4 #if MODE_FLOWHOLD_ENABLED
7 implement FLOWHOLD mode, for position hold using optical flow
11 const AP_Param::GroupInfo
ModeFlowHold::var_info
[] = {
13 // @DisplayName: FlowHold P gain
14 // @Description: FlowHold (horizontal) P gain.
20 // @DisplayName: FlowHold I gain
21 // @Description: FlowHold (horizontal) I gain
27 // @DisplayName: FlowHold Integrator Max
28 // @Description: FlowHold (horizontal) integrator maximum
34 // @Param: _XY_FILT_HZ
35 // @DisplayName: FlowHold filter on input to control
36 // @Description: FlowHold (horizontal) filter on input to control
40 AP_SUBGROUPINFO(flow_pi_xy
, "_XY_", 1, ModeFlowHold
, AC_PI_2D
),
43 // @DisplayName: FlowHold Flow Rate Max
44 // @Description: Controls maximum apparent flow rate in flowhold
47 AP_GROUPINFO("_FLOW_MAX", 2, ModeFlowHold
, flow_max
, 0.6),
50 // @DisplayName: FlowHold Filter Frequency
51 // @Description: Filter frequency for flow data
55 AP_GROUPINFO("_FILT_HZ", 3, ModeFlowHold
, flow_filter_hz
, 5),
58 // @DisplayName: FlowHold Flow quality minimum
59 // @Description: Minimum flow quality to use flow position hold
62 AP_GROUPINFO("_QUAL_MIN", 4, ModeFlowHold
, flow_min_quality
, 10),
66 // @Param: _BRAKE_RATE
67 // @DisplayName: FlowHold Braking rate
68 // @Description: Controls deceleration rate on stick release
72 AP_GROUPINFO("_BRAKE_RATE", 6, ModeFlowHold
, brake_rate_dps
, 8),
77 ModeFlowHold::ModeFlowHold(void) : Mode()
79 AP_Param::setup_object_defaults(this, var_info
);
82 #define CONTROL_FLOWHOLD_EARTH_FRAME 0
84 // flowhold_init - initialise flowhold controller
85 bool ModeFlowHold::init(bool ignore_checks
)
87 if (!copter
.optflow
.enabled() || !copter
.optflow
.healthy()) {
91 // set vertical speed and acceleration limits
92 pos_control
->set_max_speed_accel_z(-get_pilot_speed_dn(), g
.pilot_speed_up
, g
.pilot_accel_z
);
93 pos_control
->set_correction_speed_accel_z(-get_pilot_speed_dn(), g
.pilot_speed_up
, g
.pilot_accel_z
);
95 // initialise the vertical position controller
96 if (!copter
.pos_control
->is_active_z()) {
97 pos_control
->init_z_controller();
100 flow_filter
.set_cutoff_frequency(copter
.scheduler
.get_loop_rate_hz(), flow_filter_hz
.get());
102 quality_filtered
= 0;
103 flow_pi_xy
.reset_I();
106 flow_pi_xy
.set_dt(1.0/copter
.scheduler
.get_loop_rate_hz());
108 // start with INS height
109 last_ins_height
= copter
.inertial_nav
.get_position_z_up_cm() * 0.01;
116 calculate desired attitude from flow sensor. Called when flow sensor is healthy
118 void ModeFlowHold::flowhold_flow_to_angle(Vector2f
&bf_angles
, bool stick_input
)
120 uint32_t now
= AP_HAL::millis();
122 // get corrected raw flow rate
123 Vector2f raw_flow
= copter
.optflow
.flowRate() - copter
.optflow
.bodyRate();
125 // limit sensor flow, this prevents oscillation at low altitudes
126 raw_flow
.x
= constrain_float(raw_flow
.x
, -flow_max
, flow_max
);
127 raw_flow
.y
= constrain_float(raw_flow
.y
, -flow_max
, flow_max
);
129 // filter the flow rate
130 Vector2f sensor_flow
= flow_filter
.apply(raw_flow
);
132 // scale by height estimate, limiting it to height_min to height_max
133 float ins_height
= copter
.inertial_nav
.get_position_z_up_cm() * 0.01;
134 float height_estimate
= ins_height
+ height_offset
;
136 // compensate for height, this converts to (approx) m/s
137 sensor_flow
*= constrain_float(height_estimate
, height_min
, height_max
);
139 // rotate controller input to earth frame
140 Vector2f input_ef
= copter
.ahrs
.body_to_earth2D(sensor_flow
);
143 flow_pi_xy
.set_input(input_ef
);
145 // get earth frame controller attitude in centi-degrees
149 ef_output
= flow_pi_xy
.get_p();
152 last_stick_input_ms
= now
;
155 if (!stick_input
&& braking
) {
156 // stop braking if either 3s has passed, or we have slowed below 0.3m/s
157 if (now
- last_stick_input_ms
> 3000 || sensor_flow
.length() < 0.3) {
160 printf("braking done at %u vel=%f\n", now
- last_stick_input_ms
,
