1 \startsection[reference=seccio:funcio-afi-representacio-grafica, title={Representació de funcions afins}]
3 \startsubject[title={Preguntes}]
5 \startsubsubject[title={Representació gràfica en general}]
7 Abans de representar pròpiament ls funcions afins, convé representar funcions en general. Recordeu que per a cada funció heu de fer la taula de valors corresponents i representar els punts obtinguts en el pla cartesià (vegeu la secció~\about[seccio:pla-cartesia]).
10 \startexercici[reference=exer:funcio-afi-representacio-1] Representeu gràficament:
11 \startitemize[a,columns,three]
20 \item $y= \sqrt{x} + 2$
21 \item $y = x^2 -3x +1$
27 \startexercici[reference=exer:funcio-afi-representacio-2] Representeu gràficament les funcions següents:
28 \startitemize[a,columns,three]
29 \item $2x^2 + 4y = 12$
31 \item $x \cdot y = -30$
38 \startexercici[reference=exer:funcio-afi-representacio-3] Quines de les funcions següents donen lloc a rectes i quines no:
39 \startitemize[a,columns, packed]
40 \item \startformula y = 2x- 4 \stopformula
41 \item \startformula y = 2x \stopformula
42 \item \startformula y = 2 \stopformula
43 \item \startformula y = -x - 2 \stopformula
44 \item \startformula y = x^2 \stopformula
45 \item \startformula y= \frac{x}{2} \stopformula
46 \item \startformula y = 0,5 x \stopformula
47 \item \startformula y = \frac{x}{x} + 1 \stopformula
48 \item \startformula y = \frac{2x^2}{x} + 1 \stopformula
49 \item \startformula y = \frac{5}{x} -3 \stopformula
50 \item \startformula y = x^3 -3 \stopformula
51 \item \startformula 3x - 5y = 2x + 2 \stopformula
52 \item \startformula 6x - 10y +x^2 = 2y + x^2 \stopformula
53 \item \startformula x = 2y - 3 \stopformula
54 \item \startformula 2y + x = 3y -3x \stopformula
57 Podeu esbrinar quin tipus de funció dóna lloc a rectes i quines no? Quin aspecte té la fórmula corresponent?
60 \startexercici[reference=exer:funcio-afi-representacio-8, title={rectes o corbes}] Digueu quan les funcions següents donen lloc a rectes o a corbes. Justifiqueu la resposta:
62 \startitemize[a, columns]
63 \item \startformula y = 3x \stopformula
64 \item \startformula y = 0.1x \stopformula
65 \item \startformula y = -7 \stopformula
66 \item \startformula y = -2x - 1 \stopformula
67 \item \startformula y = -x -1 \stopformula
68 \item \startformula y = \sqrt(x) \stopformula
69 \item \startformula y = \frac{2x}{3} \stopformula
70 \item \startformula y = \frac{5}{4x} \stopformula
71 \item \startformula 2x - y = 2y + 3x \stopformula
72 \item \startformula 2x - y = 2y + 2x \stopformula
73 \item \startformula 4x + 7y = y - x^2 + 5x \stopformula
74 \item \startformula 2x^2 + y = 2x^2 - 7 \stopformula
75 \item \startformula 2x - 5y = y + 20 \stopformula
76 \item \startformula y = 9x - \frac{x}{3} \stopformula
77 \item \startformula y = 2x + \frac{3}{5} \stopformula
83 \startsubsubject[title={Representació de funcions afins i significat geomètric dels paràmetres}]
85 Una vegada sabem que les funcions afins donen lloc a rectes i vice-versa, podem representar més fàcilment les funcions afins.
88 \startexercici[reference=exer:funcio-afi-representa-4pre-1] Representeu gràficament aquestes funcions:
89 \startitemize[a, columns, three]
95 \item $y=\frac{5x}{4}$
97 \item $y=\frac{2x}{3}$
104 \startexercici[reference=exer:funcio-afi-representa-4pre-2] Representeu gràficament aquestes funcions:
105 \startitemize[a, columns, three]
109 \item $y=\frac{x}{2}$
123 Una vegada que sabem la forma de les funcions afins, podem estudiar el significat gràfic dels seus paràmetres.
126 \startexercici[reference=exer:saber-creixement-rectes, title={creixement/decreixement}] Digueu si les gràfiques corresponents a les funcions següents són creixents o decreixents. Com ho sabeu?
