Adding some more judges, here and there.
[and.git] / lib / Documentation / docs-sonyckson / 2197.cpp
blob20124d04fcfebc21152fe4c08af3511d0e175cbc
1 //http://acmicpc-live-archive.uva.es/nuevoportal/data/problem.php?p=2197
3 // another fine solution by misof
4 // #includes {{{
5 #include <algorithm>
6 #include <numeric>
8 #include <iostream>
9 #include <sstream>
10 #include <string>
11 #include <vector>
12 #include <queue>
13 #include <set>
14 #include <map>
16 #include <cstdio>
17 #include <cstdlib>
18 #include <cctype>
19 #include <cassert>
21 #include <cmath>
22 #include <complex>
23 using namespace std;
24 // }}}
26 /////////////////// PRE-WRITTEN CODE FOLLOWS, LOOK DOWN FOR THE SOLUTION ////////////////////////////////
28 // pre-written code {{{
29 #define CLEAR(t) memset((t),0,sizeof(t))
30 #define FOR(i,a,b) for(int i=(int)(a);i<=(int)(b);++i)
31 typedef pair<int,int> PII;
32 #define REP(i,n) for(int i=0;i<(int)(n);++i)
33 #define SIZE(t) ((int)((t).size()))
34 // }}}
36 /////////////////// CODE WRITTEN DURING THE COMPETITION FOLLOWS ////////////////////////////////
37 #define MX 200
38 int CAP[MX][MX];
39 int COST[MX][MX];
40 int flow[MX][MX];
42 PII MC_MAXFLOW(int N, int source, int sink) {
43 int flowSize = 0;
44 int flowCost = 0;
45 int infinity = 1; while (2*infinity > infinity) infinity *= 2;
47 // speed optimization #1: adjacency graph
48 // speed optimization #2: cache the degrees
49 vector<int> deg(N,0);
50 vector<vector<int> > G(N);
51 for (int i=0; i<N; i++) for (int j=0; j<i; j++) if (CAP[i][j]>0 || CAP[j][i]>0) {
52 deg[i]++;
53 deg[j]++;
54 G[i].push_back(j); G[j].push_back(i);
57 vector<int> potential(N,0);
59 while (1) {
60 // use dijkstra to find an augmenting path
61 vector<int> from(N,-1);
62 vector<int> dist(N,infinity);
64 priority_queue< pair<int,int>, vector<pair<int,int> >, greater<pair<int,int> > > Q;
65 Q.push(make_pair(0,source));
66 from[source]=-2; dist[source] = 0;
68 while (!Q.empty()) {
69 int howFar = Q.top().first;
70 int where = Q.top().second;
71 Q.pop();
73 if (dist[where] < howFar) continue;
75 for (int i=0; i<deg[where]; i++) {
76 int dest = G[where][i];
78 // now there are two possibilities: add flow in the right direction, or remove in the other one
79 if (flow[dest][where] > 0)
80 if (dist[dest] > dist[where] + potential[where] - potential[dest] - COST[dest][where]) {
81 dist[dest] = dist[where] + potential[where] - potential[dest] - COST[dest][where];
82 from[dest] = where;
83 Q.push(make_pair(dist[dest],dest));
86 if (flow[where][dest] < CAP[where][dest])
87 if (dist[dest] > dist[where] + potential[where] - potential[dest] + COST[where][dest]) {
88 dist[dest] = dist[where] + potential[where] - potential[dest] + COST[where][dest];
89 from[dest] = where;
90 Q.push(make_pair(dist[dest],dest));
93 // no breaking here, we need the whole graph
97 // update vertex potentials
98 for (int i=0; i<N; i++) potential[i] += dist[i];
100 // if there is no path, we are done
101 if (from[sink] == -1) return make_pair(flowSize,flowCost);
103 // construct an augmenting path
104 int canPush = infinity;
105 int where = sink;
107 while (1) {
108 int prev=from[where];
109 if (prev==-2) break;
110 if (flow[where][prev])
111 canPush = min( canPush, flow[where][prev] );
112 else
113 canPush = min( canPush, CAP[prev][where] - flow[prev][where] );
114 where=prev;
117 // update along the path
118 where = sink;
120 while (1) {
121 int prev=from[where];
122 if (prev==-2) break;
123 if (flow[where][prev]) {
124 flow[where][prev] -= canPush;
125 flowCost -= canPush * COST[where][prev];
126 } else {
127 flow[prev][where] += canPush;
128 flowCost += canPush * COST[prev][where];
130 where=prev;
132 flowSize += canPush;
134 return make_pair(-1,47);
136 int main(){
137 int N, M, K;
138 int k;
139 int casos = 0;
140 scanf("%i", &casos);
141 for(int h = 0; h< casos;h++){
142 scanf("%i %i %i", &N, &M, &K);
143 CLEAR(CAP), CLEAR(COST), CLEAR(flow);
144 FOR(i, 1, N) CAP[0][i] = K;
145 FOR(j, N+1, 2*N) CAP[j][2*N+1] = K;
146 FOR(i, 1, N)FOR(j, N+1, 2*N) CAP[i][j] = 1;
149 // printf("%i %i %i\n", N, M, K);
150 FOR(i, 1, N)FOR(j, N+1, 2*N) COST[i][j] = 50000;
152 for(int i=0;i<M;i++){
153 int f, t, d;
154 scanf("%i %i %i", &f, &t, &d);
155 f++, t++;
156 COST[f][t+N] = d ;
158 pair<int, int> p = MC_MAXFLOW(2*N+2, 0, 2*N+1);
159 if( p.first != K*N || p.second >= 50000) printf("-1\n");
160 else printf("%i\n", p.second);
161 // printf(" %i %i\n", p.first, p.second);
163 return 0;