161 (double)sensor_flow
.length());
166 if (!stick_input
&& !braking
) {
169 // only allow I term to shrink in length
170 xy_I
= flow_pi_xy
.get_i_shrink();
172 // normal I term operation
173 xy_I
= flow_pi_xy
.get_pi();
177 if (!stick_input
&& braking
) {
178 // calculate brake angle for each axis separately
179 for (uint8_t i
=0; i
<2; i
++) {
180 float &velocity
= sensor_flow
[i
];
181 float abs_vel_cms
= fabsf(velocity
)*100;
182 const float brake_gain
= (15.0f
* brake_rate_dps
.get() + 95.0f
) * 0.01f
;
183 float lean_angle_cd
= brake_gain
* abs_vel_cms
* (1.0f
+500.0f
/(abs_vel_cms
+60.0f
));
185 lean_angle_cd
= -lean_angle_cd
;
187 bf_angles
[i
] = lean_angle_cd
;
193 ef_output
*= copter
.aparm
.angle_max
;
195 // convert to body frame
196 bf_angles
+= copter
.ahrs
.earth_to_body2D(ef_output
);
198 // set limited flag to prevent integrator windup
199 limited
= fabsf(bf_angles
.x
) > copter
.aparm
.angle_max
|| fabsf(bf_angles
.y
) > copter
.aparm
.angle_max
;
201 // constrain to angle limit
202 bf_angles
.x
= constrain_float(bf_angles
.x
, -copter
.aparm
.angle_max
, copter
.aparm
.angle_max
);
203 bf_angles
.y
= constrain_float(bf_angles
.y
, -copter
.aparm
.angle_max
, copter
.aparm
.angle_max
);
205 #if HAL_LOGGING_ENABLED
206 // @LoggerMessage: FHLD
207 // @Description: FlowHold mode messages
208 // @URL: https://ardupilot.org/copter/docs/flowhold-mode.html
209 // @Field: TimeUS: Time since system startup
210 // @Field: SFx: Filtered flow rate, X-Axis
211 // @Field: SFy: Filtered flow rate, Y-Axis
212 // @Field: Ax: Target lean angle, X-Axis
213 // @Field: Ay: Target lean angle, Y-Axis
214 // @Field: Qual: Flow sensor quality. If this value falls below FHLD_QUAL_MIN parameter, FlowHold will act just like AltHold.
215 // @Field: Ix: Integral part of PI controller, X-Axis
216 // @Field: Iy: Integral part of PI controller, Y-Axis
218 if (log_counter
++ % 20 == 0) {
219 AP::logger().WriteStreaming("FHLD", "TimeUS,SFx,SFy,Ax,Ay,Qual,Ix,Iy", "Qfffffff",
221 (double)sensor_flow
.x
, (double)sensor_flow
.y
,
222 (double)bf_angles
.x
, (double)bf_angles
.y
,
223 (double)quality_filtered
,
224 (double)xy_I
.x
, (double)xy_I
.y
);
226 #endif // HAL_LOGGING_ENABLED
229 // flowhold_run - runs the flowhold controller
230 // should be called at 100hz or more
231 void ModeFlowHold::run()
233 update_height_estimate();
235 // set vertical speed and acceleration limits
236 pos_control
->set_max_speed_accel_z(-get_pilot_speed_dn(), g
.pilot_speed_up
, g
.pilot_accel_z
);
238 // apply SIMPLE mode transform to pilot inputs
239 update_simple_mode();
241 // check for filter change
242 if (!is_equal(flow_filter
.get_cutoff_freq(), flow_filter_hz
.get())) {
243 flow_filter
.set_cutoff_frequency(copter
.scheduler
.get_loop_rate_hz(), flow_filter_hz
.get());
246 // get pilot desired climb rate
247 float target_climb_rate
= copter
.get_pilot_desired_climb_rate(copter
.channel_throttle
->get_control_in());
248 target_climb_rate
= constrain_float(target_climb_rate
, -get_pilot_speed_dn(), copter
.g
.pilot_speed_up
);
250 // get pilot's desired yaw rate
251 float target_yaw_rate
= get_pilot_desired_yaw_rate();
253 // Flow Hold State Machine Determination
254 AltHoldModeState flowhold_state
= get_alt_hold_state(target_climb_rate
);
256 if (copter
.optflow
.healthy()) {
257 const float filter_constant
= 0.95;
258 quality_filtered
= filter_constant
* quality_filtered
+ (1-filter_constant
) * copter
.optflow
.quality();
260 quality_filtered
= 0;
263 // Flow Hold State Machine
264 switch (flowhold_state
) {
266 case AltHoldModeState::MotorStopped
:
267 copter
.motors
->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN
);
268 copter
.attitude_control
->reset_rate_controller_I_terms();
269 copter
.attitude_control
->reset_yaw_target_and_rate();
270 copter
.pos_control
->relax_z_controller(0.0f
); // forces throttle output to decay to zero
271 flow_pi_xy
.reset_I();
