Ready to release 0.6.0
[aya.git] / vendor / golang.org / x / sys / unix / syscall_linux.go
blobe044d5b546bdedfeaa7abef29ef7442ed220b402
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Linux system calls.
6 // This file is compiled as ordinary Go code,
7 // but it is also input to mksyscall,
8 // which parses the //sys lines and generates system call stubs.
9 // Note that sometimes we use a lowercase //sys name and
10 // wrap it in our own nicer implementation.
12 package unix
14 import (
15 "encoding/binary"
16 "strconv"
17 "syscall"
18 "time"
19 "unsafe"
23 * Wrapped
26 func Access(path string, mode uint32) (err error) {
27 return Faccessat(AT_FDCWD, path, mode, 0)
30 func Chmod(path string, mode uint32) (err error) {
31 return Fchmodat(AT_FDCWD, path, mode, 0)
34 func Chown(path string, uid int, gid int) (err error) {
35 return Fchownat(AT_FDCWD, path, uid, gid, 0)
38 func Creat(path string, mode uint32) (fd int, err error) {
39 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
42 func EpollCreate(size int) (fd int, err error) {
43 if size <= 0 {
44 return -1, EINVAL
46 return EpollCreate1(0)
49 //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
50 //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
52 func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
53 if pathname == "" {
54 return fanotifyMark(fd, flags, mask, dirFd, nil)
56 p, err := BytePtrFromString(pathname)
57 if err != nil {
58 return err
60 return fanotifyMark(fd, flags, mask, dirFd, p)
63 //sys fchmodat(dirfd int, path string, mode uint32) (err error)
65 func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
66 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
67 // and check the flags. Otherwise the mode would be applied to the symlink
68 // destination which is not what the user expects.
69 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
70 return EINVAL
71 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
72 return EOPNOTSUPP
74 return fchmodat(dirfd, path, mode)
77 func InotifyInit() (fd int, err error) {
78 return InotifyInit1(0)
81 //sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
82 //sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
84 // ioctl itself should not be exposed directly, but additional get/set functions
85 // for specific types are permissible. These are defined in ioctl.go and
86 // ioctl_linux.go.
88 // The third argument to ioctl is often a pointer but sometimes an integer.
89 // Callers should use ioctlPtr when the third argument is a pointer and ioctl
90 // when the third argument is an integer.
92 // TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
94 //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
96 func Link(oldpath string, newpath string) (err error) {
97 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
100 func Mkdir(path string, mode uint32) (err error) {
101 return Mkdirat(AT_FDCWD, path, mode)
104 func Mknod(path string, mode uint32, dev int) (err error) {
105 return Mknodat(AT_FDCWD, path, mode, dev)
108 func Open(path string, mode int, perm uint32) (fd int, err error) {
109 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
112 //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
114 func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
115 return openat(dirfd, path, flags|O_LARGEFILE, mode)
118 //sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
120 func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
121 return openat2(dirfd, path, how, SizeofOpenHow)
124 func Pipe(p []int) error {
125 return Pipe2(p, 0)
128 //sysnb pipe2(p *[2]_C_int, flags int) (err error)
130 func Pipe2(p []int, flags int) error {
131 if len(p) != 2 {
132 return EINVAL
134 var pp [2]_C_int
135 err := pipe2(&pp, flags)
136 if err == nil {
137 p[0] = int(pp[0])
138 p[1] = int(pp[1])
140 return err
143 //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
145 func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
146 if len(fds) == 0 {
147 return ppoll(nil, 0, timeout, sigmask)
149 return ppoll(&fds[0], len(fds), timeout, sigmask)
152 func Poll(fds []PollFd, timeout int) (n int, err error) {
153 var ts *Timespec
154 if timeout >= 0 {
155 ts = new(Timespec)
156 *ts = NsecToTimespec(int64(timeout) * 1e6)
158 return Ppoll(fds, ts, nil)
161 //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
163 func Readlink(path string, buf []byte) (n int, err error) {
164 return Readlinkat(AT_FDCWD, path, buf)
167 func Rename(oldpath string, newpath string) (err error) {
168 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
171 func Rmdir(path string) error {
172 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
175 //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
177 func Symlink(oldpath string, newpath string) (err error) {
178 return Symlinkat(oldpath, AT_FDCWD, newpath)
181 func Unlink(path string) error {
182 return Unlinkat(AT_FDCWD, path, 0)
185 //sys Unlinkat(dirfd int, path string, flags int) (err error)
187 func Utimes(path string, tv []Timeval) error {
188 if tv == nil {
189 err := utimensat(AT_FDCWD, path, nil, 0)
190 if err != ENOSYS {
191 return err
193 return utimes(path, nil)
195 if len(tv) != 2 {
196 return EINVAL
198 var ts [2]Timespec
199 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
200 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
201 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
202 if err != ENOSYS {
203 return err
205 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
208 //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
210 func UtimesNano(path string, ts []Timespec) error {
211 return UtimesNanoAt(AT_FDCWD, path, ts, 0)
214 func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
215 if ts == nil {
216 return utimensat(dirfd, path, nil, flags)
218 if len(ts) != 2 {
219 return EINVAL
221 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
224 func Futimesat(dirfd int, path string, tv []Timeval) error {
225 if tv == nil {
226 return futimesat(dirfd, path, nil)
228 if len(tv) != 2 {
229 return EINVAL
231 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
234 func Futimes(fd int, tv []Timeval) (err error) {
235 // Believe it or not, this is the best we can do on Linux
236 // (and is what glibc does).
237 return Utimes("/proc/self/fd/"+strconv.Itoa(fd), tv)
240 const ImplementsGetwd = true
242 //sys Getcwd(buf []byte) (n int, err error)
244 func Getwd() (wd string, err error) {
245 var buf [PathMax]byte
246 n, err := Getcwd(buf[0:])
247 if err != nil {
248 return "", err
250 // Getcwd returns the number of bytes written to buf, including the NUL.
251 if n < 1 || n > len(buf) || buf[n-1] != 0 {
252 return "", EINVAL
254 // In some cases, Linux can return a path that starts with the
255 // "(unreachable)" prefix, which can potentially be a valid relative
256 // path. To work around that, return ENOENT if path is not absolute.
257 if buf[0] != '/' {
258 return "", ENOENT
261 return string(buf[0 : n-1]), nil
264 func Getgroups() (gids []int, err error) {
265 n, err := getgroups(0, nil)
266 if err != nil {
267 return nil, err
269 if n == 0 {
270 return nil, nil
273 // Sanity check group count. Max is 1<<16 on Linux.
274 if n < 0 || n > 1<<20 {
275 return nil, EINVAL
278 a := make([]_Gid_t, n)
279 n, err = getgroups(n, &a[0])
280 if err != nil {
281 return nil, err
283 gids = make([]int, n)
284 for i, v := range a[0:n] {
285 gids[i] = int(v)
287 return
290 func Setgroups(gids []int) (err error) {
291 if len(gids) == 0 {
292 return setgroups(0, nil)
295 a := make([]_Gid_t, len(gids))
296 for i, v := range gids {
297 a[i] = _Gid_t(v)
299 return setgroups(len(a), &a[0])
302 type WaitStatus uint32
304 // Wait status is 7 bits at bottom, either 0 (exited),
305 // 0x7F (stopped), or a signal number that caused an exit.
306 // The 0x80 bit is whether there was a core dump.
307 // An extra number (exit code, signal causing a stop)
308 // is in the high bits. At least that's the idea.
309 // There are various irregularities. For example, the
310 // "continued" status is 0xFFFF, distinguishing itself
311 // from stopped via the core dump bit.
