4 @maintainer Morgan McGuire, matrix@graphics3d.com
6 @cite Portions based on Dave Eberly's Magic Software Library at http://www.magic-software.com
10 Copyright 2000-2004, Morgan McGuire.
14 //----------------------------------------------------------------------------
16 // If you receive an error on this line, it is because you do not have the file
17 // xmmintrin.h needed for MMX & SSE extensions. Download and install
19 // http://download.microsoft.com/download/vstudio60ent/SP5/Wideband-Full/WIN98Me/EN-US/vs6sp5.exe
21 // http://download.microsoft.com/download/vb60ent/Update/6/W9X2KXP/EN-US/vcpp5.exe
24 # include <xmmintrin.h>
27 inline unsigned int hashCode(const G3D::Vector3& v) {
33 //----------------------------------------------------------------------------
34 inline Vector3::Vector3() : x(0.0f), y(0.0f), z(0.0f) {
37 //----------------------------------------------------------------------------
39 inline Vector3::Vector3 (float fX, float fY, float fZ) : x(fX), y(fY), z(fZ) {
42 //----------------------------------------------------------------------------
43 inline Vector3::Vector3 (float V[3]) : x(V[0]), y(V[1]), z(V[2]){
45 //----------------------------------------------------------------------------
46 inline Vector3::Vector3 (double V[3]) : x((float)V[0]), y((float)V[1]), z((float)V[2]){
49 //----------------------------------------------------------------------------
50 inline Vector3::Vector3 (const Vector3& V) : x(V.x), y(V.y), z(V.z) {
53 //----------------------------------------------------------------------------
55 //inline Vector3::Vector3 (const __m128& m) {
56 // Cast from SSE packed floats
57 // *this = *(Vector3*)&m;
60 //----------------------------------------------------------------------------
61 inline const float& Vector3::operator[] (int i) const {
62 return ((float*)this)[i];
65 inline float& Vector3::operator[] (int i) {
66 return ((float*)this)[i];
70 //----------------------------------------------------------------------------
71 inline Vector3& Vector3::operator= (const Vector3& rkVector) {
78 //----------------------------------------------------------------------------
80 inline bool Vector3::fuzzyEq(const Vector3& other) const {
81 return G3D::fuzzyEq((*this - other).squaredMagnitude(), 0);
84 //----------------------------------------------------------------------------
86 inline bool Vector3::fuzzyNe(const Vector3& other) const {
87 return G3D::fuzzyNe((*this - other).squaredMagnitude(), 0);
90 //----------------------------------------------------------------------------
92 inline bool Vector3::isFinite() const {
93 return G3D::isFinite(x) && G3D::isFinite(y) && G3D::isFinite(z);
96 //----------------------------------------------------------------------------
97 inline bool Vector3::operator== (const Vector3& rkVector) const {
98 return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
101 //----------------------------------------------------------------------------
102 inline bool Vector3::operator!= (const Vector3& rkVector) const {
103 return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
106 //----------------------------------------------------------------------------
107 inline Vector3 Vector3::operator+ (const Vector3& rkVector) const {
108 return Vector3(x + rkVector.x, y + rkVector.y, z + rkVector.z);
111 //----------------------------------------------------------------------------
112 inline Vector3 Vector3::operator- (const Vector3& rkVector) const {
113 return Vector3(x - rkVector.x, y - rkVector.y, z - rkVector.z);
116 //----------------------------------------------------------------------------
117 inline Vector3 Vector3::operator* (const Vector3& rkVector) const {
118 return Vector3(x * rkVector.x, y * rkVector.y, z * rkVector.z);
121 inline Vector3 Vector3::operator*(float f) const {
122 return Vector3(x * f, y * f, z * f);
125 //----------------------------------------------------------------------------
126 inline Vector3 Vector3::operator/ (const Vector3& rkVector) const {
127 return Vector3(x / rkVector.x, y / rkVector.y, z / rkVector.z);
130 //----------------------------------------------------------------------------
131 inline Vector3 Vector3::operator- () const {
132 return Vector3(-x, -y, -z);
135 //----------------------------------------------------------------------------
136 inline Vector3& Vector3::operator+= (const Vector3& rkVector) {
143 //----------------------------------------------------------------------------
144 inline Vector3& Vector3::operator-= (const Vector3& rkVector) {
151 //----------------------------------------------------------------------------
152 inline Vector3& Vector3::operator*= (float fScalar) {
159 //----------------------------------------------------------------------------
160 inline Vector3& Vector3::operator*= (const Vector3& rkVector) {
167 //----------------------------------------------------------------------------
168 inline Vector3& Vector3::operator/= (const Vector3& rkVector) {
175 //----------------------------------------------------------------------------
176 inline float Vector3::squaredMagnitude () const {
177 return x*x + y*y + z*z;
180 //----------------------------------------------------------------------------
181 inline float Vector3::squaredLength () const {
182 return squaredMagnitude();
185 //----------------------------------------------------------------------------
186 inline float Vector3::magnitude() const {
187 return sqrtf(x*x + y*y + z*z);
190 //----------------------------------------------------------------------------
191 inline float Vector3::length() const {
195 //----------------------------------------------------------------------------
196 inline Vector3 Vector3::direction () const {
197 float lenSquared = squaredMagnitude();
198 float invSqrt = 1.0f / sqrtf(lenSquared);
199 return Vector3(x * invSqrt, y * invSqrt, z * invSqrt);
202 //----------------------------------------------------------------------------
204 inline Vector3 Vector3::fastDirection () const {
205 float lenSquared = x * x + y * y + z * z;
206 float invSqrt = rsq(lenSquared);
207 return Vector3(x * invSqrt, y * invSqrt, z * invSqrt);
210 //----------------------------------------------------------------------------
211 inline float Vector3::dot (const Vector3& rkVector) const {
212 return x*rkVector.x + y*rkVector.y + z*rkVector.z;
215 //----------------------------------------------------------------------------
216 inline Vector3 Vector3::cross (const Vector3& rkVector) const {
217 return Vector3(y*rkVector.z - z*rkVector.y, z*rkVector.x - x*rkVector.z,
218 x*rkVector.y - y*rkVector.x);
221 //----------------------------------------------------------------------------
222 inline Vector3 Vector3::unitCross (const Vector3& rkVector) const {
223 Vector3 kCross(y*rkVector.z - z*rkVector.y, z*rkVector.x - x*rkVector.z,
224 x*rkVector.y - y*rkVector.x);
229 //----------------------------------------------------------------------------
230 inline Vector3 Vector3::min(const Vector3 &v) const {
231 return Vector3(G3D::min(v.x, x), G3D::min(v.y, y), G3D::min(v.z, z));
234 //----------------------------------------------------------------------------
235 inline Vector3 Vector3::max(const Vector3 &v) const {
236 return Vector3(G3D::max(v.x, x), G3D::max(v.y, y), G3D::max(v.z, z));
239 //----------------------------------------------------------------------------
240 inline bool Vector3::isZero() const {
241 return G3D::fuzzyEq(squaredMagnitude(), 0.0f);
244 //----------------------------------------------------------------------------
246 inline bool Vector3::isUnit() const {
247 return G3D::fuzzyEq(squaredMagnitude(), 1.0f);