127 \startitemize[a,columns,three]
128 \item \startformula y = 2x + 4 \stopformula
129 \item \startformula y = -2x + 4 \stopformula
130 \item \startformula y = 2x-4 \stopformula
131 \item \startformula y = -2x - 4 \stopformula
132 \item \startformula y = -2 \stopformula
133 \item \startformula y = -2x \stopformula
134 \item \startformula y = -4 \stopformula
135 \item \startformula y = \frac{x}{3} + 2 \stopformula
136 \item \startformula y = \frac{x}{3} - \frac{2}{5} \stopformula
140 \startexercici[reference=exer:funcio-afi-representacio-7, title={pendent i creixement}] Quina fórmula dóna lloc a una recta amb major pendent? Per què? Quina creix i quina decreix?
142 \item \startitemize[a, text] \item $y = 2x + 3$, \item $y = 4x+3$ \stopitemize
143 \item \startitemize[a, text] \item $y = 5x+10$, \item $y = 5x+20$ \stopitemize
144 \item \startitemize[a, text] \item $y = -5x + 12$, \item $y = 5x + 12$ \stopitemize
145 \item \startitemize[a, text] \item $y = 20x + 100$, \item $y = 20x$, \item $y = -20x$, \item $y = 10x + 200$ \stopitemize
150 \startexercici[reference=exer:funcio-afi-representacio-5, title={emparellament}] Identifiqueu el gràfic amb la fórmula corresponent: \startitemize[a, text]
156 Digueu el motiu d'aquesta identificació.
160 \placetable[split,force,none]
164 \bTABLE[frame=off,align=middle,width=fit,split=yes]
167 % y = 2x +4: Geogebra modificat
168 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
169 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1cm,ystep=1cm] (-7,-3) grid (6,8);
170 \draw[->,color=black] (-6.9,0) -- (6.1,0);
171 \foreach \x in {-6,-5,-4,-3,-2,1,2,3,4,5,6}
172 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[anchor=north] {\tfx $\x$};
173 \draw[->,color=black] (0.0,-3.2) -- (0.0,8.4);
174 \foreach \y in {-3,-2,-1,1,2,3,4,5,6,7,8}
175 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[anchor=east] {\tfx $\y$};
177 \clip(-7,-3) rectangle (6,8);
178 \draw [domain=-6:6, color=red, very thick] plot(\x,{(--4.0--2.0*\x)/1.0});
186 % y = x +2: Geogebra modificat
187 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
188 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-7,-3) grid (6,8);
189 \draw[->,color=black] (-6.9,0) -- (6.1,0);
190 \foreach \x in {-6,-5,-4,-3,-2,1,2,3,4,5,6}
191 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
192 \draw[->,color=black] (0.0,-3.2) -- (0.0,8.4);
193 \foreach \y in {-3,-2,-1,1,2,3,4,5,6,7,8}
194 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
196 \clip(-7,-3) rectangle (6,8);
197 \draw [domain=-6:6, color=blue, very thick] plot(\x,{(--2.0--1.0*\x)/1.0});
205 % y = 2: Geogebra modificat
206 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
207 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1cm,ystep=1cm] (-7,-3) grid (6,8);
208 \draw[->,color=black] (-6.9,0) -- (6.1,0);
209 \foreach \x in {-6,-5,-4,-3,-2,1,2,3,4,5,6}
210 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
211 \draw[->,color=black] (0,-3.2) -- (0,8.4);
212 \foreach \y in {-3,-2,-1,1,2,3,4,5,6,7,8}
213 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
215 \clip(-7,-3) rectangle (6,8);
216 \draw [domain=-7:6, color=green, very thick] plot(\x,{(2.0)/1.0});
224 % y = 2x: Geogebra modificat
225 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
226 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-7,-3) grid (6,8);
227 \draw[->,color=black] (-6.9,0) -- (6.1,0);
228 \foreach \x in {-6,-5,-4,-3,-2,1,2,3,4,5,6}
229 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
230 \draw[->,color=black] (0.0,-3.2) -- (0.0,8.4);
231 \foreach \y in {-3,-2,-1,1,2,3,4,5,6,7,8}
232 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
234 \clip(-7,-3) rectangle (6,8);
235 \draw [domain=-6:6, color=orange, very thick] plot(\x,{(2.0*\x)/1.0});
243 % y = -x +2: Geogebra modificat
244 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
245 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1cm,ystep=1cm] (-7,-3) grid (6,8);
246 \draw[->,color=black] (-6.9,0) -- (6.1,0);
247 \foreach \x in {-6,-5,-4,-3,-2,1,2,3,4,5,6}
248 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
249 \draw[->,color=black] (0,-3.2) -- (0,8.4);
250 \foreach \y in {-3,-2,-1,1,2,3,4,5,6,7,8}
251 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
253 \clip(-7,-3) rectangle (6,8);
254 \draw [domain=-6:6, color=red, very thick] plot(\x,{(--2.0-1.0*\x)/1.0});
262 % y = -x: Geogebra modificat
263 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
264 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-7,-3) grid (6,8);
265 \draw[->,color=black] (-6.9,0) -- (6.1,0);
266 \foreach \x in {-6,-5,-4,-3,-2,1,2,3,4,5,6}
267 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
268 \draw[->,color=black] (0.0,-3.2) -- (0.0,8.4);
269 \foreach \y in {-3,-2,-1,1,2,3,4,5,6,7,8}
270 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
272 \clip(-7,-3) rectangle (6,8);
273 \draw [domain=-7:6, color=blue, very thick] plot(\x,{(-1.0*\x)/1.0});