313 const (
314 mask = 0x7F
315 core = 0x80
316 exited = 0x00
317 stopped = 0x7F
318 shift = 8
321 func (w WaitStatus) Exited() bool { return w&mask == exited }
323 func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
325 func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
327 func (w WaitStatus) Continued() bool { return w == 0xFFFF }
329 func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
331 func (w WaitStatus) ExitStatus() int {
332 if !w.Exited() {
333 return -1
335 return int(w>>shift) & 0xFF
338 func (w WaitStatus) Signal() syscall.Signal {
339 if !w.Signaled() {
340 return -1
342 return syscall.Signal(w & mask)
345 func (w WaitStatus) StopSignal() syscall.Signal {
346 if !w.Stopped() {
347 return -1
349 return syscall.Signal(w>>shift) & 0xFF
352 func (w WaitStatus) TrapCause() int {
353 if w.StopSignal() != SIGTRAP {
354 return -1
356 return int(w>>shift) >> 8
359 //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
361 func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
362 var status _C_int
363 wpid, err = wait4(pid, &status, options, rusage)
364 if wstatus != nil {
365 *wstatus = WaitStatus(status)
367 return
370 //sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error)
372 func Mkfifo(path string, mode uint32) error {
373 return Mknod(path, mode|S_IFIFO, 0)
376 func Mkfifoat(dirfd int, path string, mode uint32) error {
377 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
380 func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
381 if sa.Port < 0 || sa.Port > 0xFFFF {
382 return nil, 0, EINVAL
384 sa.raw.Family = AF_INET
385 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
386 p[0] = byte(sa.Port >> 8)
387 p[1] = byte(sa.Port)
388 sa.raw.Addr = sa.Addr
389 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
392 func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
393 if sa.Port < 0 || sa.Port > 0xFFFF {
394 return nil, 0, EINVAL
396 sa.raw.Family = AF_INET6
397 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
398 p[0] = byte(sa.Port >> 8)
399 p[1] = byte(sa.Port)
400 sa.raw.Scope_id = sa.ZoneId
401 sa.raw.Addr = sa.Addr
402 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
405 func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
406 name := sa.Name
407 n := len(name)
408 if n >= len(sa.raw.Path) {
409 return nil, 0, EINVAL
411 sa.raw.Family = AF_UNIX
412 for i := 0; i < n; i++ {
413 sa.raw.Path[i] = int8(name[i])
415 // length is family (uint16), name, NUL.
416 sl := _Socklen(2)
417 if n > 0 {
418 sl += _Socklen(n) + 1
420 if sa.raw.Path[0] == '@' {
421 sa.raw.Path[0] = 0
422 // Don't count trailing NUL for abstract address.
423 sl--
426 return unsafe.Pointer(&sa.raw), sl, nil
429 // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
430 type SockaddrLinklayer struct {
431 Protocol uint16
432 Ifindex int
433 Hatype uint16
434 Pkttype uint8
435 Halen uint8
436 Addr [8]byte
437 raw RawSockaddrLinklayer
440 func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
441 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
442 return nil, 0, EINVAL
444 sa.raw.Family = AF_PACKET
445 sa.raw.Protocol = sa.Protocol
446 sa.raw.Ifindex = int32(sa.Ifindex)
447 sa.raw.Hatype = sa.Hatype
448 sa.raw.Pkttype = sa.Pkttype
449 sa.raw.Halen = sa.Halen
450 sa.raw.Addr = sa.Addr
451 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
454 // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
455 type SockaddrNetlink struct {
456 Family uint16
457 Pad uint16
458 Pid uint32
459 Groups uint32
460 raw RawSockaddrNetlink
463 func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
464 sa.raw.Family = AF_NETLINK
465 sa.raw.Pad = sa.Pad
466 sa.raw.Pid = sa.Pid
467 sa.raw.Groups = sa.Groups
468 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
471 // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
472 // using the HCI protocol.
473 type SockaddrHCI struct {
474 Dev uint16
475 Channel uint16
476 raw RawSockaddrHCI
479 func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
480 sa.raw.Family = AF_BLUETOOTH
481 sa.raw.Dev = sa.Dev
482 sa.raw.Channel = sa.Channel
483 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
486 // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
487 // using the L2CAP protocol.
488 type SockaddrL2 struct {
489 PSM uint16
490 CID uint16
491 Addr [6]uint8
492 AddrType uint8
493 raw RawSockaddrL2
496 func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
497 sa.raw.Family = AF_BLUETOOTH
498 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
499 psm[0] = byte(sa.PSM)
500 psm[1] = byte(sa.PSM >> 8)
501 for i := 0; i < len(sa.Addr); i++ {
502 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
504 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
505 cid[0] = byte(sa.CID)
506 cid[1] = byte(sa.CID >> 8)
507 sa.raw.Bdaddr_type = sa.AddrType
508 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
511 // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
512 // using the RFCOMM protocol.
514 // Server example:
516 // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
517 // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
518 // Channel: 1,
519 // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
520 // })
521 // _ = Listen(fd, 1)
522 // nfd, sa, _ := Accept(fd)
523 // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
524 // Read(nfd, buf)
526 // Client example:
528 // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
529 // _ = Connect(fd, &SockaddrRFCOMM{
530 // Channel: 1,
531 // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
532 // })
533 // Write(fd, []byte(`hello`))
534 type SockaddrRFCOMM struct {
535 // Addr represents a bluetooth address, byte ordering is little-endian.
536 Addr [6]uint8
538 // Channel is a designated bluetooth channel, only 1-30 are available for use.
539 // Since Linux 2.6.7 and further zero value is the first available channel.
540 Channel uint8
542 raw RawSockaddrRFCOMM
545 func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
546 sa.raw.Family = AF_BLUETOOTH
547 sa.raw.Channel = sa.Channel
548 sa.raw.Bdaddr = sa.Addr
549 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
552 // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
553 // The RxID and TxID fields are used for transport protocol addressing in
554 // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
555 // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
557 // The SockaddrCAN struct must be bound to the socket file descriptor
558 // using Bind before the CAN socket can be used.
560 // // Read one raw CAN frame
561 // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
562 // addr := &SockaddrCAN{Ifindex: index}
563 // Bind(fd, addr)
564 // frame := make([]byte, 16)
565 // Read(fd, frame)
567 // The full SocketCAN documentation can be found in the linux kernel
568 // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
569 type SockaddrCAN struct {
570 Ifindex int
571 RxID uint32
572 TxID uint32
573 raw RawSockaddrCAN
576 func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
577 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
578 return nil, 0, EINVAL
580 sa.raw.Family = AF_CAN
581 sa.raw.Ifindex = int32(sa.Ifindex)
582 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
583 for i := 0; i < 4; i++ {
584 sa.raw.Addr[i] = rx[i]
586 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
587 for i := 0; i < 4; i++ {
588 sa.raw.Addr[i+4] = tx[i]
590 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
593 // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
594 // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
595 // on the purposes of the fields, check the official linux kernel documentation
596 // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
597 type SockaddrCANJ1939 struct {
598 Ifindex int
599 Name uint64
600 PGN uint32
601 Addr uint8
602 raw RawSockaddrCAN
605 func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
606 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
607 return nil, 0, EINVAL
609 sa.raw.Family = AF_CAN
610 sa.raw.Ifindex = int32(sa.Ifindex)
611 n := (*[8]byte)(unsafe.Pointer(&sa.Name))
612 for i := 0; i < 8; i++ {
613 sa.raw.Addr[i] = n[i]
615 p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
616 for i := 0; i < 4; i++ {
617 sa.raw.Addr[i+8] = p[i]
619 sa.raw.Addr[12] = sa.Addr
620 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
623 // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
624 // SockaddrALG enables userspace access to the Linux kernel's cryptography
625 // subsystem. The Type and Name fields specify which type of hash or cipher
626 // should be used with a given socket.
628 // To create a file descriptor that provides access to a hash or cipher, both
629 // Bind and Accept must be used. Once the setup process is complete, input
630 // data can be written to the socket, processed by the kernel, and then read
631 // back as hash output or ciphertext.
633 // Here is an example of using an AF_ALG socket with SHA1 hashing.
634 // The initial socket setup process is as follows:
636 // // Open a socket to perform SHA1 hashing.
637 // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
638 // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
639 // unix.Bind(fd, addr)
640 // // Note: unix.Accept does not work at this time; must invoke accept()
641 // // manually using unix.Syscall.
