$ ÏÂÏÚÎÁÞÁÅÔ ÒÅÚÕÌØÔÁÔ
\tING{ÄÅÔÅÒÍÉÎÉÚÁÃÉÉ
} Á×ÔÏÍÁÔÁ
34 ÓÔÁÎÄÁÒÔÎÙÍ ÐÏÓÔÒÏÅÎÉÅÍ,
35 ÏÓÎÏ×ÁÎÎÏÍ ÎÁ ÐÏÄÍÎÏÖÅÓÔ×ÁÈ ÍÎÏÖÅÓÔ×Á ÓÏÓÔÏÑÎÉÊ ÉÓÈÏÄÎÏÇÏ Á×ÔÏÍÁÔÁ
36 \cite{HopcroftUllman-automata,LewisPapadimitriou-computation
}.
38 \begin{lemma
}\label{lem:detA
}
39 \cite[Lemma~
17]{KA-regevents-complete
},
\cite[Lectures~
8--
9]{KA-lect02
}.
41 \KA \models s =
\detA(s)
46 ðÕÓÔØ $s
\in \AExp_\Sigma.$
47 $
\minA(s)$ ÏÂÏÚÎÁÞÁÅÔ ÒÅÚÕÌØÔÁÔ
\tING{ÍÉÎÉÍÉÚÁÃÉÉ
} Á×ÔÏÍÁÔÁ
48 ÓÔÁÎÄÁÒÔÎÙÍ ÐÏÓÔÒÏÅÎÉÅÍ
49 \cite{HopcroftUllman-automata,LewisPapadimitriou-computation
}.
51 \begin{lemma
}\label{lem:minA
}
52 \cite[Lemma~
18]{KA-regevents-complete
},
\cite[Lectures~
8--
9]{KA-lect02
}.
54 \KA \models s =
\minA(s)
58 \begin{theorem
}\label{th:minA-unique
}
59 \cite{HopcroftUllman-automata
}
60 åÓÌÉ $R_
\Sigma(s) = R_
\Sigma(t)$, ÔÏ $
\minA(s)$ É $
\minA(t)$ ÉÚÏÍÏÒÆÎÙ.
64 %%% TeX-master: "main"