Adding some more judges, here and there.
[and.git] / lib / Documentation / min-cost-max-flow.cpp
blobf2cfa91039e398d3033798b38a60950ba6204d71
1 //Robado de shygypsy.com/tools/mcmf4.cpp
3 /**
4 * ///////////////////////
5 * // MIN COST MAX FLOW //
6 * ///////////////////////
8 * Authors: Frank Chu, Igor Naverniouk
9 **/
11 /*********************
12 * Min cost max flow * (Edmonds-Karp relabelling + fast heap Dijkstra)
13 *********************
14 * Takes a directed graph where each edge has a capacity ('cap') and a
15 * cost per unit of flow ('cost') and returns a maximum flow network
16 * of minimal cost ('fcost') from s to t. USE mcmf3.cpp FOR DENSE GRAPHS!
18 * PARAMETERS:
19 * - cap (global): adjacency matrix where cap[u][v] is the capacity
20 * of the edge u->v. cap[u][v] is 0 for non-existent edges.
21 * - cost (global): a matrix where cost[u][v] is the cost per unit
22 * of flow along the edge u->v. If cap[u][v] == 0, cost[u][v] is
23 * ignored. ALL COSTS MUST BE NON-NEGATIVE!
24 * - n: the number of vertices ([0, n-1] are considered as vertices).
25 * - s: source vertex.
26 * - t: sink.
27 * RETURNS:
28 * - the flow
29 * - the total cost through 'fcost'
30 * - fnet contains the flow network. Careful: both fnet[u][v] and
31 * fnet[v][u] could be positive. Take the difference.
32 * COMPLEXITY:
33 * - Worst case: O(m*log(m)*flow <? n*m*log(m)*fcost)
34 * FIELD TESTING:
35 * - Valladolid 10594: Data Flow
36 * REFERENCE:
37 * Edmonds, J., Karp, R. "Theoretical Improvements in Algorithmic
38 * Efficieincy for Network Flow Problems".
39 * This is a slight improvement of Frank Chu's implementation.
40 **/
42 #include <iostream>
43 using namespace std;
45 // the maximum number of vertices + 1
46 #define NN 1024
48 // adjacency matrix (fill this up)
49 int cap[NN][NN];
51 // cost per unit of flow matrix (fill this up)
52 int cost[NN][NN];
54 // flow network and adjacency list
55 int fnet[NN][NN], adj[NN][NN], deg[NN];
57 // Dijkstra's predecessor, depth and priority queue
58 int par[NN], d[NN], q[NN], inq[NN], qs;
60 // Labelling function
61 int pi[NN];
63 #define CLR(a, x) memset( a, x, sizeof( a ) )
64 #define Inf (INT_MAX/2)
65 #define BUBL { \
66 t = q[i]; q[i] = q[j]; q[j] = t; \
67 t = inq[q[i]]; inq[q[i]] = inq[q[j]]; inq[q[j]] = t; }
69 // Dijkstra's using non-negative edge weights (cost + potential)
70 #define Pot(u,v) (d[u] + pi[u] - pi[v])
71 bool dijkstra( int n, int s, int t )
73 CLR( d, 0x3F );
74 CLR( par, -1 );
75 CLR( inq, -1 );
76 //for( int i = 0; i < n; i++ ) d[i] = Inf, par[i] = -1;
77 d[s] = qs = 0;
78 inq[q[qs++] = s] = 0;
79 par[s] = n;
81 while( qs )
83 // get the minimum from q and bubble down
84 int u = q[0]; inq[u] = -1;
85 q[0] = q[--qs];
86 if( qs ) inq[q[0]] = 0;
87 for( int i = 0, j = 2*i + 1, t; j < qs; i = j, j = 2*i + 1 )
89 if( j + 1 < qs && d[q[j + 1]] < d[q[j]] ) j++;
90 if( d[q[j]] >= d[q[i]] ) break;
91 BUBL;
94 // relax edge (u,i) or (i,u) for all i;
95 for( int k = 0, v = adj[u][k]; k < deg[u]; v = adj[u][++k] )
97 // try undoing edge v->u
98 if( fnet[v][u] && d[v] > Pot(u,v) - cost[v][u] )
99 d[v] = Pot(u,v) - cost[v][par[v] = u];
101 // try using edge u->v
102 if( fnet[u][v] < cap[u][v] && d[v] > Pot(u,v) + cost[u][v] )
103 d[v] = Pot(u,v) + cost[par[v] = u][v];
105 if( par[v] == u )
107 // bubble up or decrease key
108 if( inq[v] < 0 ) { inq[q[qs] = v] = qs; qs++; }
109 for( int i = inq[v], j = ( i - 1 )/2, t;
110 d[q[i]] < d[q[j]]; i = j, j = ( i - 1 )/2 )
111 BUBL;
116 for( int i = 0; i < n; i++ ) if( pi[i] < Inf ) pi[i] += d[i];
118 return par[t] >= 0;
120 #undef Pot
122 int mcmf4( int n, int s, int t, int &fcost )
124 // build the adjacency list
125 CLR( deg, 0 );
126 for( int i = 0; i < n; i++ )
127 for( int j = 0; j < n; j++ )
128 if( cap[i][j] || cap[j][i] ) adj[i][deg[i]++] = j;
130 CLR( fnet, 0 );
131 CLR( pi, 0 );
132 int flow = fcost = 0;
134 // repeatedly, find a cheapest path from s to t
135 while( dijkstra( n, s, t ) )
137 // get the bottleneck capacity
138 int bot = INT_MAX;
139 for( int v = t, u = par[v]; v != s; u = par[v = u] )
140 bot <?= fnet[v][u] ? fnet[v][u] : ( cap[u][v] - fnet[u][v] );
142 // update the flow network
143 for( int v = t, u = par[v]; v != s; u = par[v = u] )
144 if( fnet[v][u] ) { fnet[v][u] -= bot; fcost -= bot * cost[v][u]; }
145 else { fnet[u][v] += bot; fcost += bot * cost[u][v]; }
147 flow += bot;
150 return flow;
153 //----------------- EXAMPLE USAGE -----------------
154 #include <iostream>
155 #include <stdio.h>
156 using namespace std;
158 int main()
160 int numV;
161 // while ( cin >> numV && numV ) {
162 cin >> numV;
163 memset( cap, 0, sizeof( cap ) );
165 int m, a, b, c, cp;
166 int s, t;
167 cin >> m;
168 cin >> s >> t;
170 // fill up cap with existing capacities.
171 // if the edge u->v has capacity 6, set cap[u][v] = 6.
172 // for each cap[u][v] > 0, set cost[u][v] to the
173 // cost per unit of flow along the edge i->v
174 for (int i=0; i<m; i++) {
175 cin >> a >> b >> cp >> c;
176 cost[a][b] = c; // cost[b][a] = c;
177 cap[a][b] = cp; // cap[b][a] = cp;
180 int fcost;
181 int flow = mcmf3( numV, s, t, fcost );
182 cout << "flow: " << flow << endl;
183 cout << "cost: " << fcost << endl;
185 return 0;