642 // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
644 // Once a file descriptor has been returned from Accept, it may be used to
645 // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
646 // may be re-used repeatedly with subsequent Write and Read operations.
648 // When hashing a small byte slice or string, a single Write and Read may
649 // be used:
651 // // Assume hashfd is already configured using the setup process.
652 // hash := os.NewFile(hashfd, "sha1")
653 // // Hash an input string and read the results. Each Write discards
654 // // previous hash state. Read always reads the current state.
655 // b := make([]byte, 20)
656 // for i := 0; i < 2; i++ {
657 // io.WriteString(hash, "Hello, world.")
658 // hash.Read(b)
659 // fmt.Println(hex.EncodeToString(b))
660 // }
661 // // Output:
662 // // 2ae01472317d1935a84797ec1983ae243fc6aa28
663 // // 2ae01472317d1935a84797ec1983ae243fc6aa28
665 // For hashing larger byte slices, or byte streams such as those read from
666 // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
667 // the hash digest instead of creating a new one for a given chunk and finalizing it.
669 // // Assume hashfd and addr are already configured using the setup process.
670 // hash := os.NewFile(hashfd, "sha1")
671 // // Hash the contents of a file.
672 // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
673 // b := make([]byte, 4096)
674 // for {
675 // n, err := f.Read(b)
676 // if err == io.EOF {
677 // break
678 // }
679 // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
680 // }
681 // hash.Read(b)
682 // fmt.Println(hex.EncodeToString(b))
683 // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
685 // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
686 type SockaddrALG struct {
687 Type string
688 Name string
689 Feature uint32
690 Mask uint32
691 raw RawSockaddrALG
694 func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
695 // Leave room for NUL byte terminator.
696 if len(sa.Type) > 13 {
697 return nil, 0, EINVAL
699 if len(sa.Name) > 63 {
700 return nil, 0, EINVAL
703 sa.raw.Family = AF_ALG
704 sa.raw.Feat = sa.Feature
705 sa.raw.Mask = sa.Mask
707 typ, err := ByteSliceFromString(sa.Type)
708 if err != nil {
709 return nil, 0, err
711 name, err := ByteSliceFromString(sa.Name)
712 if err != nil {
713 return nil, 0, err
716 copy(sa.raw.Type[:], typ)
717 copy(sa.raw.Name[:], name)
719 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
722 // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
723 // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
724 // bidirectional communication between a hypervisor and its guest virtual
725 // machines.
726 type SockaddrVM struct {
727 // CID and Port specify a context ID and port address for a VM socket.
728 // Guests have a unique CID, and hosts may have a well-known CID of:
729 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
730 // - VMADDR_CID_LOCAL: refers to local communication (loopback).
731 // - VMADDR_CID_HOST: refers to other processes on the host.
732 CID uint32
733 Port uint32
734 Flags uint8
735 raw RawSockaddrVM
738 func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
739 sa.raw.Family = AF_VSOCK
740 sa.raw.Port = sa.Port
741 sa.raw.Cid = sa.CID
742 sa.raw.Flags = sa.Flags
744 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
747 type SockaddrXDP struct {
748 Flags uint16
749 Ifindex uint32
750 QueueID uint32
751 SharedUmemFD uint32
752 raw RawSockaddrXDP
755 func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
756 sa.raw.Family = AF_XDP
757 sa.raw.Flags = sa.Flags
758 sa.raw.Ifindex = sa.Ifindex
759 sa.raw.Queue_id = sa.QueueID
760 sa.raw.Shared_umem_fd = sa.SharedUmemFD
762 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
765 // This constant mirrors the #define of PX_PROTO_OE in
766 // linux/if_pppox.h. We're defining this by hand here instead of
767 // autogenerating through mkerrors.sh because including
768 // linux/if_pppox.h causes some declaration conflicts with other
769 // includes (linux/if_pppox.h includes linux/in.h, which conflicts
770 // with netinet/in.h). Given that we only need a single zero constant
771 // out of that file, it's cleaner to just define it by hand here.
772 const px_proto_oe = 0
774 type SockaddrPPPoE struct {
775 SID uint16
776 Remote []byte
777 Dev string
778 raw RawSockaddrPPPoX
781 func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
782 if len(sa.Remote) != 6 {
783 return nil, 0, EINVAL
785 if len(sa.Dev) > IFNAMSIZ-1 {
786 return nil, 0, EINVAL
789 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
790 // This next field is in host-endian byte order. We can't use the
791 // same unsafe pointer cast as above, because this value is not
792 // 32-bit aligned and some architectures don't allow unaligned
793 // access.
795 // However, the value of px_proto_oe is 0, so we can use
796 // encoding/binary helpers to write the bytes without worrying
797 // about the ordering.
798 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
799 // This field is deliberately big-endian, unlike the previous
800 // one. The kernel expects SID to be in network byte order.
801 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
802 copy(sa.raw[8:14], sa.Remote)
803 for i := 14; i < 14+IFNAMSIZ; i++ {
804 sa.raw[i] = 0
806 copy(sa.raw[14:], sa.Dev)
807 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
810 // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
811 // For more information on TIPC, see: http://tipc.sourceforge.net/.
812 type SockaddrTIPC struct {
813 // Scope is the publication scopes when binding service/service range.
814 // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
815 Scope int
817 // Addr is the type of address used to manipulate a socket. Addr must be
818 // one of:
819 // - *TIPCSocketAddr: "id" variant in the C addr union
820 // - *TIPCServiceRange: "nameseq" variant in the C addr union
821 // - *TIPCServiceName: "name" variant in the C addr union
823 // If nil, EINVAL will be returned when the structure is used.
824 Addr TIPCAddr
826 raw RawSockaddrTIPC
829 // TIPCAddr is implemented by types that can be used as an address for
830 // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
831 // and *TIPCServiceName.
832 type TIPCAddr interface {
833 tipcAddrtype() uint8
834 tipcAddr() [12]byte
837 func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
838 var out [12]byte
839 copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
840 return out
843 func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
845 func (sa *TIPCServiceRange) tipcAddr() [12]byte {
846 var out [12]byte
847 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
848 return out
851 func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
853 func (sa *TIPCServiceName) tipcAddr() [12]byte {
854 var out [12]byte
855 copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
856 return out
859 func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
861 func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
862 if sa.Addr == nil {
863 return nil, 0, EINVAL
865 sa.raw.Family = AF_TIPC
866 sa.raw.Scope = int8(sa.Scope)
867 sa.raw.Addrtype = sa.Addr.tipcAddrtype()
868 sa.raw.Addr = sa.Addr.tipcAddr()
869 return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
872 // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
873 type SockaddrL2TPIP struct {
874 Addr [4]byte
875 ConnId uint32
876 raw RawSockaddrL2TPIP
879 func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
880 sa.raw.Family = AF_INET
881 sa.raw.Conn_id = sa.ConnId
882 sa.raw.Addr = sa.Addr
883 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
886 // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
887 type SockaddrL2TPIP6 struct {
888 Addr [16]byte
889 ZoneId uint32
890 ConnId uint32
891 raw RawSockaddrL2TPIP6
894 func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
895 sa.raw.Family = AF_INET6
896 sa.raw.Conn_id = sa.ConnId
897 sa.raw.Scope_id = sa.ZoneId
898 sa.raw.Addr = sa.Addr
899 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
902 // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
903 type SockaddrIUCV struct {
904 UserID string
905 Name string
906 raw RawSockaddrIUCV
909 func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
910 sa.raw.Family = AF_IUCV
911 // These are EBCDIC encoded by the kernel, but we still need to pad them
912 // with blanks. Initializing with blanks allows the caller to feed in either
913 // a padded or an unpadded string.