274 case AltHoldModeState::Takeoff
:
275 // set motors to full range
276 copter
.motors
->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED
);
279 if (!takeoff
.running()) {
280 takeoff
.start(constrain_float(g
.pilot_takeoff_alt
,0.0f
,1000.0f
));
283 // get avoidance adjusted climb rate
284 target_climb_rate
= get_avoidance_adjusted_climbrate(target_climb_rate
);
286 // set position controller targets adjusted for pilot input
287 takeoff
.do_pilot_takeoff(target_climb_rate
);
290 case AltHoldModeState::Landed_Ground_Idle
:
291 attitude_control
->reset_yaw_target_and_rate();
294 case AltHoldModeState::Landed_Pre_Takeoff
:
295 attitude_control
->reset_rate_controller_I_terms_smoothly();
296 pos_control
->relax_z_controller(0.0f
); // forces throttle output to decay to zero
299 case AltHoldModeState::Flying
:
300 copter
.motors
->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED
);
302 // get avoidance adjusted climb rate
303 target_climb_rate
= get_avoidance_adjusted_climbrate(target_climb_rate
);
305 #if AP_RANGEFINDER_ENABLED
306 // update the vertical offset based on the surface measurement
307 copter
.surface_tracking
.update_surface_offset();
310 // Send the commanded climb rate to the position controller
311 pos_control
->set_pos_target_z_from_climb_rate_cm(target_climb_rate
);
315 // flowhold attitude target calculations
318 // calculate alt-hold angles
319 int16_t roll_in
= copter
.channel_roll
->get_control_in();
320 int16_t pitch_in
= copter
.channel_pitch
->get_control_in();
321 float angle_max
= copter
.aparm
.angle_max
;
322 get_pilot_desired_lean_angles(bf_angles
.x
, bf_angles
.y
, angle_max
, attitude_control
->get_althold_lean_angle_max_cd());
324 if (quality_filtered
>= flow_min_quality
&&
325 AP_HAL::millis() - copter
.arm_time_ms
> 3000) {
326 // don't use for first 3s when we are just taking off
327 Vector2f flow_angles
;
329 flowhold_flow_to_angle(flow_angles
, (roll_in
!= 0) || (pitch_in
!= 0));
330 flow_angles
.x
= constrain_float(flow_angles
.x
, -angle_max
/2, angle_max
/2);
331 flow_angles
.y
= constrain_float(flow_angles
.y
, -angle_max
/2, angle_max
/2);
332 bf_angles
+= flow_angles
;
334 bf_angles
.x
= constrain_float(bf_angles
.x
, -angle_max
, angle_max
);
335 bf_angles
.y
= constrain_float(bf_angles
.y
, -angle_max
, angle_max
);
337 #if AP_AVOIDANCE_ENABLED
339 copter
.avoid
.adjust_roll_pitch(bf_angles
.x
, bf_angles
.y
, copter
.aparm
.angle_max
);
342 // call attitude controller
343 copter
.attitude_control
->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles
.x
, bf_angles
.y
, target_yaw_rate
);
345 // run the vertical position controller and set output throttle
346 pos_control
->update_z_controller();
350 update height estimate using integrated accelerometer ratio with optical flow
352 void ModeFlowHold::update_height_estimate(void)
354 float ins_height
= copter
.inertial_nav
.get_position_z_up_cm() * 0.01;
357 // assume on ground when disarmed, or if we have only just started spooling the motors up
358 if (!hal
.util
->get_soft_armed() ||
359 copter
.motors
->get_desired_spool_state() != AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED
||
360 AP_HAL::millis() - copter
.arm_time_ms
< 1500) {
361 height_offset
= -ins_height
;
362 last_ins_height
= ins_height
;
367 // get delta velocity in body frame
370 if (!copter
.ins
.get_delta_velocity(delta_vel
, delta_vel_dt
)) {
374 // integrate delta velocity in earth frame
375 const Matrix3f
&rotMat
= copter
.ahrs
.get_rotation_body_to_ned();
376 delta_vel
= rotMat
* delta_vel
;
377 delta_velocity_ne
.x
+= delta_vel
.x
;
378 delta_velocity_ne
.y
+= delta_vel
.y
;
380 if (!copter
.optflow
.healthy()) {
381 // can't update height model with no flow sensor
382 last_flow_ms
= AP_HAL::millis();
383 delta_velocity_ne
.zero();
387 if (last_flow_ms
== 0) {
389 last_flow_ms
= copter
.optflow
.last_update();
390 delta_velocity_ne
.zero();
395 if (copter