281 Quines fórmules tenen els gràfics que no estan emparellats amb cap fórmula anterior?
284 \startexercici[reference=exer:funcio-afi-representacio-6, title={emparellament}] Identifiqueu el gràfic amb la seva fórmula:
287 \startitemize[a, columns, four]
296 \placetable[split,force,none]
300 \bTABLE[frame=off,align=middle,width=fit,split=yes]
303 % y = x: Geogebra modificat
304 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
305 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1cm,ystep=1cm] (-7,-3) grid (6,8);
306 \draw[->,color=black] (-6.9,0) -- (6.1,0);
307 \foreach \x in {-6,-5,-4,-3,-2,-1,1,2,3,4,5,6}
308 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
309 \draw[->,color=black] (0,-3.2) -- (0,8.4);
310 \foreach \y in {-3,-2,1,2,3,4,5,6,7,8}
311 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
313 \clip(-7,-3) rectangle (6,8);
314 \draw [domain=-6:6, color=blue, very thick] plot(\x,{(\x)/1.0});
322 % y = 5: Geogebra modificat
323 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
324 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-7,-3) grid (6,8);
325 \draw[->,color=black] (-6.9,0) -- (6.1,0);
326 \foreach \x in {-6,-5,-4,-3,-2,-1,1,2,3,4,5,6}
327 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
328 \draw[->,color=black] (0,-3.2) -- (0,8.4);
329 \foreach \y in {-3,-2,1,2,3,4,5,6,7,8}
330 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
332 \clip(-7,-3) rectangle (6,8);
333 \draw [domain=-7:6, color=orange, very thick] plot(\x,{(5.0)/1.0});
341 % y = 2x: Geogebra modificat
342 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
343 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1cm,ystep=1cm] (-7,-3) grid (6,8);
344 \draw[->,color=black] (-6.9,0) -- (6.1,0);
345 \foreach \x in {-6,-5,-4,-3,-2,-1,1,2,3,4,5,6}
346 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
347 \draw[->,color=black] (0,-3.2) -- (0,8.4);
348 \foreach \y in {-3,-2,1,2,3,4,5,6,7,8}
349 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
351 \clip(-7,-3) rectangle (6,8);
352 \draw [domain=-7:6, color=green, very thick] plot(\x,{(2.0*\x)/1.0});
360 % y = -x+1: Geogebra modificat
361 \starttikzpicture[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=0.5]
362 \draw [color=gray,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-7,-3) grid (6,8);
363 \draw[->,color=black] (-6.9,0) -- (6.1,0.0);
364 \foreach \x in {-6,-5,-4,-3,-2,-1,1,2,3,4,5,6}
365 \draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\tfx $\x$};
366 \draw[->,color=black] (0,-3.2) -- (0,8.4);
367 \foreach \y in {-3,-2,1,2,3,4,5,6,7,8}
368 \draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\tfx $\y$};
370 \clip(-7,-3) rectangle (6,8);
371 \draw [domain=-7:6, color=red, very thick] plot(\x,{(-1.0*\x+1.0)/1.0});
388 \startsubject[title={Solucions}]
390 \startitemize[1][distance=0.5cm]
391 \sym{\in[exer:funcio-afi-representacio-8]} \startitemize[a, text] \item recta ($a=3, b=0$), \item recta ($a = 0.1, b = 0$), \item recta ($a=0, b=-7$), \item recta ($a = -2, b = -1$), \item recta ($a=-1, b=-1$), \item corba, \item recta ($a=\frac{2}{3}$), \item corba, \item recta ($a = \frac{1}{3}$), \item recta ($a=0, b=0$), \item corba, \item recta ($a=0, b=-7$), \item recta ($a=\frac{2}{6}, b=\frac{20}{6}$), \item recta ($a=\frac{28}{3}, b=0$), \item recta ($a=2, b=\frac{3}{5}$)) \stopitemize