914 for i := 0; i < 8; i++ {
915 sa.raw.Nodeid[i] = ' '
916 sa.raw.User_id[i] = ' '
917 sa.raw.Name[i] = ' '
919 if len(sa.UserID) > 8 || len(sa.Name) > 8 {
920 return nil, 0, EINVAL
922 for i, b := range []byte(sa.UserID[:]) {
923 sa.raw.User_id[i] = int8(b)
925 for i, b := range []byte(sa.Name[:]) {
926 sa.raw.Name[i] = int8(b)
928 return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
931 type SockaddrNFC struct {
932 DeviceIdx uint32
933 TargetIdx uint32
934 NFCProtocol uint32
935 raw RawSockaddrNFC
938 func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
939 sa.raw.Sa_family = AF_NFC
940 sa.raw.Dev_idx = sa.DeviceIdx
941 sa.raw.Target_idx = sa.TargetIdx
942 sa.raw.Nfc_protocol = sa.NFCProtocol
943 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
946 type SockaddrNFCLLCP struct {
947 DeviceIdx uint32
948 TargetIdx uint32
949 NFCProtocol uint32
950 DestinationSAP uint8
951 SourceSAP uint8
952 ServiceName string
953 raw RawSockaddrNFCLLCP
956 func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
957 sa.raw.Sa_family = AF_NFC
958 sa.raw.Dev_idx = sa.DeviceIdx
959 sa.raw.Target_idx = sa.TargetIdx
960 sa.raw.Nfc_protocol = sa.NFCProtocol
961 sa.raw.Dsap = sa.DestinationSAP
962 sa.raw.Ssap = sa.SourceSAP
963 if len(sa.ServiceName) > len(sa.raw.Service_name) {
964 return nil, 0, EINVAL
966 copy(sa.raw.Service_name[:], sa.ServiceName)
967 sa.raw.SetServiceNameLen(len(sa.ServiceName))
968 return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
971 var socketProtocol = func(fd int) (int, error) {
972 return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
975 func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
976 switch rsa.Addr.Family {
977 case AF_NETLINK:
978 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
979 sa := new(SockaddrNetlink)
980 sa.Family = pp.Family
981 sa.Pad = pp.Pad
982 sa.Pid = pp.Pid
983 sa.Groups = pp.Groups
984 return sa, nil
986 case AF_PACKET:
987 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
988 sa := new(SockaddrLinklayer)
989 sa.Protocol = pp.Protocol
990 sa.Ifindex = int(pp.Ifindex)
991 sa.Hatype = pp.Hatype
992 sa.Pkttype = pp.Pkttype
993 sa.Halen = pp.Halen
994 sa.Addr = pp.Addr
995 return sa, nil
997 case AF_UNIX:
998 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
999 sa := new(SockaddrUnix)
1000 if pp.Path[0] == 0 {
1001 // "Abstract" Unix domain socket.
1002 // Rewrite leading NUL as @ for textual display.
1003 // (This is the standard convention.)
1004 // Not friendly to overwrite in place,
1005 // but the callers below don't care.
1006 pp.Path[0] = '@'
1009 // Assume path ends at NUL.
1010 // This is not technically the Linux semantics for
1011 // abstract Unix domain sockets--they are supposed
1012 // to be uninterpreted fixed-size binary blobs--but
1013 // everyone uses this convention.
1014 n := 0
1015 for n < len(pp.Path) && pp.Path[n] != 0 {
1018 bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
1019 sa.Name = string(bytes)
1020 return sa, nil
1022 case AF_INET:
1023 proto, err := socketProtocol(fd)
1024 if err != nil {
1025 return nil, err
1028 switch proto {
1029 case IPPROTO_L2TP:
1030 pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1031 sa := new(SockaddrL2TPIP)
1032 sa.ConnId = pp.Conn_id
1033 sa.Addr = pp.Addr
1034 return sa, nil
1035 default:
1036 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1037 sa := new(SockaddrInet4)
1038 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1039 sa.Port = int(p[0])<<8 + int(p[1])
1040 sa.Addr = pp.Addr
1041 return sa, nil
1044 case AF_INET6:
1045 proto, err := socketProtocol(fd)
1046 if err != nil {
1047 return nil, err
1050 switch proto {
1051 case IPPROTO_L2TP:
1052 pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1053 sa := new(SockaddrL2TPIP6)
1054 sa.ConnId = pp.Conn_id
1055 sa.ZoneId = pp.Scope_id
1056 sa.Addr = pp.Addr
1057 return sa, nil
1058 default:
1059 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1060 sa := new(SockaddrInet6)
1061 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1062 sa.Port = int(p[0])<<8 + int(p[1])
1063 sa.ZoneId = pp.Scope_id
1064 sa.Addr = pp.Addr
1065 return sa, nil
1068 case AF_VSOCK:
1069 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1070 sa := &SockaddrVM{
1071 CID: pp.Cid,
1072 Port: pp.Port,
1073 Flags: pp.Flags,
1075 return sa, nil
1076 case AF_BLUETOOTH:
1077 proto, err := socketProtocol(fd)
1078 if err != nil {
1079 return nil, err
1081 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1082 switch proto {
1083 case BTPROTO_L2CAP:
1084 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1085 sa := &SockaddrL2{
1086 PSM: pp.Psm,
1087 CID: pp.Cid,
1088 Addr: pp.Bdaddr,
1089 AddrType: pp.Bdaddr_type,
1091 return sa, nil
1092 case BTPROTO_RFCOMM:
1093 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1094 sa := &SockaddrRFCOMM{
1095 Channel: pp.Channel,
1096 Addr: pp.Bdaddr,
1098 return sa, nil
1100 case AF_XDP:
1101 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1102 sa := &SockaddrXDP{
1103 Flags: pp.Flags,
1104 Ifindex: pp.Ifindex,
1105 QueueID: pp.Queue_id,
1106 SharedUmemFD: pp.Shared_umem_fd,
1108 return sa, nil
1109 case AF_PPPOX:
1110 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1111 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1112 return nil, EINVAL
1114 sa := &SockaddrPPPoE{
1115 SID: binary.BigEndian.Uint16(pp[6:8]),
1116 Remote: pp[8:14],
1118 for i := 14; i < 14+IFNAMSIZ; i++ {
1119 if pp[i] == 0 {
1120 sa.Dev = string(pp[14:i])
1121 break
1124 return sa, nil
1125 case AF_TIPC:
1126 pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1128 sa := &SockaddrTIPC{
1129 Scope: int(pp.Scope),
1132 // Determine which union variant is present in pp.Addr by checking
1133 // pp.Addrtype.
