1 #+TITLE: Extending the LISP model: cons cells to triples, trees to hypergraphs
2 #+AUTHOR: Joe Corneli and Raymond Puzio
3 #+EMAIL: holtzermann17@gmail.com
5 #+DESCRIPTION: Organizer for presentation on arxana and math text analysis at Oxford.
6 #+KEYWORDS: arxana, hypertext, inference anchoring
8 #+OPTIONS: H:3 num:t toc:nil \n:nil @:t ::t |:t ^:nil -:t f:t *:t <:t
9 #+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:t pri:nil tags:not-in-toc
10 #+INFOJS_OPT: view:nil toc:nil ltoc:t mouse:underline buttons:0 path:http://orgmode.org/org-info.js
11 #+EXPORT_SELECT_TAGS: export
12 #+EXPORT_EXCLUDE_TAGS: noexport
15 #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://metameso.org/~joe/solarized-css/build/solarized-light.css" />
16 #+LATEX_HEADER: \usepackage[backend=bibtex,sorting=none]{biblatex}
17 #+LATEX_HEADER: \addbibresource{arxana-redux-refs}
18 #+STARTUP: showeverything
20 Arxana is a higher-dimensional variant of LISP, based on nested
21 semantic networks instead of cons cells. In contradistinction to LISP
22 where the fundamental building block is a cell `\verb|(a . b)|',
23 Arxana's fundamental building block is a triple, `\verb|(a c b)|'.
24 Furthermore, in the language of the Semantic Web, every triple is
25 `reified'. Links and their constituent positions can contain further
26 structure or be augmented with offset annotations: for example, we
27 distinguish between `\verb|((a d e) c b)|' and `\verb|(a c b)|
28 $\oplus_1$ \verb|(a d e)|'. The first form models an assertion about
29 the link `\verb|(a d e)|', and the second models an assertion about
30 the atom `a' within \verb|(a c b)|. These facilities allow us to
31 build, reason about, query, and program with hypergraphs rather than
32 trees or networks. Other languages which supprort a similar
33 annotative style include Kurzweil's \emph{Flare} and Nelson's
34 \emph{ZigZag}. This representation strategy is useful for building
35 conceptual models of natural language dialogue and its recursive
36 structure. Informal mathematical language is a motivating
37 application, requiring a different approach from the strictly
38 deductive style of formal mathematics.