.optflow
.last_update() == last_flow_ms
) {
400 // convert delta velocity back to body frame to match the flow sensor
401 Vector2f delta_vel_bf
= copter
.ahrs
.earth_to_body2D(delta_velocity_ne
);
403 // and convert to an rate equivalent, to be comparable to flow
404 Vector2f
delta_vel_rate(-delta_vel_bf
.y
, delta_vel_bf
.x
);
406 // get body flow rate in radians per second
407 Vector2f flow_rate_rps
= copter
.optflow
.flowRate() - copter
.optflow
.bodyRate();
409 uint32_t dt_ms
= copter
.optflow
.last_update() - last_flow_ms
;
411 // too long between updates, ignore
412 last_flow_ms
= copter
.optflow
.last_update();
413 delta_velocity_ne
.zero();
414 last_flow_rate_rps
= flow_rate_rps
;
415 last_ins_height
= ins_height
;
422 height_m = delta_velocity_mps / delta_flowrate_rps;
425 // get delta_flowrate_rps
426 Vector2f delta_flowrate
= flow_rate_rps
- last_flow_rate_rps
;
427 last_flow_rate_rps
= flow_rate_rps
;
428 last_flow_ms
= copter
.optflow
.last_update();
431 update height estimate
433 const float min_velocity_change
= 0.04;
434 const float min_flow_change
= 0.04;
435 const float height_delta_max
= 0.25;
438 for each axis update the height estimate
440 float delta_height
= 0;
441 uint8_t total_weight
= 0;
442 float height_estimate
= ins_height
+ height_offset
;
444 for (uint8_t i
=0; i
<2; i
++) {
445 // only use height estimates when we have significant delta-velocity and significant delta-flow
446 float abs_flow
= fabsf(delta_flowrate
[i
]);
447 if (abs_flow
< min_flow_change
||
448 fabsf(delta_vel_rate
[i
]) < min_velocity_change
) {
451 // get instantaneous height estimate
452 float height
= delta_vel_rate
[i
] / delta_flowrate
[i
];
454 // discard negative heights
457 delta_height
+= (height
- height_estimate
) * abs_flow
;
458 total_weight
+= abs_flow
;
460 if (total_weight
> 0) {
461 delta_height
/= total_weight
;
464 if (delta_height
< 0) {
465 // bias towards lower heights, as we'd rather have too low
466 // gain than have oscillation. This also compensates a bit for
467 // the discard of negative heights above
471 // don't update height by more than height_delta_max, this is a simple way of rejecting noise
472 float new_offset
= height_offset
+ constrain_float(delta_height
, -height_delta_max
, height_delta_max
);
474 // apply a simple filter
475 height_offset
= 0.8 * height_offset
+ 0.2 * new_offset
;
477 if (ins_height
+ height_offset
< height_min
) {
478 // height estimate is never allowed below the minimum
479 height_offset
= height_min
- ins_height
;
482 // new height estimate for logging
483 height_estimate
= ins_height
+ height_offset
;
485 #if HAL_LOGGING_ENABLED
486 // @LoggerMessage: FHXY
487 // @Description: Height estimation using optical flow sensor
488 // @Field: TimeUS: Time since system startup
489 // @Field: DFx: Delta flow rate, X-Axis
490 // @Field: DFy: Delta flow rate, Y-Axis
491 // @Field: DVx: Integrated delta velocity rate, X-Axis
492 // @Field: DVy: Integrated delta velocity rate, Y-Axis
493 // @Field: Hest: Estimated Height
494 // @Field: DH: Delta Height
495 // @Field: Hofs: Height offset
496 // @Field: InsH: Height estimate from inertial navigation library
497 // @Field: LastInsH: Last used INS height in optical flow sensor height estimation calculations
498 // @Field: DTms: Time between optical flow sensor updates. This should be less than 500ms for performing the height estimation calculations
500 AP::logger().WriteStreaming("FHXY", "TimeUS,DFx,DFy,DVx,DVy,Hest,DH,Hofs,InsH,LastInsH,DTms", "QfffffffffI",
502 (double)delta_flowrate
.x
,
503 (double)delta_flowrate
.y
,
504 (double)delta_vel_rate
.x
,
505 (double)delta_vel_rate
.y
,
506 (double)height_estimate
,
507 (double)delta_height
,
508 (double)height_offset
,
510 (double)last_ins_height
,
514 gcs().send_named_float("HEST", height_estimate
);
515 delta_velocity_ne
.zero();
516 last_ins_height
= ins_height
;
519 #endif // MODE_FLOWHOLD_ENABLED