1134 switch pp.Addrtype {
1135 case TIPC_SERVICE_RANGE:
1136 sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1137 case TIPC_SERVICE_ADDR:
1138 sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1139 case TIPC_SOCKET_ADDR:
1140 sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1141 default:
1142 return nil, EINVAL
1145 return sa, nil
1146 case AF_IUCV:
1147 pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1149 var user [8]byte
1150 var name [8]byte
1152 for i := 0; i < 8; i++ {
1153 user[i] = byte(pp.User_id[i])
1154 name[i] = byte(pp.Name[i])
1157 sa := &SockaddrIUCV{
1158 UserID: string(user[:]),
1159 Name: string(name[:]),
1161 return sa, nil
1163 case AF_CAN:
1164 proto, err := socketProtocol(fd)
1165 if err != nil {
1166 return nil, err
1169 pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1171 switch proto {
1172 case CAN_J1939:
1173 sa := &SockaddrCANJ1939{
1174 Ifindex: int(pp.Ifindex),
1176 name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1177 for i := 0; i < 8; i++ {
1178 name[i] = pp.Addr[i]
1180 pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1181 for i := 0; i < 4; i++ {
1182 pgn[i] = pp.Addr[i+8]
1184 addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1185 addr[0] = pp.Addr[12]
1186 return sa, nil
1187 default:
1188 sa := &SockaddrCAN{
1189 Ifindex: int(pp.Ifindex),
1191 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1192 for i := 0; i < 4; i++ {
1193 rx[i] = pp.Addr[i]
1195 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1196 for i := 0; i < 4; i++ {
1197 tx[i] = pp.Addr[i+4]
1199 return sa, nil
1201 case AF_NFC:
1202 proto, err := socketProtocol(fd)
1203 if err != nil {
1204 return nil, err
1206 switch proto {
1207 case NFC_SOCKPROTO_RAW:
1208 pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1209 sa := &SockaddrNFC{
1210 DeviceIdx: pp.Dev_idx,
1211 TargetIdx: pp.Target_idx,
1212 NFCProtocol: pp.Nfc_protocol,
1214 return sa, nil
1215 case NFC_SOCKPROTO_LLCP:
1216 pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1217 if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1218 return nil, EINVAL
1220 sa := &SockaddrNFCLLCP{
1221 DeviceIdx: pp.Dev_idx,
1222 TargetIdx: pp.Target_idx,
1223 NFCProtocol: pp.Nfc_protocol,
1224 DestinationSAP: pp.Dsap,
1225 SourceSAP: pp.Ssap,
1226 ServiceName: string(pp.Service_name[:pp.Service_name_len]),
1228 return sa, nil
1229 default:
1230 return nil, EINVAL
1233 return nil, EAFNOSUPPORT
1236 func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1237 var rsa RawSockaddrAny
1238 var len _Socklen = SizeofSockaddrAny
1239 nfd, err = accept4(fd, &rsa, &len, 0)
1240 if err != nil {
1241 return
1243 sa, err = anyToSockaddr(fd, &rsa)
1244 if err != nil {
1245 Close(nfd)
1246 nfd = 0
1248 return
1251 func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1252 var rsa RawSockaddrAny
1253 var len _Socklen = SizeofSockaddrAny
1254 nfd, err = accept4(fd, &rsa, &len, flags)
1255 if err != nil {
1256 return
1258 if len > SizeofSockaddrAny {
1259 panic("RawSockaddrAny too small")
1261 sa, err = anyToSockaddr(fd, &rsa)
1262 if err != nil {
1263 Close(nfd)
1264 nfd = 0
1266 return
1269 func Getsockname(fd int) (sa Sockaddr, err error) {
1270 var rsa RawSockaddrAny
1271 var len _Socklen = SizeofSockaddrAny
1272 if err = getsockname(fd, &rsa, &len); err != nil {
1273 return
1275 return anyToSockaddr(fd, &rsa)
1278 func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1279 var value IPMreqn
1280 vallen := _Socklen(SizeofIPMreqn)
1281 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1282 return &value, err
1285 func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1286 var value Ucred
1287 vallen := _Socklen(SizeofUcred)
1288 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1289 return &value, err
1292 func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1293 var value TCPInfo
1294 vallen := _Socklen(SizeofTCPInfo)
1295 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1296 return &value, err
1299 // GetsockoptString returns the string value of the socket option opt for the
1300 // socket associated with fd at the given socket level.
1301 func GetsockoptString(fd, level, opt int) (string, error) {
1302 buf := make([]byte, 256)
1303 vallen := _Socklen(len(buf))
1304 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1305 if err != nil {
1306 if err == ERANGE {
1307 buf = make([]byte, vallen)
1308 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1310 if err != nil {
1311 return "", err
1314 return string(buf[:vallen-1]), nil
1317 func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1318 var value TpacketStats
1319 vallen := _Socklen(SizeofTpacketStats)
1320 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1321 return &value, err
1324 func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1325 var value TpacketStatsV3
1326 vallen := _Socklen(SizeofTpacketStatsV3)
1327 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1328 return &value, err
1331 func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1332 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1335 func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1336 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1339 // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1340 // socket to filter incoming packets. See 'man 7 socket' for usage information.
1341 func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1342 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1345 func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1346 var p unsafe.Pointer
1347 if len(filter) > 0 {
1348 p = unsafe.Pointer(&filter[0])
1350 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1353 func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1354 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1357 func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1358 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1361 func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
1362 if len(o) == 0 {
1363 return EINVAL
1365 return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
1368 // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1370 // KeyctlInt calls keyctl commands in which each argument is an int.
1371 // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1372 // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1373 // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1374 // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1375 //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1377 // KeyctlBuffer calls keyctl commands in which the third and fourth
1378 // arguments are a buffer and its length, respectively.
1379 // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1380 //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1382 // KeyctlString calls keyctl commands which return a string.
1383 // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1384 func KeyctlString(cmd int, id int) (string, error) {
1385 // We must loop as the string data may change in between the syscalls.
1386 // We could allocate a large buffer here to reduce the chance that the
1387 // syscall needs to be called twice; however, this is unnecessary as
1388 // the performance loss is negligible.
1389 var buffer []byte
1390 for {
1391 // Try to fill the buffer with data
1392 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1393 if err != nil {
1394 return "", err
1397 // Check if the data was written
1398 if length <= len(buffer) {
1399 // Exclude the null terminator
1400 return string(buffer[:length-1]), nil
1403 // Make a bigger buffer if needed
1404 buffer = make([]byte, length)
1408 // Keyctl commands with special signatures.
1410 // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1411 // See the full documentation at:
1412 // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1413 func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1414 createInt := 0
1415 if create {
1416 createInt = 1
1418 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1421 // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1422 // key handle permission mask as described in the "keyctl setperm" section of
1423 // http://man7.org/linux/man-pages/man1/keyctl.1.html.
1424 // See the full documentation at:
1425 // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1426 func KeyctlSetperm(id int, perm uint32) error {
1427 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1428 return err
1431 //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1433 // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1434 // See the full documentation at:
1435 // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1436 func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1437 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1440 //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1442 // KeyctlSearch implements the KEYCTL_SEARCH command.
1443 // See the full documentation at:
1444 // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1445 func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1446 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1449 //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1451 // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1452 // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1453 // of Iovec (each of which represents a buffer) instead of a single buffer.
1454 // See the full documentation at:
1455 // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1456 func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1457 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1460 //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1462 // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1463 // computes a Diffie-Hellman shared secret based on the provide params. The
1464 // secret is written to the provided buffer and the returned size is the number
1465 // of bytes written (returning an error if there is insufficient space in the
1466 // buffer). If a nil buffer is passed in, this function returns the minimum
1467 // buffer length needed to store the appropriate data. Note that this differs
1468 // from KEYCTL_READ's behavior which always returns the requested payload size.
1469 // See the full documentation at:
1470 // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1471 func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1472 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1475 // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1476 // command limits the set of keys that can be linked to the keyring, regardless
1477 // of keyring permissions. The command requires the "setattr" permission.
1479 // When called with an empty keyType the command locks the keyring, preventing
1480 // any further keys from being linked to the keyring.
1482 // The "asymmetric" keyType defines restrictions requiring key payloads to be
1483 // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1484 // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1485 // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1487 // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1488 // restrictions.
1490 // See the full documentation at:
1491 // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1492 // http://man7.org/linux/man-pages/man2/keyctl.2.html
1493 func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1494 if keyType == "" {
1495 return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1497 return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1500 //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1501 //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1503 func recvmsgRaw(fd int, iov []Iovec, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) {
1504 var msg Msghdr
1505 msg.Name = (*byte)(unsafe.Pointer(rsa))
1506 msg.Namelen = uint32(SizeofSockaddrAny)
1507 var dummy byte
1508 if len(oob) > 0 {
1509 if emptyIovecs(iov) {
1510 var sockType int
1511 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1512 if err != nil {
1513 return
1515 // receive at least one normal byte
1516 if sockType != SOCK_DGRAM {
1517 var iova [1]Iovec
1518 iova[0].Base = &dummy
1519 iova[0].SetLen(1)
1520 iov = iova[:]
1523 msg.Control = &oob[0]
1524 msg.SetControllen(len(oob))
1526 if len(iov) > 0 {
1527 msg.Iov = &iov[0]
1528 msg.SetIovlen(len(iov))
1530 if n, err = recvmsg(fd, &msg, flags); err != nil {
1531 return
1533 oobn = int(msg.Controllen)
1534 recvflags = int(msg.Flags)
1535 return
1538 func sendmsgN(fd int, iov []Iovec, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) {
1539 var msg Msghdr
1540 msg.Name = (*byte)(ptr)
1541 msg.Namelen = uint32(salen)
1542 var dummy byte
1543 var empty bool
1544 if len(oob) > 0 {
1545 empty = emptyIovecs(iov)
1546 if empty {
1547 var sockType int
1548 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1549 if err != nil {
1550 return 0, err
1552 // send at least one normal byte
1553 if sockType != SOCK_DGRAM {
1554 var iova [1]Iovec
1555 iova[0].Base = &dummy
1556 iova[0].SetLen(1)
1559 msg.Control = &oob[0]
1560 msg.SetControllen(len(oob))
1562 if len(iov) > 0 {
1563 msg.Iov = &iov[0]
1564 msg.SetIovlen(len(iov))
1566 if n, err = sendmsg(fd, &msg, flags); err != nil {
1567 return 0, err
1569 if len(oob) > 0 && empty {
1570 n = 0
1572 return n, nil
1575 // BindToDevice binds the socket associated with fd to device.
1576 func BindToDevice(fd int, device string) (err error) {
1577 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1580 //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1582 func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1583 // The peek requests are machine-size oriented, so we wrap it
1584 // to retrieve arbitrary-length data.
1586 // The ptrace syscall differs from glibc's ptrace.
1587 // Peeks returns the word in *data, not as the return value.
1589 var buf [SizeofPtr]byte
1591 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1592 // access (PEEKUSER warns that it might), but if we don't
1593 // align our reads, we might straddle an unmapped page
1594 // boundary and not get the bytes leading up to the page
1595 // boundary.
1596 n := 0
1597 if addr%SizeofPtr != 0 {
1598 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1599 if err != nil {
1600 return 0, err
1602 n += copy(out, buf[addr%SizeofPtr:])
1603 out = out[n:]
1606 // Remainder.
1607 for len(out) > 0 {
1608 // We use an internal buffer to guarantee alignment.
1609 // It's not documented if this is necessary, but we're paranoid.
1610 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1611 if err != nil {
1612 return n, err
1614 copied := copy(out, buf[0:])
1615 n += copied
1616 out = out[copied:]
1619 return n, nil
1622 func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1623 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1626 func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1627 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1630 func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1631 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1634 func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1635 // As for ptracePeek, we need to align our accesses to deal
1636 // with the possibility of straddling an invalid page.
1638 // Leading edge.
1639 n := 0
1640 if addr%SizeofPtr != 0 {
1641 var buf [SizeofPtr]byte
1642 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1643 if err != nil {
1644 return 0, err
1646 n += copy(buf[addr%SizeofPtr:], data)
1647 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1648 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1649 if err != nil {
1650 return 0, err
1652 data = data[n:]
1655 // Interior.
1656 for len(data) > SizeofPtr {
1657 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1658 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1659 if err != nil {
1660 return n, err
1662 n += SizeofPtr
1663 data = data[SizeofPtr:]
1666 // Trailing edge.
1667 if len(data) > 0 {
1668 var buf [SizeofPtr]byte
1669 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1670 if err != nil {
1671 return n, err
1673 copy(buf[0:], data)
1674 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1675 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1676 if err != nil {
1677 return n, err
1679 n += len(data)
1682 return n, nil
1685 func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1686 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1689 func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1690 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1693 func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1694 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1697 func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1698 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1701 func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1702 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1705 func PtraceSetOptions(pid int, options int) (err error) {
1706 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1709 func PtraceGetEventMsg(pid int) (msg uint, err error) {
1710 var data _C_long
1711 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1712 msg = uint(data)
1713 return
1716 func PtraceCont(pid int, signal int) (err error) {
1717 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1720 func PtraceSyscall(pid int, signal int) (err error) {
1721 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1724 func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1726 func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1728 func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1730 func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1732 func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1734 //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1736 func Reboot(cmd int) (err error) {
1737 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1740 func direntIno(buf []byte) (uint64, bool) {
1741 return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1744 func direntReclen(buf []byte) (uint64, bool) {
1745 return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1748 func direntNamlen(buf []byte) (uint64, bool) {
1749 reclen, ok := direntReclen(buf)
1750 if !ok {
1751 return 0, false
1753 return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1756 //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1758 func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1759 // Certain file systems get rather angry and EINVAL if you give
1760 // them an empty string of data, rather than NULL.
1761 if data == "" {
1762 return mount(source, target, fstype, flags, nil)
1764 datap, err := BytePtrFromString(data)
1765 if err != nil {
1766 return err
1768 return mount(source, target, fstype, flags, datap)
1771 //sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
1773 // MountSetattr is a wrapper for mount_setattr(2).
1774 // https://man7.org/linux/man-pages/man2/mount_setattr.2.html
1776 // Requires kernel >= 5.12.
1777 func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
1778 return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
1781 func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1782 if raceenabled {
1783 raceReleaseMerge(unsafe.Pointer(&ioSync))
1785 return sendfile(outfd, infd, offset, count)
1788 // Sendto
1789 // Recvfrom
1790 // Socketpair
1793 * Direct access
1795 //sys Acct(path string) (err error)
1796 //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1797 //sys Adjtimex(buf *Timex) (state int, err error)
1798 //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1799 //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1800 //sys Chdir(path string) (err error)
1801 //sys Chroot(path string) (err error)
1802 //sys ClockGetres(clockid int32, res *Timespec) (err error)
1803 //sys ClockGettime(clockid int32, time *Timespec) (err error)
1804 //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1805 //sys Close(fd int) (err error)
1806 //sys CloseRange(first uint, last uint, flags uint) (err error)
1807 //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1808 //sys DeleteModule(name string, flags int) (err error)
1809 //sys Dup(oldfd int) (fd int, err error)
1811 func Dup2(oldfd, newfd int) error {
1812 return Dup3(oldfd, newfd, 0)
1815 //sys Dup3(oldfd int, newfd int, flags int) (err error)
1816 //sysnb EpollCreate1(flag int) (fd int, err error)
1817 //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1818 //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1819 //sys Exit(code int) = SYS_EXIT_GROUP
1820 //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1821 //sys Fchdir(fd int) (err error)
1822 //sys Fchmod(fd int, mode uint32) (err error)
1823 //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1824 //sys Fdatasync(fd int) (err error)
1825 //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1826 //sys FinitModule(fd int, params string, flags int) (err error)
1827 //sys Flistxattr(fd int, dest []byte) (sz int, err error)
1828 //sys Flock(fd int, how int) (err error)
1829 //sys Fremovexattr(fd int, attr string) (err error)
1830 //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1831 //sys Fsync(fd int) (err error)
1832 //sys Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error)
1833 //sys Fsopen(fsName string, flags int) (fd int, err error)
1834 //sys Fspick(dirfd int, pathName string, flags int) (fd int, err error)
1835 //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1836 //sysnb Getpgid(pid int) (pgid int, err error)
1838 func Getpgrp() (pid int) {
1839 pid, _ = Getpgid(0)
1840 return
1843 //sysnb Getpid() (pid int)
1844 //sysnb Getppid() (ppid int)
1845 //sys Getpriority(which int, who int) (prio int, err error)
1846 //sys Getrandom(buf []byte, flags int) (n int, err error)
1847 //sysnb Getrusage(who int, rusage *Rusage) (err error)
1848 //sysnb Getsid(pid int) (sid int, err error)
1849 //sysnb Gettid() (tid int)
1850 //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1851 //sys InitModule(moduleImage []byte, params string) (err error)
1852 //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1853 //sysnb InotifyInit1(flags int) (fd int, err error)
1854 //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1855 //sysnb Kill(pid int, sig syscall.Signal) (err error)
1856 //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1857 //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1858 //sys Listxattr(path string, dest []byte) (sz int, err error)
1859 //sys Llistxattr(path string, dest []byte) (sz int, err error)
1860 //sys Lremovexattr(path string, attr string) (err error)
1861 //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1862 //sys MemfdCreate(name string, flags int) (fd int, err error)
1863 //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1864 //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1865 //sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error)
1866 //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1867 //sys OpenTree(dfd int, fileName string, flags uint) (r int, err error)
1868 //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1869 //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1870 //sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1871 //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1872 //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1873 //sys read(fd int, p []byte) (n int, err error)
1874 //sys Removexattr(path string, attr string) (err error)
1875 //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1876 //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1877 //sys Setdomainname(p []byte) (err error)
1878 //sys Sethostname(p []byte) (err error)
1879 //sysnb Setpgid(pid int, pgid int) (err error)
1880 //sysnb Setsid() (pid int, err error)
1881 //sysnb Settimeofday(tv *Timeval) (err error)
1882 //sys Setns(fd int, nstype int) (err error)
1884 // PrctlRetInt performs a prctl operation specified by option and further
1885 // optional arguments arg2 through arg5 depending on option. It returns a
1886 // non-negative integer that is returned by the prctl syscall.
1887 func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1888 ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1889 if err != 0 {
1890 return 0, err
1892 return int(ret), nil
1895 func Setuid(uid int) (err error) {
1896 return syscall.Setuid(uid)
1899 func Setgid(gid int) (err error) {
1900 return syscall.Setgid(gid)
1903 func Setreuid(ruid, euid int) (err error) {
1904 return syscall.Setreuid(ruid, euid)
1907 func Setregid(rgid, egid int) (err error) {
1908 return syscall.Setregid(rgid, egid)
1911 func Setresuid(ruid, euid, suid int) (err error) {
1912 return syscall.Setresuid(ruid, euid, suid)
1915 func Setresgid(rgid, egid, sgid int) (err error) {
1916 return syscall.Setresgid(rgid, egid, sgid)
1919 // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1920 // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1921 // If the call fails due to other reasons, current fsgid will be returned.
1922 func SetfsgidRetGid(gid int) (int, error) {
1923 return setfsgid(gid)
1926 // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1927 // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1928 // If the call fails due to other reasons, current fsuid will be returned.
1929 func SetfsuidRetUid(uid int) (int, error) {
1930 return setfsuid(uid)
1933 func Setfsgid(gid int) error {
1934 _, err := setfsgid(gid)
1935 return err
1938 func Setfsuid(uid int) error {
1939 _, err := setfsuid(uid)
1940 return err
1943 func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1944 return signalfd(fd, sigmask, _C__NSIG/8, flags)
1947 //sys Setpriority(which int, who int, prio int) (err error)
1948 //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
1949 //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1950 //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1951 //sys Sync()
1952 //sys Syncfs(fd int) (err error)
1953 //sysnb Sysinfo(info *Sysinfo_t) (err error)
1954 //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1955 //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
1956 //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1957 //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
1958 //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1959 //sysnb Times(tms *Tms) (ticks uintptr, err error)
1960 //sysnb Umask(mask int) (oldmask int)
1961 //sysnb Uname(buf *Utsname) (err error)
1962 //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1963 //sys Unshare(flags int) (err error)
1964 //sys write(fd int, p []byte) (n int, err error)
1965 //sys exitThread(code int) (err error) = SYS_EXIT
1966 //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1967 //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1968 //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1969 //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1970 //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1971 //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1972 //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1973 //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1975 func bytes2iovec(bs [][]byte) []Iovec {
1976 iovecs := make([]Iovec, len(bs))
1977 for i, b := range bs {
1978 iovecs[i].SetLen(len(b))
1979 if len(b) > 0 {
1980 iovecs[i].Base = &b[0]
1981 } else {
1982 iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1985 return iovecs
1988 // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1989 // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1990 // preadv/pwritev chose this calling convention so they don't need to add a
1991 // padding-register for alignment on ARM.
1992 func offs2lohi(offs int64) (lo, hi uintptr) {
1993 return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1996 func Readv(fd int, iovs [][]byte) (n int, err error) {
1997 iovecs := bytes2iovec(iovs)
1998 n, err = readv(fd, iovecs)
1999 readvRacedetect(iovecs, n, err)
2000 return n, err
2003 func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
2004 iovecs := bytes2iovec(iovs)
2005 lo, hi := offs2lohi(offset)
2006 n, err = preadv(fd, iovecs, lo, hi)
2007 readvRacedetect(iovecs, n, err)
2008 return n, err
2011 func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2012 iovecs := bytes2iovec(iovs)
2013 lo, hi := offs2lohi(offset)
2014 n, err = preadv2(fd, iovecs, lo, hi, flags)
2015 readvRacedetect(iovecs, n, err)
2016 return n, err
2019 func readvRacedetect(iovecs []Iovec, n int, err error) {
2020 if !raceenabled {
2021 return
2023 for i := 0; n > 0 && i < len(iovecs); i++ {
2024 m := int(iovecs[i].Len)
2025 if m > n {
2026 m = n
2028 n -= m
2029 if m > 0 {
2030 raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2033 if err == nil {
2034 raceAcquire(unsafe.Pointer(&ioSync))
2038 func Writev(fd int, iovs [][]byte) (n int, err error) {
2039 iovecs := bytes2iovec(iovs)
2040 if raceenabled {
2041 raceReleaseMerge(unsafe.Pointer(&ioSync))
2043 n, err = writev(fd, iovecs)
2044 writevRacedetect(iovecs, n)
2045 return n, err
2048 func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2049 iovecs := bytes2iovec(iovs)
2050 if raceenabled {
2051 raceReleaseMerge(unsafe.Pointer(&ioSync))
2053 lo, hi := offs2lohi(offset)
2054 n, err = pwritev(fd, iovecs, lo, hi)
2055 writevRacedetect(iovecs, n)
2056 return n, err
2059 func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2060 iovecs := bytes2iovec(iovs)
2061 if raceenabled {
2062 raceReleaseMerge(unsafe.Pointer(&ioSync))
2064 lo, hi := offs2lohi(offset)
2065 n, err = pwritev2(fd, iovecs, lo, hi, flags)
2066 writevRacedetect(iovecs, n)
2067 return n, err
2070 func writevRacedetect(iovecs []Iovec, n int) {
2071 if !raceenabled {
2072 return
2074 for i := 0; n > 0 && i < len(iovecs); i++ {
2075 m := int(iovecs[i].Len)
2076 if m > n {
2077 m = n
2079 n -= m
2080 if m > 0 {
2081 raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2086 // mmap varies by architecture; see syscall_linux_*.go.
2087 //sys munmap(addr uintptr, length uintptr) (err error)
2089 var mapper = &mmapper{
2090 active: make(map[*byte][]byte),
2091 mmap: mmap,
2092 munmap: munmap,
2095 func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2096 return mapper.Mmap(fd, offset, length, prot, flags)
2099 func Munmap(b []byte) (err error) {
2100 return mapper.Munmap(b)
2103 //sys Madvise(b []byte, advice int) (err error)
2104 //sys Mprotect(b []byte, prot int) (err error)
2105 //sys Mlock(b []byte) (err error)
2106 //sys Mlockall(flags int) (err error)
2107 //sys Msync(b []byte, flags int) (err error)
2108 //sys Munlock(b []byte) (err error)
2109 //sys Munlockall() (err error)
2111 // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2112 // using the specified flags.
2113 func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2114 var p unsafe.Pointer
2115 if len(iovs) > 0 {
2116 p = unsafe.Pointer(&iovs[0])
2119 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2120 if errno != 0 {
2121 return 0, syscall.Errno(errno)
2124 return int(n), nil
2127 func isGroupMember(gid int) bool {
2128 groups, err := Getgroups()
2129 if err != nil {
2130 return false
2133 for _, g := range groups {
2134 if g == gid {
2135 return true
2138 return false
2141 //sys faccessat(dirfd int, path string, mode uint32) (err error)
2142 //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2144 func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2145 if flags == 0 {
2146 return faccessat(dirfd, path, mode)
2149 if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2150 return err
2153 // The Linux kernel faccessat system call does not take any flags.
2154 // The glibc faccessat implements the flags itself; see
2155 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2156 // Because people naturally expect syscall.Faccessat to act
2157 // like C faccessat, we do the same.
2159 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2160 return EINVAL
2163 var st Stat_t
2164 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2165 return err
2168 mode &= 7
2169 if mode == 0 {
2170 return nil
2173 var uid int
2174 if flags&AT_EACCESS != 0 {
2175 uid = Geteuid()
2176 } else {
2177 uid = Getuid()
2180 if uid == 0 {
2181 if mode&1 == 0 {
2182 // Root can read and write any file.
2183 return nil
2185 if st.Mode&0111 != 0 {
2186 // Root can execute any file that anybody can execute.
2187 return nil
2189 return EACCES
2192 var fmode uint32
2193 if uint32(uid) == st.Uid {
2194 fmode = (st.Mode >> 6) & 7
2195 } else {
2196 var gid int
2197 if flags&AT_EACCESS != 0 {
2198 gid = Getegid()
2199 } else {
2200 gid = Getgid()
2203 if uint32(gid) == st.Gid || isGroupMember(int(st.Gid)) {
2204 fmode = (st.Mode >> 3) & 7
2205 } else {
2206 fmode = st.Mode & 7
2210 if fmode&mode == mode {
2211 return nil
2214 return EACCES
2217 //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2218 //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2220 // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2221 // originally tried to generate it via unix/linux/types.go with "type
2222 // fileHandle C.struct_file_handle" but that generated empty structs
2223 // for mips64 and mips64le. Instead, hard code it for now (it's the
2224 // same everywhere else) until the mips64 generator issue is fixed.
2225 type fileHandle struct {
2226 Bytes uint32
2227 Type int32
2230 // FileHandle represents the C struct file_handle used by
2231 // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2232 // OpenByHandleAt).
2233 type FileHandle struct {
2234 *fileHandle
2237 // NewFileHandle constructs a FileHandle.
2238 func NewFileHandle(handleType int32, handle []byte) FileHandle {
2239 const hdrSize = unsafe.Sizeof(fileHandle{})
2240 buf := make([]byte, hdrSize+uintptr(len(handle)))
2241 copy(buf[hdrSize:], handle)
2242 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2243 fh.Type = handleType
2244 fh.Bytes = uint32(len(handle))
2245 return FileHandle{fh}
2248 func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
2249 func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2250 func (fh *FileHandle) Bytes() []byte {
2251 n := fh.Size()
2252 if n == 0 {
2253 return nil
2255 return unsafe.Slice((*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type))+4)), n)
2258 // NameToHandleAt wraps the name_to_handle_at system call; it obtains
2259 // a handle for a path name.
2260 func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2261 var mid _C_int
2262 // Try first with a small buffer, assuming the handle will
2263 // only be 32 bytes.
2264 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2265 didResize := false
2266 for {
2267 buf := make([]byte, size)
2268 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2269 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2270 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2271 if err == EOVERFLOW {
2272 if didResize {
2273 // We shouldn't need to resize more than once
2274 return
2276 didResize = true
2277 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2278 continue
2280 if err != nil {
2281 return
2283 return FileHandle{fh}, int(mid), nil
2287 // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2288 // file via a handle as previously returned by NameToHandleAt.
2289 func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2290 return openByHandleAt(mountFD, handle.fileHandle, flags)
2293 // Klogset wraps the sys_syslog system call; it sets console_loglevel to
2294 // the value specified by arg and passes a dummy pointer to bufp.
2295 func Klogset(typ int, arg int) (err error) {
2296 var p unsafe.Pointer
2297 _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2298 if errno != 0 {
2299 return errnoErr(errno)
2301 return nil
2304 // RemoteIovec is Iovec with the pointer replaced with an integer.
2305 // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2306 // refers to a location in a different process' address space, which
2307 // would confuse the Go garbage collector.
2308 type RemoteIovec struct {
2309 Base uintptr
2310 Len int
2313 //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2314 //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2316 //sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
2317 //sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
2318 //sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL
2320 //sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
2321 //sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
2322 //sys shmdt(addr uintptr) (err error)
2323 //sys shmget(key int, size int, flag int) (id int, err error)
2325 //sys getitimer(which int, currValue *Itimerval) (err error)
2326 //sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
2328 // MakeItimerval creates an Itimerval from interval and value durations.
2329 func MakeItimerval(interval, value time.Duration) Itimerval {
2330 return Itimerval{
2331 Interval: NsecToTimeval(interval.Nanoseconds()),
2332 Value: NsecToTimeval(value.Nanoseconds()),
2336 // A value which may be passed to the which parameter for Getitimer and
2337 // Setitimer.
2338 type ItimerWhich int
2340 // Possible which values for Getitimer and Setitimer.
2341 const (
2342 ItimerReal ItimerWhich = ITIMER_REAL
2343 ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
2344 ItimerProf ItimerWhich = ITIMER_PROF
2347 // Getitimer wraps getitimer(2) to return the current value of the timer
2348 // specified by which.
2349 func Getitimer(which ItimerWhich) (Itimerval, error) {
2350 var it Itimerval
2351 if err := getitimer(int(which), &it); err != nil {
2352 return Itimerval{}, err
2355 return it, nil
2358 // Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
2359 // It returns the previous value of the timer.
2361 // If the Itimerval argument is the zero value, the timer will be disarmed.
2362 func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) {
2363 var prev Itimerval
2364 if err := setitimer(int(which), &it, &prev); err != nil {
2365 return Itimerval{}, err
2368 return prev, nil
2371 //sysnb rtSigprocmask(how int, set *Sigset_t, oldset *Sigset_t, sigsetsize uintptr) (err error) = SYS_RT_SIGPROCMASK
2373 func PthreadSigmask(how int, set, oldset *Sigset_t) error {
2374 if oldset != nil {
2375 // Explicitly clear in case Sigset_t is larger than _C__NSIG.
2376 *oldset = Sigset_t{}
2378 return rtSigprocmask(how, set, oldset, _C__NSIG/8)
2382 * Unimplemented
2384 // AfsSyscall
2385 // ArchPrctl
2386 // Brk
2387 // ClockNanosleep
2388 // ClockSettime
2389 // Clone
2390 // EpollCtlOld
2391 // EpollPwait
2392 // EpollWaitOld
2393 // Execve
2394 // Fork
2395 // Futex
2396 // GetKernelSyms
2397 // GetMempolicy
2398 // GetRobustList
2399 // GetThreadArea
2400 // Getpmsg
2401 // IoCancel
2402 // IoDestroy
2403 // IoGetevents
2404 // IoSetup
2405 // IoSubmit
2406 // IoprioGet
2407 // IoprioSet
2408 // KexecLoad
2409 // LookupDcookie
2410 // Mbind
2411 // MigratePages
2412 // Mincore
2413 // ModifyLdt
2414 // Mount
2415 // MovePages
2416 // MqGetsetattr
2417 // MqNotify
2418 // MqOpen
2419 // MqTimedreceive
2420 // MqTimedsend
2421 // MqUnlink
2422 // Mremap
2423 // Msgctl
2424 // Msgget
2425 // Msgrcv
2426 // Msgsnd
2427 // Nfsservctl
2428 // Personality
2429 // Pselect6
2430 // Ptrace
2431 // Putpmsg
2432 // Quotactl
2433 // Readahead
2434 // Readv
2435 // RemapFilePages
2436 // RestartSyscall
2437 // RtSigaction
2438 // RtSigpending
2439 // RtSigqueueinfo
2440 // RtSigreturn
2441 // RtSigsuspend
2442 // RtSigtimedwait
2443 // SchedGetPriorityMax
2444 // SchedGetPriorityMin
2445 // SchedGetparam
2446 // SchedGetscheduler
2447 // SchedRrGetInterval
2448 // SchedSetparam
2449 // SchedYield
2450 // Security
2451 // Semctl
2452 // Semget
2453 // Semop
2454 // Semtimedop
2455 // SetMempolicy
2456 // SetRobustList
2457 // SetThreadArea
2458 // SetTidAddress
2459 // Sigaltstack
2460 // Swapoff
2461 // Swapon
2462 // Sysfs
2463 // TimerCreate
2464 // TimerDelete
2465 // TimerGetoverrun
2466 // TimerGettime
2467 // TimerSettime
2468 // Tkill (obsolete)
2469 // Tuxcall
2470 // Umount2
2471 // Uselib
2472 // Utimensat
2473 // Vfork
2474 // Vhangup
2475 // Vserver
2476 // _Sysctl